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Abstract

The structure of the multiplets of nuclear terms is investigated,
using as first approximation a Hamiltonian which does not involve
the ordinary spin and corresponds to equal forces between all nuclear
constituents, protons and neutrons. The multiplets turn out to have a
rather complicated structure, instead of the S of atomic spectroscopy,
one has three quantum numbers S, T, Y. The second approximation
can either introduce spin forces (method 2), or else can discriminate
between protons and neutrons (method 3). The last approximation
discriminates between protons and neutrons in method 2 and takes
the spin forces into account in method 3. The method 2 is worked out
schematically and is shown to explain qualitatively the table of stable
nuclei to about Mo.

1

Recent investigations1 appear to show that the forces between all pairs
of constituents makes it desirable to treat the protons and neutrons on an
equal footing. A scheme for this was devised in his original paper by W.
Heisenberg2 who considered protons and neutrons as different states of the
same particle. Heisenberg introduced a variable τ which we shall call the
isotopic spin, the value −1 of this variable can be assigned to the proton
state of the particle, the value +1 to the neutron state. The assumption

1M. A. Tuve, N. P. Heydenburg and L. R. Hafstad, Phys. Rev. 50, 806 (1936); G.
Breit, E. U. Condon and R. D. Present, Phys. Rev. 50, 825 (1936).

2W. Heisenberg, Zeits. f. Physik 77, 1 (1932).
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that the forces between all pairs of particles are equal is equivalent, then to
the assumption that they do not depend on τ or that the Hamiltonian does
not in involve the isotopic spin.

In addition to this isotopic spin τ , we must keep, of course, the ordinary
spin variable s also; s also can assume the two values +1 and −1. It has been
pointed out lately3 that the Pauli principle requires that the wave function

Ψ(r1s1τ1, r2s2τ2, . . . rnsnτn) (1)

be antisymmetric with respect to the simultaneous interchange of Cartesian,
spin and isotopic spin variables of any pair of heavy particles. This fact is
quite analogous to the similar statement for ordinary spin.

Of course, if Eq. (1) is to represent the state of a given nucleus, say with
nP protons and nN neutrons, it must vanish at every place where the sum
of the τ ’s

τ1 + τ2 + . . .+ τn 6= nN − nP (2)

is not equal to the “isotopic number” of this element. All wave functions
which are finite for several sums of the τ ’s, refer to states which can be
different elements with finite probabilities. No such states are known to be
of any importance and the mathematical apparatus of the isotopic spin is,
hence, somewhat redundant. It will turn out that it is very useful in spite
of this.

In addition to the assumption of the approximate equality of forces be-
tween all pairs of particles, it appears to be a useful approximation to neglect
the forces involving the ordinary spin. The Hamiltonian depends then on the
space coordinates alone. By keeping both, one or none of these assumptions,
one comes to four possible schemes;

(1) Take into account forces depending on space co- ordinates alone.
(2) Take into account forces depending on space and ordinary spin coordinates,

assuming, however, interactions between all kinds of pairs to be equal.
(3) Neglect ordinary spin forces, take into account forces depending on space

coordinates and isotopic spin, i.e., discriminate between proton-proton, proton-
neutron and neutron-neutron interactions.

(4) Take all kinds of interaction into account.

The first is the roughest method, the last the most exact and it is prob-
able that (2) is more accurate for light elements, (3) for heavy elements.
On the other hand, of course, one can obtain most results from symmetry

3J. H. Bartlett, Phys. Rev. 49, 102 (1936); W. Elsasser, J. de phys. et rad. 7, 312
(1936), and especially B. Cassen and E. U. Condon, Phys. Rev. 50, 846 (1936).
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considerations for 1, fewest for 4. Approximation (1) is identical with the
“all orbital forces equal” model4.

The statement that an operator involves only one or another set of vari-
ables needs further amplification. As used in the ordinary theory of spectra,
this expression means that the operator can be written in terms of these
variables alone. It did not mean that it cannot be written in some other
way as well. Thus, e.g., the inter-change P of the space coordinates acts
only on space coordinates, although it can be written by Dirac’s identity,

P = −
1

2
−

1

2
(s1 · s2)

entirely in terms of spin operators for antisymmetric functions. We shall
keep this definition for the forces depending on Cartesian and ordnary spin
coordinates for nuclei also.

The operators which involve τ are, however, somewhat specialized to
begin with. Using Heisenberg’s notation for isotopic spin operators
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(4)

the conservation law for electric charge requires that all operators commute
with

τζ1 + τζ2 + . . .+ τζn = nN − nP = 2Tζ . (3)

In addition to this, one hardly would say that

τξ1τξ2 + τη1τη2 + τζ1τζ2 = −1− 2PQ. (5)

(P interchange of space, Q interchange of spin coordinates) does not involve
the Cartesian or spin coordinates, since Eq. (5) is a rather artificial expres-
sion, τξ and τη having no immediate physical significance. We shall assume
hence for approximation (3) only such operators which are equivalent to op-
erators acting on the Cartesian coordinates alone, but in a different way for
protons and neutrons. This is equivalent to using only operators involving
the space coordinates and the τζ ’s. If we do this, the results of method (3)
must become equivalent to the usual theory (without τ ’s) which neglects
the spin. As a matter of fact, for approximation (3), the introduction of
τ is entirely useless and it is taken up here only in order to establish the
transition from approximation (1) to (3).

4E. Feenberg and E. Wigner, Phys. Rev. This issue.
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The interaction in the electronic shells of atoms is a sum of terms containing
two particles only and the momenta is no higher than the second power. The
reason for the first is, that the interaction occurs through a field and this
gives in first approximation only interaction between two particles. The
reason that one can stop with the second power of the momenta is that
these always enter in the combination p/mc which is a small quantity.

An advantage of introducing the variable τ is5,6 that one can take over
these assumptions to nuclei. If one does not use the variable τ the inter-
change of two particles if expressed as a power series of the momenta is an
infinite series7

∑

n1n2n3

(x2 − x1)n1(y2 − y1)n2(z2 − z1)n3

n1!n2!n3!

×

(
∂

∂x1
−

∂

∂x2

)n1
(

∂

∂y1
−

∂

∂y2

)n2
(
∂

∂z1
−

∂

∂z2

)n3

.

However, it can be expressed by means of Dirac’s identity also entirely with-
out the momenta by means of Eq. (5). It must be admitted, however, that
the spin cannot be considered to be small as in the atomic theory. We shall
determine here all interaction forms between two particles which do not con-
tain higher than first power terms of momenta8 as far as the dependence
on s and τ goes. Nothing can be said, of course, on the dependence on
the distance, and this factor will be omitted hence. It seems to be of lesser
importance for the present.

The interaction must have spherical symmetry, depending on the dif-
ferences of coordinates and momenta only, be invariant under inversion,
substitution of −t for t and also be symmetric in the particles. The first
requirements determine the dependence on s, x and p. From the two triples
of spin operators, one can form two invariants

(i) 1; and (i′)
1

2
+

1

2
(sx1sx2 + sy1sy2 + sz1sz2) = Q12

5W. Heisenberg, Zeits. f. Physik 77, 1 (1932).
6J. H. Bartlett, Phys. Rev. 49, 102 (1936); W. Elsasser, J. de phys. et rad. 7, 312

(1936), and especially B. Cassen and E. U. Condon, Phys. Rev. 50, 846 (1936).
7J.A. Wheeler, Rhys. Rev. 50, 643 (1936).
8 Some of these were given previously by Cassen and Condon, reference 3. The ex-

pressions given here are invariant only under Galilei transformations. G. Breit has shown
that, in order to ensure relativistic invariance, correction terms must be added to the
expressions derived here.
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three axial vectors with Z components

(v) sz1 + sz2; sz1 − sz2; −sx1sy2 − sy1sx2,

respectively, and one axial tensor, with components

sx1sy2 + sy1sx2; sy1sz2 + sz1sy2; sz1sx2 + sx1sx2;

sx1sx2 − sy1sy2; sx1sx2 + sy1sy2 − 2sz1sz2.

The first two of these, (i) and (i′), can be used as they stand, cannot be
combined with first power expressions of p, however, since these change sign
under the t′ = −t substitution. The last one (t) gives the familiar expression

(i′′) (s1 · r12)(s2 · r12 − 3(s1 · s2)r2
12

if combined with the similar tensor of the coordinates9. It cannot be com-
bined with the p either. The middle one must be combined with the vector
p1 − p2 which gives a useless axial invariant and tensor and an ordinary
vector. This combined with the distance vector gives the familiar

(ia)(ib)(ic)

∣
∣
∣
∣
∣

sx sy sz
x1 − x2 y1 − y2 z1 − z2

px1 − px2 py1 − py2 pz1 − pz2

∣
∣
∣
∣
∣
.

Here sx, sy, sz can be the components of one of the three vectors (v). On the
whole, we have 6 invariants. These invariants can be multiplied with one of
the six expressions in τ which commute with τζ1 + τζ2. These are, first of all

(τ0) 1 and (τ ′0) −
1

2
−

1

2
(τ1 · τ2) = P12Q12

which give the same interaction between all pairs of particles. In addition
to these, we have

(τ1)
1

2
+

1

2
τζ1τζ2 and (τ ′2)

1

2
(τζ1 = τζ2).

The first of these gives ordinary interaction but only between like particles;
the second gives a negative interaction for proton pairs, a positive for neutron
pairs, none for unlike particles. These interactions are symmetric in the

9(ii) has the property that it is identical with Q12(ii). It is an interaction which shows
saturation.
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particles and can be combined with (i), (i’), (i”) and (ia), giving in the whole
16 different forms.

Finally we have

(τ2) τζ1 − τζ2 and (τ ′2)
1

2
(τξ1τη2 − τη1τξ2),

which can be combined with (ib) and (ic) giving 4 more types of interaction.
In approximation (1) we can have only (i)(τ0) and (i′)(τ ′0), i.e., ordinary

and Majorana exchange forces.
In approximation (2), all 8 forms derived from (τ0), (τ ′0) and (i), (i′), (i′′)

and (ia). These are, in addition to the previous ones, spin-spin (i′′)(τ0),
spin-orbit (ia)(τ0) ordinary forces, Heisenberg forces (i)(τ ′0). Furthermore
spin-spin exchange forces (i′)(τ ′0) and spin-orbit exchange forces (ia)(τ ′0)
of the Heisenberg type. The Majorana exchange forces of these types are
identical with the ordinary forces. Finally, we have the spin-exchange forces
(i′)(τ0) of Bartlett10.

In approximation (3) we must permit according to the preceding section,
in addition to those of 1, only (i)(τ1) and (i)(τ ′1), allowing for different
interactions between different kinds of pairs. The coefficient of (i)(τ ′1) is
certainly very small, the proton-proton interaction being very nearly equal
to the neutron-neutron interaction.

In approximation (4), all 20 types become possible.

3

We next go over to approximation (1), and try to define the analog of the
multiple! system. This can be defined in two ways: either by considering
the functional dependence of the wave functions on the spins or else by con-
sidering their dependence on the space coordinates. We shall first consider
the spin function11.

The great difference between the ordinary spin and the spin considered
here is that we have, for every particle, two spin coordinates s and , giving
in the whole four different sets of values −1,−1;−1, 1; 1,−1; 1, 1. Instead of

10J. H. Bartlett, Phys. Rev. 49, 102 (1936); W. Elsasser, J. de phys. et rad. 7, 312
(1936), and especially B. Cassen and E. U. Condon, Phys. Rev. 50, 846 (1936).

11The content of this section is based on the fundamental mathematical works of E.
Cartan, Bull. Soc. Math. de France 41, 43 (1913). J. de Math. 10, 149 (1914); I. Schur,
Berl. Ber., pp. 189, 297, 346 (1924) and particularly, H. Weyl, Math. Zs. 23, 271 (1925).
I attempted to compile in this section-often without giving rigorous proofs-those results
which suffice for the discussion of the physical problems in question.
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two two-valued spins, one can introduce one four-valued spin η, which has
the values 1, 2, 3, 4 for the four different doublets of values of s and τ ,
respectively. This η plays the same role which the two-valued spin plays
in the ordnary spin theory. However, because of the four-valuedness of
η, instead of the representations of the two-dimensional unitary group (or
the equivalent three-dimensional rotation group), the representations of the
four-dimensional unitary group will characterize the multiplet systems.

Since the Hamiltonian does not contain the spin coordinates, any trans-
formation which affects only these, will bring a characteristic function into
a characteristic function. We can consider first, the permutations of the ηi
and second, simultaneous unitary transformations of all the η:

Ruψ(η1, . . . , ηn) =
∑

ϑ

uη1ϑ1uη2ϑ2 . . . uηnϑn × ψ(ϑ1, . . . , ϑn). (6)

We can first define something analogous to the Z component of the spin
momentum by considering the u’s of the type

u(ϕ1, ϕ2, ϕ3, ϕ4) =

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

eiϕ1 0 0 0
0 eiϕ2 0 0
0 0 eiϕ3 0
0 0 0 eiϕ4

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(7)

These operations all commute and, hence, a system of functions of the η can
be found, the members of which are merely multiplied by constants if an Ru
with u of the form (7) is applied to them12

Ru(ϕ1ϕ2ϕ3ϕ4)F νµ1µ2µ3µ4
(η1 . . . ηn) = ei(µ1ϕ1+µ2ϕ2+µ3ϕ3+µ4ϕ4)F νµ1µ2µ3µ4

. (8)

The µmust be integers in this equation, they will be called diagonal quantum
numbers. The ν serves only to discriminate between different functions of
the η with the same diagonal quantum numbers.

Since u(ϕ,ϕ, ϕ, ϕ) with four equal ϕ is only multiplication with eiϕ,
because of (6), Ru is multiplication with einϕ. It is, on the other hand, mul-
tiplication with ei(µ1ϕ+µ2ϕ+µ3ϕ+µ4ϕ) which shows that all possible systems
of diagonal quantum numbers satisfy the equation

µ1 + µ2 + µ3 + µ4 = n, (9)

12The Fµ1µ2µ3µ4(η1 . . . η0) are zero for every set η1η2 . . . ηn of the η, except for those
sets in which µ1 of them have the value 1, exactly µ2 of them have the value 2, and µ3 of
them are 3. Then µ4 of them will be equal to 4. Otherwise they can be arbitrary and will
still satisfy Eq. (8).
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where n is the number of variables η. There is a simple connection be-
tween the diagonal quantum numbers and the Z component of the spin
momentum S. One obtains it by considering a rotation of the spin co-
ordinates around Z by ϕ, the matrix of which is of the form (7) with
ϕ1 = ϕ2 = −ϕ3 = −ϕ4 = −1

2ϕ. Under the influence of the corresponding Ru,
the wave function will be multiplied by eiSzϕ which gives

Sz =
1

2

∑

k

szk =
1

2
(µ4 + µ3 − µ2 − µ1). (10a)

The 1/2 before the szk enters because the usual definition of the Pauli-
matrices is 1/2 of that given in (4).

Similarly, we have

Tζ =
1

2

∑

k

τζk =
1

2
(µ4 − µ3 + µ2 − µ1) (10b)

and we define also a

Yζ =
1

2

∑

k

szkτζk =
1

2
(µ4 − µ3 − µ2 + µ1). (10c)

The quantum numbers Sz, Tζ , Yζ can be called magnetic quantum num-
bers. They determine, together with n, the µ uniquely. Their importance
for spectroscopic considerations is the same as that of the single ordinary
magnetic quantum number in atomic spectroscopy; they can be easily found
simultaneously for all states of a multiplet.

Several states with different magnetic quantum numbers form sets “mul-
tiplets” which always have common energy. These sets contain in atomic
spectroscopy one state with every magnetic quantum number from a maxi-
mum, S, to −S. We must find the corresponding sets for four-valued spin.

The multiplet will be denoted by the highest set Λ4Λ3Λ2Λ1 of µ which
occurs in it. The set Λ4Λ3Λ2Λ1 is called higher than the set µ4µ3µ2µ1 if
either Λ4 > µ4, or if Λ4 = µ4 but Λ3 > µ3, or finally, if Λ4 = µ4, Λ3 = µ3

but Λ2 > µ2. The reason for several states with different diagonal quantum
numbers being united into the same multiplet, is that they are transformed
into each other by Ru, the u of which have not the form (7). Instead of the
Λ, we can use for the characterization of a multiplet also

S =
1

2
(Λ4 + Λ3 − Λ2 − Λ1), (11a)

T =
1

2
(Λ4 − Λ3 + Λ2 − Λ1), (11b)
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Y =
1

2
(Λ4 − Λ3 − Λ2 + Λ1), (11c)

which together with Λ4 + Λ3 + Λ2 + Λ1 = n completely determine the Λ.
The character of the multiplets is for the fourfold spin not as simple

as for the twofold spin. While the latter ones can be represented by the
points on a line from −S to S, the former ones must be represented at
least in a three-dimensional space, giving the possible Sz, Tζ , Yζ values and
their multiplicities. This is necessary because it is not true any more that
every combination of SzTζYζ occurs only once. The multiplicity of every
SzTζYζ is the same as that of any permutation of these numbers and also
that of −Sz − TζYζ ;−SzTζ − Yζ ;Sz − Tζ − Yζ . The figure of the multiplet
has, therefore, tetrahedral symmetry in the SzTζYζ space. Using SzTζYζ has
the advantage over using the Λ that the multiplets for n = 1, 5, 9, 13, are
represented by the same figures. The quantum numbers are all half-integers,
the occurring SzTζYζ combinations form a face centered lattice for which
Sz + Tζ + Yζ is of the form 2k − 1/2. These figures, reflected in any of the
planes TζYζ , YζSz, SzTζ , give the multiplets existing for n = 3, 7, 11, . . . ,
the face centered lattice being characterized by Sz +Tζ +Yζ having the form
2k + 1/2. The quantum numbers Sz, Tζ , Yζ are integers for even n. Their
sum is even or n = 4, 8, 12, . . . , odd for n = 2, 6, 10, . . . .

In order to find the figures for the multiplets, one must know how many
states with a certain µ4µ3µ2µ1 combination are present in the multiplet
(Λ4Λ3Λ2Λ1). We shall denote this number by

(
Λ4Λ3Λ2Λ1

µ4µ3µ2µ1

)

(12)

The calculation of the quantities (12) is important for the following sec-
tion also. The simplest interpretation of (12) is obtained by consid-
ering the subgroup of the unitary group formed by the matrices (7).
The symbol (12) denotes how often the (one-dimensional) representation
ei(µ1ϕ1+µ2ϕ2+µ3ϕ3+µ4ϕ4) occurs in the representation of the total unitary
group which is designated by (Λ4Λ3Λ2Λ1).

The symbols (12) are defined only if Λ1 + Λ2 + Λ3 + Λ4 = µ4 + µ3 +
µ2 + µ1, Λ4 ≥ Λ3 ≥ Λ2 ≥ Λ1 ≥ 0 and since a permutation of the µ does
not change the value of (12), we can assume also µ4 ≥ µ3 ≥ µ2 ≥ µ1 ≥ 0.
The value of (12) is 0, unless Λ4 ≥ µ4 since Λ4 was the greatest µ of the
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multiplet. In addition to this, (12) vanishes unless13

Λ4 ≥ µ4; Λ4 + Λ3 ≥ µ4 + µ3;
Λ4 + Λ3 + Λ2 ≥ µ4 + µ3 + µ2.

(13)

The last of these can be written also as Λ1 ≤ µ1. There are several
ways of evaluating (12). One of them is to consider the matrices µ which
correspond to a three-dimensional unitary transformation of the η values
1, 2, 3 only. The representation (Λ4Λ3Λ2Λ1) contains all those represen-
tations (Λ′3Λ′2Λ′1) of the three dimensional unitary group exactly once for
which

Λ4 ≥ Λ′3 ≥ Λ3 ≥ Λ′2 ≥ Λ2 ≥ Λ′1 ≥ Λ1. (14)

Thus the quartets of diagonal quantum numbers of (Λ4Λ3Λ2Λ1) are those
of all (Λ′3Λ′2Λ′1) satisfying (14), together with the last diagonal quantum
number Λ4 + Λ3 + Λ2 + Λ1 − Λ′3 − Λ′2 − Λ′1. After this, we can reduce the
representation of the three-dimensional unitary group to a two-dimensional:
in (Λ′3Λ′2Λ′1) those (Λ′′2Λ′′1) will occur for which

Λ′3 ≥ Λ′′2 ≥ Λ′2 ≥ Λ′′1 ≥ Λ′1. (14a)

Finally (Λ′′2Λ′′1) contains the pairs of diagonal quantum numbers
Λ′′2,Λ

′′
1; Λ′′2 − 1,Λ′′1 + 1; Λ′′2 − 2,Λ′′1 + 2; . . . ; Λ′′1,Λ

′′
2.

For instance, in order to find the multiplet (3 1 1 0) we can calculate
(3 1 1 0) = (3 1 1)0 + (2 1 1)1 + (1 1 1)2 + (3 1 0)1 + (2 1 0)2 + (1 1 0)3.
It suffices to obtain those quadruplets of µ which are in a descending order.
The others can be obtained then by permutation. We can omit hence the
underlined ones. To reduce further

(3 1 1) = (3 1)1 + (2 1)2 + (1 1)3

(2 1 1) = (2 1)1 + (1 1)2,

(3 1 0) = (3 1)0 + (2 1)1 + (1 1)2 +(3 0)1

+(2 0)2 + (1 0)3.

This gives the µ systems 3 1 1 0, 2 2 1 0, 2 1 1 1, 2 1 1 1, 2 1 1 1 and their
permutations. In the, language of the magnetic quantum number expressed,
the multiplet (S, T, Y ) = (3/2, 3/2, 1/2) contains Sz = 3/2, Tζ = 3/2,
Yζ = 1/2 once, Sz = 3/2, Tζ = 1/2, Yζ = −1/2 once, Sz = Tζ = Yζ = 1/2
three times. In addition to these, all permutations of these and those triplets

13Similar formulas hold also for symbols of the kind (12) with more than four Λ’s. They
can be proved by an argument similar to that of the next section.
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Figure 1:
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Figure 2: Every set of figures represents a multiplet, the STY sign of which,
together with one corresponding Λ4 + Λ3 + Λ2 + Λ1, is given on top. Every
circle represents a SzTζTζ state, Tζ is given below the figure, Yζ and Sz are
the coordinates of the circle, the origin of the coordinate system being at the
center of the figure, the Yζ axis runs to the right, the Sz axis downward. The
numbers in the circles give the number of states SzTζYζ in the multiplet.
The distance between two adjoining circles on a horizontal or vertical is 2.
The multiplets with half integer STY correspond to elements with masses
4n+1. The multiplets for masses 4n+3 are obtined from these by reversing
the direction of the Yζ axis. The sign of Y must be changed also. The 2 at
the center of this figure should be replaced by a 3.

12



in which any two of the SzTζYζ are replaced by their negative values. The
multiplet is shown, along with some other ones, in Fig. 2, it is the third one.

According to the general theory14 the wave functions of the multi-
plet Λ4Λ3Λ2Λ1 belong with respect to interchange of the η to the repre-
sentation of the symmetric group which is characterized by the partition
Λ4 + Λ3 + Λ2 + Λ1 = n.

It has been shown by Slater15 for atomic spectra that the knowledge
of the structure of multiplets enables one to determine the numbers and
characters of the terms which arise from any configuration. The same is
true in principle for nuclear spectra. The difference is that instead of the
two-dimensional plot of occurring LzSz values, one should prepare a four-
dimensional plot of LzSzTζYζ values. Or perhaps for every Lz and Sz a
two-dimensional plot of the occurring TζYζ values. For every Lz these plots
must be decomposed into SzTζYζ combinations which form multiplets. After
this, the Lz values for every multiplet must be grouped together into sets
ranging from −L to L thus obtaining the azimuthal quantum member.

The most practical procedure along these lines which I could find was one
using the Λ and the diagonal quantum numbers. A state with µ1 protons and
µ2 neutrons with spin −1/2 and µ3 protons and µ4 neutrons with spin 1/2
is a state with the diagonal quantum numbers µ1µ2µ3µ4. One first makes a
plot of the occurring µ1µ2µ3 values for every Lz and µ4. For this purpose,
one draws an equilateral triangle with the altitude µ1+µ2+µ3 = n−µ4. The
point which has the distances µ1, µ2, µ3 from the three sides of the triangle,
respectively, will correspond to a state with the diagonal quantum numbers
µ1, µ2, µ3 and µ4 = n − µ1 − µ2 − µ3. Every plot forms a representation
of the three dimensional unitary group. The irreducible representations of
this group are rather simple, their plots are shown in Figs. 3a and 3b: the
combination µ1µ2µ3 occurs in Λ′1Λ′2Λ′3
(

Λ′3Λ′2Λ′1
µ3µ2µ1

)

= 1+Min (Λ′3−µ3,Λ
′
3 +Λ′2−µ3−µ2,Λ

′
3−Λ′2,Λ

′
2−Λ′1) (15)

times, where Min (α, β, . . .) is the smallest of the numbers α, β, . . . if they
are positive and equals −1 if any of them is negative.

14The content of this section is based on the fundamental mathematical works of E.
Cartan, Bull. Soc. Math. de France 41, 43 (1913). J. de Math. 10, 149 (1914); I. Schur,
Berl. Ber., pp. 189, 297, 346 (1924) and particularly, H. Weyl, Math. Zs. 23, 271 (1925).
I attempted to compile in this section-often without giving rigorous proofs-those results
which suffice for the discussion of the physical problems in question.

15J. C. Slater, Phys. Rev. 34, 1293 (1929).
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One can decompose the µ1µ2µ3 plots for every Lz into irreducible plots,
characterized by (Λ′3Λ′2Λ′1) (the primes on the Λ are omitted in the figure).
Having obtained the number of (Λ′3Λ′2Λ′1), one unites these for every Lz
separately into total multiplets (Λ4Λ3Λ2Λ1) according to

(Λ4Λ3Λ2Λ1) =
∑

(Λ′3Λ′2Λ′1). (16)

The limits of summation are given in (14). Finally the Lz values for every
(Λ4Λ3Λ2Λ1) are united separately to total azimuthal quantum numbers L.
On the whole, the procedure is much more cumbersome than the analogous
one for atomic spectra. It has the disadvantage also, that one first obtains
the highest multiplicities, which have the highest energies.

4

An alternative method which leads much more rapidly to the goal is to
consider, for the time being, only the dependence of the wave function on
space coordinates. This method was worked out for atomic spectra by the
present author and Delbrück16 before the spin theory of Pauli was known.
One considers first again the possible configurations i.e. the distributions of
the particles into the different states, without, however, taking into consid-
eration the spin. For every such state one determines the Lz (or mL as it is
often called) as the sum of the lz of all the particles. Next one determines
how many terms with a certain partition λρ+λρ−1 + . . .+λ1 this configura-
tion gives. Finally, one considers the states corresponding to every partition
separately and unites states with Lz from −L to L into a total multiple!
with azimuthal quantum number L.

These steps performed, one has all one is interested in for approximation
(1): the multiplicities and azimuthal quantum numbers of every term. For
later work, it is still necessary to know how to complete the wave functions
depending on coordinates alone, by functions depending on the spins, to
total wave functions. Since the total wave function must be antisymmet-
ric, the space-coordinate wave function and the spin function used for the
completion must have adjoint characters, i.e., belong to two such represen-
tations the matrices of which are equal for even, oppositely equal for odd

16E. Wigner, Zeits. f. Physik 43, 627 (1927); M. Delbrück, Zeits. f. Physik 51, 181
(1928). Eq. (19) of the former and (14) of the latter give an explicit expression for (20) in
the case all λ and µ are 1 or 2. Only this case occurs in ordinary spectroscopy. A similar
expression would be too complicated if the λ and µ can be 3 and 4 also.
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permutations. The adjoint partition to the partition 4 + 4 + . . . + 1 with
n4 fours, n3 threes, n2 twos and n1 ones is the partition Λ4 + Λ3 + Λ2 + Λ1

where
Λ4 = n4 + n3 + n2 + n1, Λ3 = n4 + n3 + n2,

Λ3 = n4 + n3 Λ1 = n4.
(17)

Thus, e.g., the partition 4 + 3 + 2 + 2 + 2 + 1 for the spacial wave function is
equivalent to the partition 6 + 5 + 2 + 1 for the Λ or to the STY set (4 1 0).

The step which involves the difficulty for this procedure is to determine
how many terms with a certain partition λρ+λρ−1 + . . .+λ1 a configuration
gives in which there are µ1 particles in the first, µ2 in the second, etc., µν
in the ν-th state. We consider the wave function

ψ1(x1)ψ1(x2) . . . ψ1(xµ1)ψ2(xµ1+1) . . . ψ2(xµ1+µ2) · ψ3(xµ1+µ2+1) . . . ψν(xn)
(18)

together with those arising from (18) by a permutation of the x. There are
n!/µ1!µ2! . . . µν ! of these. Under a permutation of the x they naturally trans-
form among themselves, the corresponding (reducible) representation of the
symmetric group will be denoted by [µνµν−1 . . . µ1]. Upon decomposing this
into irreducible representations

[µνµν−1 . . . µ1] =
∑

λ

(
λρλρ−1 . . . λ1

µνµν−1 . . . µ1

)

(λρλρ−1 . . . λ1), (19)

the coefficients (some of which occurred previously in (12)) tell us how many
terms with the partition λρ + λρ−1 + . . . + λ1 the configuration gives. We
shall arrange the µ again in a descending order µν ≥ µν−1 ≥ . . . ≥ µ1 ≥ 0.

Only those partitions λρ + λρ−1 + . . .+ λ1 will correspond to real terms
in which none of the λ is greater than 4. This must hold then, because of
(13), for the µ as well: no orbit can be more than four times occupied. One
can even omit for the calculation of the coefficients all the fourfold occupied
states, i.e., drop all the µ = 4, since because of (13), the λ above a 4 must
be a 4 also.

In the p shell, there are only three states lz = −1, 0, 1 and the coefficients
of interest are therefore of the form (15) (if the partition contains only two
addends, a 0 can be affixed for λ1) and they are explicitly given in (15). One
must only arrange the µ in descending order.

In this case the calculation is especially simple. For instance, for 3 par-
ticles we have the ten configurations of Table I. The figures below the lz
values give the number of particles (µ) in this state, the figure below Lz is
the total Lz the last columns give the number of terms with the partitions

15



Figure 3: Every circle corresponds to a triple µ1µ2µ3 these numbers being
the distances of the circle from the three sides of the equilateral triangle,
surrounding the figure. The number in the circle tells how often the corre-
sponding set of µ’s occurs in the representation characterized by (Λ3Λ2Λ1).
Fig. 3a holds for Λ3 − Λ2 ≥ Λ2 − Λ1, Fig. 3b for Λ3 − Λ2 ≤ Λ2 − Λ1

(the first is actually the multiplet (9 4 2) the second one (8 6 1)). In both
cases the boundary hexagon contains one’s, the next two’s and so on until
the hexagon reduces to a triangle. The µ sets within the triangle occur all
equally often in the representation: Λ2−Λ1 +1 times in the first, Λ3−Λ2 +1
times in the second case.
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3 or (3 + 0 + 0) and 2 + 1 (i.e., (2 + 1 + 0)) which this configuration gives.
This gives F and P terms with the partition (3) and D and P terms with
the partition (2 + 1). Table II, reference 4, was prepared in this way. The
adjoint partitions to (3) and (2 + 1) are (1 + 1 + 1) and (2 + 1), respectively,
the STY characterization is

(
1
2

1
2 −

1
2

)
for the former,

(
3
2

1
2

1
2

)
for the latter.

There is in addition to these, one S term of the multiplicity ( 3
2

3
2

3
2).

In the general case the explicit formulas for the

(
λρ λρ−1 λρ−2 . . . λ1

µν µν−1 µν−2 . . . µ1

)

(20)

are too complicated. A useful way of evaluating (20) starts from another
interpretation of (20) than given in (19). For Frobenius’ reciprocity theo-
rem17 one considers the subgroup which contains the permutations of the
first µ1 elements

TABLE I. The ten configurations for 3 particles.

lz = −1 0 1 Lz (3) (2 + 1) lz = −1 0 1 Lz (3) (2 + 1)

3 0 0 −3 1 1 0 2 1 1 1
2 1 0 −2 1 1 0 3 0 0 1 –
2 0 1 −1 1 1 0 2 1 1 1 1
1 2 0 −1 1 1 0 1 2 2 1 1
1 1 1 0 1 2 0 0 3 3 1 –

among themselves, the next µ2 elements among themselves, etc. and all the
products of these permutations. Then (20) gives the number, how often the
unit representation in which every element of the subgroup is represented
by the “matrix” (1), occurs in (λρ + λρ−1 + . . .+ λ1), if this is consider as a
representation of the subgroup. This is, however, also the number of times
the adjoint representation (Λ4Λ3Λ2Λ1), again considered as a representation
of the subgroup, contains the “antisymmetric” representation, in which ev-
ery even permutation is represented by (1), every odd by (−1). If we denote

17G. Frobenius, Berl. Ber. 501 (1898). The reader will find a straight forward proof
in H. Weyl’s Gruppentheorie und Quantenmechanik (Leipzig 1928), first edition, p. 254.
The proof in the English translation by H. P. Robertson (London, 1931), pp. 332-338, is
more abstract.
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this by [
Λ4Λ3Λ2Λ1

µνµν−1 . . . µ1

]

=

(
λρλρ−1 . . . λ1

µνµν−1 . . . µ1

)

(21)

(21) expresses Frobenius’ theorem. The Λ are defined in (17).
The expressions (21) can be calculated by recursion formulas. If µν = 4,

we have
[

Λ4Λ3Λ2Λ1

4 µν−1 . . . µ1

]

=

[
Λ4 − 1 Λ3 − 1 Λ2 − 1 Λ1 − 1
µν−1 µν−2 . . . . . . µ1

]

(22a)

By means of this formula, one can get rid of all 4 among the µ. If µν = 3
[

Λ4Λ3Λ2Λ1

3 µν−1 . . . µ1

]

=

[
Λ4 − 1 Λ3 − 1 Λ2 − 1 Λ1

µν−1 µν−2 . . . . . . µ1

]

+

[
Λ4 − 1 Λ3 − 1 Λ2 Λ1 − 1
µν−1 µν−2 . . . . . . µ1

]

+

[
Λ4 − 1 Λ3 Λ2 − 1 Λ1 − 1
µν−1 µν−2 . . . . . . µ1

]

+

[
Λ4 Λ3 − 1 Λ2 − 1 Λ1 − 1
µν−1 µν−2 . . . . . . µ1

]

. (22b)

After a sufficient number of reductions of this type, there will be only 2’s
and 1’s among the µ. If one of the [ ], occurring in the right side of (22b)
contains a negative number in the upper row, or a number which is greater
than the preceding one, the whole [ ] is zero. To get rid of the 2’s

[
Λ4Λ3Λ2Λ1

2 µν−1 . . . µ1

]

=

[
Λ4 Λ3 Λ2 − 1 Λ1 − 1
µν−1 µν−2 . . . . . . µ1

]

+

[
Λ4 Λ3 − 1 Λ2 Λ1 − 1
µν−1 µν−2 . . . . . . µ1

]

+

[
Λ4 − 1 Λ3 Λ2 Λ1 − 1
µν−1 µν−2 . . . . . . µ1

]

+

[
Λ4 Λ3 − 1 Λ2 − 1 Λ1

µν−1 µν−2 . . . . . . µ1

]

+

[
Λ4 − 1 Λ3 Λ2 − 1 Λ1

µν−1 µν−2 . . . . . . µ1

]

+

[
Λ4 − 1 Λ3 − 1 Λ2 Λ1

µν−1 µν−2 . . . . . . µ1

]

. (22c)

If all the µ = 1, which will be true after some reductions of this type,
one can use a formula analogous to the previous ones. It is quicker to notice
that (23) is the dimension of (Λ4Λ3Λ2Λ1) and hence
[

Λ4Λ3Λ2Λ1

11 . . . 1

]

=
(Λ4 + Λ3 + Λ2 + Λ1)!(Λ4 + 3− Λ1)(Λ4 + 2− Λ2)(Λ4 + 1− Λ3)

(Λ4 + 3)!(Λ3 + 2)!(Λ2 + 1)!Λ1!

·(Λ3 + 2− Λ1)(Λ3 + 1− Λ2)(Λ2 + 1− Λ1). (23)

One will use the formulas (22), (23) very rarely. In most practical cases, the
calculation of the coefficients (21) is greatly facilitated by special conditions.
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5

We can go over, now, to approximation (2). In this approximation the
Hamiltonian will be invariant with respect to all operations involving τ only.
Since τ has, mathematically, the same properties as the ordinary spin vari-
able, we shell have the analogs of the quantum numbers L and S of ordinary
spectroscopy. Instead of the azimuthal quantum number of the common
spectroscopy, we have the total quantum number J , since the spin forces are
taken into account in approximation 2; instead of the total spin, we have
an isotopic spin T . Of course, the interaction of J and T in the higher
approximation 4 will be entirely different from the interaction between az-
imuthal and spin quantum numbers of ordinary spectroscopy. Above all,
the resulting angular momentum J will be a good quantum number in all
approximations.

The existence of a total isotopic spin means that terms with different ζ
components of the isotopic spin have the same energy in approximation 2.
These are, of course, terms of different isobaric nuclei, and a total isotopic
spin T will be a term with the same binding energy for all nuclei with isotopic
numbers from −T to T . This shows that to every term of an element with
a certain isotopic number Tζ terms of all elements with smaller isotopic
numbers will correspond. The element with the smallest isotopic number
(nP = nN for even masses, nP = nN ± 1 for odd masses) has the greatest
number of terms. In approximation 4, the equality of these term values will
cease to hold and the Coulomb energy, already, will introduce a splitting.

If one is interested in the number of terms of approximation (2), aris-
ing from a certain configuration, one can use the ordinary Hund-Russell-
Saunders method to determine these. The only difference is that the “orbits”
contain the ordinary spin quantum number already and one has, therefore,
for instance, six p states, with Z components of the angular momentum
3/2, 1/2, 1/2, −1/2, −1/2, −3/2. Everyone of these six states can be
doubly occupied, with a particle τ = 1 and τ = −1 (neutron or proton).
The half sum of the τ is denoted by Tζ and the different Tζ from −T to T
united into a multiplet. The number of terms, arising even from a simple
configuration, is very great, however.

It is more important, perhaps, to consider the terms into which a term of
approximation (1) splits if we introduce the spin forces and thus go over to
(2). The transition from approximation (1) to (2) can be performed in two
steps: first disregarding Yζ every multiplet goes over into several multiplets
which still have an S and T . One obtains these by simply projecting every
point of Fig. 1 into the SzTζ plane. This is done in Fig. 4 for the multiplet
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(3/2, 3/2, 1/2) as an example. We see that it gives one term with S = 3/2,
T = 3/2, one with S = 3/2, T = 1/2, one with S = 1/2 T = 3/2, and one
with S = 1/2, T = 1/2. The second step, then, is to combine the S’s with
the azimuthal quantum number L to J ’s, according to the vector addition
model.

It would be very important to know experimentally the relative separa-
tion of the terms which arise from the same approximation 1 term, since this
would allow us to tell which of the 6 possible interactions, given in Section
2, describes the spin forces.

Fig. 5 shows what can be expected in approximation (2). Every figure
corresponds to a set of isobars. The abscissa is the isotopic number, the
ordinate the total energy. Every line corresponds to a term of approximation
(2) all lines arising from the same term of approximation (1) are grouped
close together. The STY symbol of this term is given on the right, it is, of
course, the same for all the group. The T of the term is represented by the
length of its line, so that the term exists for elements with those isotopic
numbers Tζ over which the line extends. The number on the left of the line
is the S characterizing its spin after the first step in the transition from
approximation (1) to (2) is performed. This S will be the total angular
momentum J of the nucleus, if the azimuthal quantum number was zero,
which will be very frequently the case. The energy of the approximation
(1) term is estimated on the basis of Eq. (8), reference 4. This estimate
gives the same value for all terms of the same configuration with the same
multiplicity STY which is, of course, only approximately true. We are
interested, of course, only in the lowest term of every multiplicity. The
distances between the lines of the same group have no significance.

We see that in several cases the approximation (2) terms extend over
several isobars and the question of the most stable isobar will be decided,
hence, only in the next approximation. We may assume that the most
important term in the next approximation is the Coulomb energy18. This
will decrease the binding energy of the nuclei with negative Tζ compared
with the binding energy of nuclei with positive Tζ and cause the horizontal
lines of Fig. 5 to slope downward to the right. The slope will be very roughly
proportional to the 2/3 power of the charge.

This slope will have the most noticeable effect for isobars with masses

18The most stable isobar has the smallest mass, not the greatest binding energy. For
the consideration of the stability, therefore, Tζ times the mass difference between neutron
and H1 should be added to the total energy. This will cause the lines of Fig. 4 to slope
upward to the right. This slope is soon overcompensated, however, by the opposite effect
of the Coulomb energy.
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Figure 4: Determination of the spin angular momentum S and isotopic spin
T of the terms arising from the multiplet (3/2, 3/2, 1/2) if the spin forces are
introduced. The spin angular momenta S must be added, subsequently, to
the orbital angular momentum L, according to the vector addition principle,
in order to obtain the total angular momentum J .

4n + 2. While for small charge, the point a most stable, beginning at.O18,
the point b will become stable.

We can proceed even to higher elements, by successively increasing the
slope of the lines more and more. For elements 4n, if the slope becomes
3/2, in the arbitrary units of the figure, the point b will become most stable.
This happens to be at A40. The point c never will become most stable,
since b reaches a before c does. This seems to be the explanation why no
nuclei of mass 4n with odd number of protons and neutrons exist. There
are, however, radioactive nuclei of this type.

The situation is very similar for nuclei with masses 4n + 2. Here the
critical slope is 2, when the point c reaches a. Again, point d is not the
most stable for any slope, and there are (apart from o) no stable nuclei with
odd neutron and proton number, for elements 4n + 2 either. The slope 2
seems to be reached at Ti50, later, of course, than slope 3/2.

It should be mentioned that the whole Fig. 5 will be compressed in
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energy scale as we proceed to higher elements, because the exchange integrals
decrease. It has been shown by Bethe and Bacher19 that this happens in
discontinuous steps, corresponding to the completion of shells. There is,
therefore, an increased probability for the slope to pass a certain amount in
the regions where shells are completed.

In case of elements with mass numbers 4n + 1 and 4n + 3 we obtain
the same picture. First, the point a most stable, at a slope 3/2 the point b
reaches a. This seem to happen at Cl37 and Ca43, respectively, quite in the
neighborhood of A40. For the slope 2, the point a passes b and Ti49 and V51

become the stable isobars. These are near indeed to Ti50. This explanation
of the places where the isotopic number of stable isobars shifts to higher
values works rather better than could be expected and the agreement is be-
yond doubt, partly accidental.

6

As a last point, I should like to establish the connection between ap-
proximations 1 and 3, i.e., determine the terms into which an STY term
of approximation (1) splits if one introduces, as a perturbation, the differ-
ence between proton-proton, proton-neutron, neutron-neutron interactions,
neglecting, however, spin forces.

The operator

1

4
(sz1(1 + τζ1) + sz2(1 + τζ2) + . . .+ szn(1 + τζn)) =

1

2
(Sz +Yζ) = SzN (24)

gives the Z component of the neutron spin angular momentum, since 1 + τζ
gives 0, if applied to a proton state. Similarly

1

4
(sz1(1+ τζ1)+sz2(1+ τζ2)+ . . .+szn(1+ τζn)) =

1

2
(Sz−Yζ) = SzP (24a)

gives the Z component of the proton spin angular momentum. If we go
through all the points of Fig. 1 for a certain Tζ and insert their SzN and
SzP values into a table, one can unite the points of the table in the normal
way to a SNSP multiplet20. The azimuthal quantum number is, of course,
unchanged by the transition from approximation (1) to (3).

19H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 82 (1936), Section VI.
20Instead of this, one can simply turn the corresponding level in the diagrams of Fig. 1

by 45◦.
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Figure 5: The different kinds of multiplets are shown for elements with
mass numbers of the form 4n, 4n± 1, 4n+ 2. The ordinate is the energy in
arbitrary units. Only one term for every multiple! system is given, with a
position on the energy scale corresponding to long range forces. The abscissa
is the difference between the number of neutrons and protons, divided by 2.
The circles correspond to stable nuclei, the squares to unstable nuclei.
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If the proton-proton forces are assumed to be equal to the neutron-
neutron forces, the SNSP term will coincide in case of equal number of
protons and neutrons with the SPSN term, if SN 6= SP . In the work of ref-
erence 4, these terms were given as one term. The values of the multiplicities
2SN + 1, 2SN + 1 are given in Fig. 1 below every Tζ .

We may consider, as an example, the (3/2 3/2 1/2) multiplet, given in
Fig. 1. Below Tζ = 1/2 we have the three pairs 23, 41, 21. This means that
for an element of the mass 4n + 1 with Tζ = 1/2 (e.g., C13), certain states
in which the neutrons are in the doublet, the protons in the triplet state,
exactly coincides in approximation (1) with a state in which the neutrons
are in the quartet, the protons in the singlet state, and with another state in
which the neutrons are in doublet, the protons in the singlet state. It may
be added that the binding energy of these states is equal in approximation
(1), to the binding energy of a hypothetical B13 nucleus (Tζ = 3/2) in which
the neutrons are in the triplet, the protons in the doublet state. In reality,
all these states will be unstable for isobars with the mass 13, because of the
comparatively high position of the (3/2 3/2 1/2) multiplet in Fig. 5a. The
example is thus, perhaps, not a very fortunate one but it illustrates the kind
of regularities to be expected more clearly than a simpler case.
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