Проект дубненского электронного синхротрона

В.А. Архипов¹, В.К. Антропов¹, Н.И. Балалыкин¹, П.Ф. Белоппицкий¹, О.И. Бровко¹,
А.В. Бутенко¹, И.Н. Иванов¹, В.Г. Кадышевский¹, В.В. Калиниченко¹, В.В. Кобец¹,
И.Н. Мешков¹, В.Ф. Минашкин¹, Н.А. Морозов¹, Ю.А. Поляков¹, Н.А.Русакович¹,
Н.Г. Шакун¹, А.О. Сидорин¹, А.Н. Сисакян¹, Г.И. Сидоров¹, А.П. Сумбаев¹, В.И. Смирнов¹,
Е.М. Сыресин^{*1}, И.В. Титкова¹, С.И. Тютюнников¹, С.Б. Федоренко¹, В.А. Швец¹, М.В. Юрков¹,
П.Д. Воблый², Г.Н. Кулипанов², Е.В. Левичев², Н.А. Мезенцев², А.Н. Скринский²,
Е.М. Шатунов², В.А. Ушаков²,
Н. Воег-Rookhuizen³, Е. Heine³, W.P.J. Heubers³, A.P. Kaan³, F.B. Kroes³,
L.H. Kuijer³, J.B. v.d. Laan, J. Langelaar³, P.W.F. Louwrier³, G. Luijckx³, R. Maas³,

G. van Middelkoop³, J.G. Noomen³, J.B. Spelt³

1 — Объединенный институт ядерных исследований, Дубна, Россия 2 — Институт ядерной физики им. Г.И.Будкера СО РАН, Новосибирск, Россия

3 – National Institute of Nuclear Physics and High Energy Physics, Amsterdam, The Netherlands

Проект "Дубненский Электронный Синхротрон" (ДЭЛСИ) имеет целью создание в Объединенном институте ядерных исследований источника синхротронного излучения третьего поколения. Источник ДЕЛСИ создается на базе ускорительного комплекса Института ядерной физики и физики высоких энергий (NIKHEF), г. Амстердам, Нидерланды.

Накопительное кольцо ДЕЛСИ будет сооружено на основе кольца "Amsterdam Pulse Stretcher" (AmPS) при существенном изменении фокусирующей системы последнего: будет уменьшен периметр кольца, повышена энергия электронов и усилена фокусировка. Все это позволит более чем на порядок уменьшить эмиттанс пучка и, соответственно, резко повысить яркость синхротронного излучения.

Принципиальным является оснащение накопителя ДЕЛСИ встроенными приборами — сверхпроводящим вигглером с полем до 10 Тесла и "вакуумным гибридным миниондулятором". Оба прибора оригинальная разработка ИЯФ им. Г.И. Будкера, Новосибирск. Они позволяют расширить возможности ДЕЛСИ как источника синхротронного излучения, продвинув его спектр в область жесткого рентгена и повысив яркость до уровня 3. 10¹⁸ фотонов/сек/мм²/мрад²/0,1% ширины спектра. Это делает ДЕЛСИ источником СИ третьего поколения. Сейчас оборудование демонтировано в NIKHEF и привезено в ОИЯИ.

Введение

Целью проекта ДЭЛСИ является создание в Объединенном институте ядерных исследований источника синхротронного излучения (СИ). По своим параметрам ДЭЛСИ будет представлять собой источник СИ третьего поколения. Для института это перспективное новое направление, оно дает возможность расширения существующих в ОИЯИ исследований по физике конденсированных сред, биологии и медицине, химии и геологии, проблемам экологии, а также развивает новые технологии, основанные на использовании синхротронного излучения, такие как микромеханика и литография, технология материалов и металлургия.

Источник создается на базе ускорительного комплекса NIKHEF [1-2]. Этот ускорительный комплекс включает в себя электронный линейный ускоритель MEA (Medium Energy Accelerator) [2] на энергию электронов 700 МэВ и накопительное кольцо AmPS с максимальной энергией электронов 900 МэВ при токе накопленного пучка 200 мA [1]. Накопитель электронов ДЭЛСИ планируется создать на базе элементов кольца AmPS, значительно изменив его оптику и уменьшив почти в полтора раза его периметр [3-5]. Это позволяет на порядок снизить эмиттанс пучка ДЭЛСИ по сравнению с пучком AmPS и, соответственно, резко увеличить яркость пучка как источника СИ. Планируется дополнить кольцо ондулятором с высокой яркостью и сверхпроводящим вигглером, генерирующим жесткое рентгеновское излучение. Кроме того, предполагается заметно увеличить энергию электронов в ДЭЛСИ, доведя ее до 1.2 ГэВ. Это может быть достигнуто при незначительной модификации дипольных магнитов AmPS.

Установка "миниондулятора" в накопительном кольце ДЭЛСИ увеличит яркость источника до 3 · 10¹⁸ фотон/с/мрад²/0.1% ш. п., что на 5 порядков превышает синхротронное излучение из поворотных магнитов. Использование вигглера с напряженностью магнитного поля 10 Тл [6] обеспечит генерацию жесткого рентгеновского излучения с энергией γ -квантов 20-50 кэВ. Все это и делает ДЭЛСИ источником синхротронного излучения третьего поколения. Для СИ из поворотных магнитов предполагается создание 10 станций, 6-8 станций будут созданы для использования СИ из вигглера и ондулятора. С их помощью планируется иметь поток СИ, близкий по яркости и спектру к излучению из поворотных магнитов в накопительных кольцах, работающих при энергии 2-3 ГэВ. Это делает проект конкурентно-способным по сравнению с источником с более высокой энергией электронов.

1. Структура и основные параметры ДЭЛСИ

В комплексе ДЭЛСИ электронный пучок формируется и ускоряется до энергии 800 МэВ в линейном ускорителе MEA (табл.1).

Длина	Μ	200		
Энергия электронов	ГэВ	0.8		
Пиковый ток	мА	60		
Средний ток	мА	50		
Средняя мощность	кВ	34		
Нормализованный эмиттанс	$\pi \cdot mm \cdot mrad$	25		
Длительность импульса	MKC	3.5		
ВЧ-параметры ускорительной секции				
ВЧ-частота	ГГц	2.856		
Темп ускорения	МэВ/м	5-7		
Длительность импульса	MKC	0.1-3.5		
Мощность резонатора	МВт	20		

Таблица 1: Параметры электронного линака

Ускоряющая система линака состоит из 14 ускоряющих станций, включающих СВЧгенераторы, фидеры и ускоряющие секции. Структурно линейный ускоритель состоит из инжектора, группирователя, чоппера, предварительного группирователя энергии (пребанчера), банчера, 23 ускорительных секций и компрессора спектра энергии. Для увеличения энергии электронов с 700 до 800 МэВ планируется установить еще две запасные ускоряющие секции. В качестве усилителей СВЧ-мощности используются импульсные клистроны. Ускорительные секции А0 и А01 запитываются от клистронов VA 938 D фирмы Вариан, для остальных секций используются клистроны TH2129 фирмы Томсон.

Магнитная структура ДЭЛСИ [3-5] разработана, исходя из следующих общих требований: использование магнитных элементов накопительного кольца AmPS; достижение минимальновозможного эмиттанса при динамической апертуре, обеспечивающей эффективную инжекцию и достаточно высокое время жизни накопленных электронов; обеспечение максимальной яркости из вигглера и ондулятора. Кольцо ДЭЛСИ состоит из четырех суперпериодов. Максимальный градиент в квадрупольных линзах предполагается увеличить с 11 до 20 Тл/м. Максимальная проектная энергия электронов в ДЭЛСИ составляет 1.2 ГэВ, тогда как максимальная энергия в AmPS, была 0,9 ГэВ. Чтобы увеличить энергию электронов (поднять магнитную жесткость с 3 до 4 Тл⋅м), требуется некоторая модернизация дипольных магнитов.

Накопитель электронов	Параметр	AmPS	ДЭЛСИ
Энергия электронов	ГэВ	0.9	1.2
Энергия инжекции	ГэВ	0.7	0.8
Периметр	М	211.76	140.546
Радиус поворотных магнитов	М	3.3	3.3
Длинная прямолинейная секция	М	32	7.2
Короткая прямолинейная	М		5.6
Горизонтальное бетатронное число		8.3	9.58
Вертикальное бетатронное число		7.214	3.56
Коэффициент расширения орбиты		$2.7 \cdot 10^{-2}$	$4.8 \cdot 10^{-3}$
Гор. натуральная хроматичность		-9.39	-21.3
Верт. натур. хроматичность		-9.51	-17.5
Ток инжекции	мА	10	10
Ток накопленных электронов	мА	250	300
Горизонтальный эмиттанс	HM	160	11.1
ВЧ-частота	МΓц	476	476
Номер ВЧ-гармоники		336	223
ВЧ-напряжение	κВ	350	350
Длина банча	MM	15	8.67
Число: Диполей		32	32
Квадруполей		68	64
Секступолей		32	48

Таблица 2: Параметры AmPS и ДЭЛСИ.

Структура прямолинейных участков кольца в значительной степени определяется требованием максимальной яркости СИ из ондулятора и вигглера. Длина дрейфовых промежутков прямолинейных участков равна соответственно 7.2 и 5.3 м. Для оптимизации СИ из вигглера обе бета-функции в нем должны быть достаточно малыми $\beta_z = 1.5$ м и $\beta_y = 2$ м в центре. Динамическая апертура, вычисленная с использованием программы MAD, равна 74 σ_x и 56 σ_y . Для частиц с отклонением по импульсу $|\Delta p| = 1\%$ динамическая апертура изменяется незначительно, она равна 50 σ_x и 48 σ_y .

2. Синхротронное излучение

Параметры синхротронного излучения из поворотных магнитов ДЭЛСИ приведены в табл.3 для электронного пучка с током 0.3 А, эмиттансом 10 нм и $\beta_x/\beta_y = 12.5/1.2$ м. Миниондулятор длиной 2.5 м и 150 периодами решетки (табл.3), установленный в прямолинейной секции накопителя ДЭЛСИ, позволит получить яркость, соответствующую источнику СИ третьего поколения, на пять порядков выше яркости СИ из поворотных магнитов. Для генерации СИ с энергией фотонов 20-50 кэВ в прямолинейной секции ДЭЛСИ планируется установить сверхпроводящий вигглер с магнитным полем до 10 Тл (табл.3) [6].

СИ	Параметр	Дип. магнит	Ондулятор	Вигглер
Энергия электронов	ГэВ	1.2	1.2	1.2
Энергия инжекции	ГэВ	0.7		1.2
Критическая энергия	кэВ	1.16		8.6
Энергия фотонов на 1 гармонике	кэВ		0.58	
Поток СИ	Фотон/(с•мрад•	$7 \cdot 10^{12}$	$8\cdot 10^{16}$	$2 \cdot 10^{13}$
	0.1% ш.п.)			
Яркость СИ	Φ отон $/(c \cdot mm^2 \cdot$	$2 \cdot 10^{14}$	$3 \cdot 10^{18}$	$4 \cdot 10^{14}$
	мрад $^2 \cdot 0.1\%$ ш.п.)			
Плотность мощности СИ	$B_{T}/мрад^{2}$	2.8	310	181
Линейная плотность мощности	Вт/мрад	2.4		542
Мощность СИ	кВт	16.6	0.17	6.9

Таблица 3: Параметры СИ из дипольных магнитов, ондулятора и сверхпроводящего вигглера.

3. Перспективы ДЭЛСИ как источника СИ четвертого поколения

Линейный ускоритель ДЭЛСИ обладает потенциальными возможностями ускорять электроны до энергии 1 ГэВ и обеспечить среднюю мощность несколько десятков кВт. Это позволяет создать на базе линейного ускорителя лазер на свободных электронах, обеспечивающий излучение в широком диапазоне длин волн 50-0.2 мкм (табл.4) [8]. Реализация SASE схемы [7] с параметрами, близкими к параметрам ЛСЭ для TESLA DESY, позволит обеспечить генерацию мягкого рентгеновского излучения (табл.4). При энергии электронов 1 ГэВ минимальная длина волны будет составлять 5 нм. Варьируя энергию электронов на выходе из линака, можно обеспечить генерацию излучения в диапазоне длин волн 200-5 нм с импульсной яркостью $10^{29} - 10^{30}$ фотон/с/мм²/мрад²/ 0.1% ш.п., соответствующей источникам СИ четвертого поколения.

Создание на базе ДЭЛСИ источника СИ четвертого поколения главным образом связано с модернизацией инжекционной системы линейного ускорителя, установкой компрессора банчей и созданием ондуляторов для ЛСЭ.

Лазер на свободных электронах	Параметр	ИК	УΦ	SASE	
Параметры электронного пучка					
Энергия электронов	МэВ	10-80	150-200	300-1000	
Пиковый ток	А	30-50	30-50	500-2500	
Заряд банча, nK				1	
Нормализованный	π · мм·мрад	20-30	20-30	2	
среднеквадратичный эмиттанс					
Длительность микроимпульса	псек	10	10	0.3-1	
Интервал между банчами	нсек	30-60	30-60	100	
Среднеквадратичный разброс энергии	%	1	1	0.3-0.1	
Количество банчей				50	
Частота повторения, Гц		10-50	10-50	100	
Ондулятор					
Длина ондулятора	М	2-3	3-4	15-20	
Период	СМ	3-4	3-5	2.8-4	
Максимум магнитного поля	Т	0.5 - 0.8		0.5 - 1	
Излучение					
Длина волны	HM	10-1	2-0.2	5-100	
Ширина полосы	%	0.1-1	0.1-1	0.5 - 1	
Пиковая мощность	ГВт			0.3-3	
Средняя мощность	Вт	0.1-1	0.1-1	3-10	
Максимальная яркость	Φ отон/(с·мм ² ·			$10^{29} - 10^{30}$	
	мрад $^2 \cdot 0.1\%$ ш.п.)				
Средняя яркость	Φ отон/(с·мм ² ·			$10^{21} - 10^{22}$	
	мрад $^2 \cdot 0.1\%$ ш.п.)				

Таблица 4: Параметры лазера на свободных электронах ДЭЛСИ.

Заключение

Создание источника СИ третьего поколения в Дубне позволит значительно обогатить научную программу ОИЯИ и даст возможность расширить экспериментальные исследования в области физики конденсированных сред и атомной физики, в биологии и медицине, в химии и геологии, а также развить новые технологии на базе СИ. Реалиация этого проекта представляет значительный интерес для научного сообщества и промышленности стран-участников ОИЯИ.

Список литературы

- [1] Luickx G., Bijeveld J.H.M., Boer Rookhuizen et al. PAC, Chicago, 1989.
- [2] Kroes F.B. LINAC96 Conference, Geneva, 1996.
- [3] Архипов В.А., Антропов В.К., Балалыкин Н.И. и др. Проект Дубненского электронного синхротрона. – В сб.: Международное рабочее совещание "Синхротронный источник ОИЯИ: перспективы исследований", Дубна, 2000, с.13.
- [4] Titkova I.V., Arhipov V.A., Antropov V.K. et al. EPAC, Vienna, 2000, p.702.
- [5] Titkova I., Beloshitsky P., Meshkov I., Syresin E. Magnet Lattice of the Synchrotron Radiation Source DELSY. EPAC, Vienna, 2000, p.708.
- [6] Grudiev A.V., Durba V.N., Kulipanov G.N. et al. NIM, A359 (1995), 101.
- [7] A VUV Free Electron Laser at the TESLA Test Facility: Conceptual Design Report, DESY Print TESLA-FEL 95-03, Hamburg, DESY, 1995.
- [8] Meshkov I.N., Saldin E.L., Schneidmiller E.A., Syresin E.M., Yurkov M.V. "Perspective of DELSY for the Fourth Generation SR Facility". EPAC, Viena, 2000.