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Resonances with exotic quantum numbers give unequivocal evidence for non-qq̄ structure. A resonance

with exotic quantum numbers JPC = 1−+ is observed in the annihilation reactions p̄n → ηπ−π0 and

p̄p→ ηπ0π0. In the highly selective p̄n channel it is produced with a large rate (11%). The interferences with

the other two dominant resonances, ρ(770) and a2(1320), allow to pin down the resonance characteristics:

m = (1400±20±20)MeV/c2 and Γ = (310±50+50−30)MeV/c2. In p̄p→ ηπ0π0 the exotic resonance is produced

with a smaller relative rate ( ∼ 1% in liquid hydrogen, 4% in gaseous hydrogen at 12 atm). It is concluded that

the resonance is produced more abundantly from spin triplet than from spin singlet states. Comparison with

π-induced peripheral reactions yields agreement with the weak ηπ resonance observed there. However, the

VES and Brookhaven experiments have also produced a JPC = 1−+ resonance at higher mass (1600 MeV),

decaying to η′π, ρπ and b1π. Thus at least two resonances with exotic quantum numbers exist which await

modeling in theories of hybrid (qq̄g) and diquonium (qqq̄q̄) states.

Introduction

Mesons with the exotic quantum numbers JPC = 0−−, 0+−, 1−+, 2+−, . . . have necessarily non-

qq̄ structure due to the generalized Pauli principle. Glueballs and quark-gluon hybrids, but also
diquonia (qqq̄q̄) or meson molecules can attain these quantum numbers. Unlike the 0++ glueball,

mesons with exotic quantum numbers cannot mix with ordinary (qq̄) mesons. Thus the identification
of a meson with exotic JPC gives unambiguous evidence for other or more constituents than one

quark and one antiquark.
The ηπ system is attractive for the exotics search since its P-wave must carry non-qq̄ quantum

numbers JPC = 1−+(G = −). It cannot form a glueball, however, because of its isospin one. In our
experiments [1,2] it is produced in the annihilation reactions (at rest)

(a)p̄n→ ηπ−π0, (b)p̄p→ ηπ0π0.

Only the atomic S- and P-wave contribute significantly, and conservation rules restrict the initial

states to (a) 3S1,
1 P1 and (b) 1S0,

3 P1,
3 P2.

1. Experimental results for p̄n→ ηπ−π0

Antiprotons with a momentum of 200 MeV/c from the LEAR facility at CERN were stopped

in a liquid deuterium target. The Crystal Barrel Detector is equipped for charged particle tracking
in a magnetic field of 1.5 T and photon spectroscopy with a highly granular CsI calorimeter, both
with close-to-4π geometry.

From a total of 8.2 million 1-prong events, corresponding to about 108 p̄d events, a sample of

52576 events of the type p̄d→ π−π0(γγ)η(γγ)p with a proton spectator momentum < 100 MeV/c
was fully reconstructed and kinematically selected. The momentum cut was chosen to guaranty
the spectator role of the proton, i.e. the negligibility of final state interactions with the produced

mesons [1].
The experimental intensity distribution is displayed as a Dalitz plot in Fig. 1. A simple pattern is

observed which is dominated by a diagonal ρ− (770) band and two broad orthogonal bands in the
region of the a

−/0
2 (1320). The latter show large modulations typical of interference effects.
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Figure 1. Experimental intensity distribution (binned and acceptance corrected).

2. Partial wave analysis

The partial wave analysis assumes intermediate states of π−π0 resonances with a recoiling η or
ηπ resonances with a recoiling π:

All allowed known or candiate resonances (see above) with nominal mass inside or close to

the phase space boundary were tried. The isobar transition amplitude is expressed by use of the
Zemach formalism (see [1] and references given there). For an intermediate state decaying into 2

pseudoscalars with angular momentum �, the amplitude for the transition of an initial p̄n state with
quantum numbers IG, JP into a 3-body channel reads

AIG,JP (�p, �q) =
∑

I3,L

bI,I3 · ZJP ,	,L(�p, �q) · FI3,	(�q).

The spin-parity function Z describes the dependence on the angle between the decay momentum

vectors �p and �q of the intermediate and of the secondary two-body systems, respectively. The isospin
Clebsch-Gordon coefficients are b1,0 = 1/

√
2 and b1,−1 = −1/

√
2 for the ηπ0 and the ηπ− intermedi-

ate systems, respectively. The dynamical amplitude F is factorized into a barrier-penetration factor

B	 (q) and a relativistic Breit-Wigner amplitude
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F = α ·DL(p, p0) ·
m0Γ0D	(q, q0)/ρ(m0)

m20 −m2 − im0 · Γ(m)
(1)

with mass dependent width

Γ(m) = Γ0
ρ(m)

ρ(m0)
D	(q, q0)

2, (2)

(ρ = 2q/m,D	(q, q0) = B	(q)/B	(q0)).

The complex constant α is optimized by the fit.

A simple model space containing only the ρ−(770)η, a2(1320)π and (ηπ)P−waveπ intermediate
states is sufficient for a good fit (χ2/Ndof = 506/391). The contribution of the exotic ηπ resonance

(baptized ρ̂ or π1) amounts to 11% (without the interferences with the other two resonances), which
is about as much as the a2 contribution. Without the ηπ P-wave no satisfactory fits are obtained

and the χ2 distribution gives evidence for missing interference structure (Fig. 2). Inclusion of the
ηπ P-wave yields a flat χ2 distribution with only statistical fluctuations [1].

Figure 2. Deviations between the data and a fit that does not include the ηπ P-wave but all other allowed

resonances. Left panel: fit exceeds data, right panel: reverse.

3. Discussion and comparison with p̄p→ ηπ0π0

The interference of the ηπ P-wave with both the ρ− and the a2 resonances pins down the
resonance characteristics. The relative phase of the latter two resonances is fixed by their crossing

in the Dalitz plot. Both probe the ηπ phase motion in different regions. Constructive and destructive
interference on opposite sides of the ρ− band center is visible in Fig. 3 which shows the intensity
distribution of the exotic resonance including the interferences. Moving along a parallel just below

the position of the ρ− band, one observes the rise and the fall of the constructive term, which reflects
the almost complete phase rotation of the ηπ resonance. Close to the phase space boundaries, one

finds at m2(ηπ) = (1.7 − 1.8) GeV2/c4 the interference maximum and minimum arising from the
overlap with the a2.
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Figure 3. Intensity distribution of the ηπP-wave, as
obtained by subtracting from the experimental in-
tensity the ρ− and a2 contributions according to the
partial wave analysis.

The fitted parameters of the exotic resonance are

M = (1400± 20stat ± 20syst)MeV/c2, Γ = (310± 50stat+ 50/− 30syst)MeV/c2.

These values are not inconsistent with the GAMS [3] and VES [4] results for pion-induced reactions
and they agree with the BNL results [5] obtained at the same time as the present ones. In those

cases the relative contribution from the ηπ wave is much smaller and the evidence is based only on
interferences with the a2.

As an alternative model of the ηπ P-wave, an effective range amplitude is found to yield conver-
gent or divergent fits in the range of scattering parameters that characterize resonant or nonresonant

behaviour, respectively. The resonant solution is practically identical to the Breit-Wigner fit am-
plitude. Its phase motion shows the typical resonance behaviour in an Argand diagram (Fig. 4). It
is evident from this representation that the complete phase motion is probed in the present Dalitz

plot.

Figure 4. Lhs: (ηπ)P effective range amplitude (squared absolute value) fitted to the data. Rhs: Cor-

responding Argand plot, showing the imaginary versus the real part of the effective range amplitude. The

range from M = 690 to 1800 MeV/c2 is divided into equal ∆m steps. An almost complete anticlockwise

phase rotation is observed.
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We have also studied the so-called cusp effect which arises from the opening of another channel

under a broad resonance, thus creating an apparently narrower structure. Since additional 1−+

structure is indicated in the ρπ system in the mass range 1600-1700 MeV/c2 [6, 7], we have investi-

gated the possibility that a broad resonance in that range produces a cusp at 1400 MeV/c2 in ηπ ,
using the Flatté parametrization [8]. However, the corresponding fits fail. The high statistics of the
Crystal Barrel data allow a distinction of the different shapes of a cusp (Fig. 5) and a Breit-Wigner

resonance (cf. Fig.4). As a function of the mass m1 of the broad resonance, the cusp fits clearly
get worse with increasing m1 (Fig. 6). The minimum χ2 is reached at m1 = 1400 MeV/c2 which

is identical to the mass of the Breit-Wigner fit. However at this minimum, the value of χ2 is still
worse by ∆χ2 = 42 than the corresponding value for the Breit-Wigner fit. It is concluded that the

resonance at 1400 MeV/c2 is not a cusp from the resonance at higher mass observed at VES and
Brookhaven. Consistency of all observations is obtained with two resonances, one at 1400 MeV/c2,

the other at about 1600 MeV/c2.
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Figure 5. Calculated cusp amplitude for a broad ex-
otic ηπ resonance at 1600 MeV/c2 coupled to the
f1π system (threshold at 1420 MeV/c2). The Flatté
parametrization is used where the width Γ(m) in
eqs. (1,2) is replaced by Γηπ(m)+2(qf1π/m) ·Γ0,f1π .
Plotted is the squared magnitude of the amplitude
for Γ0,ηπ = 1000 MeV/c2 and Γ0,f1π = 300, 1000,
2000 MeV/c2 (from top to bottom, respectively) [9].

Figure 6. Deviation of cusp fits from data (χ2)
as a function of the mass of a broad (Γ0,ηπ =
1000MeV/c2) exotic ηπ resonance with fitted width
Γ0,f1π , using the Flatté parametrization (see Fig. 5).

Finally, an interesting entrance channel selectivity is found when the above p̄n data are compared
to p̄p. In that case the Dalitz plot is very rich in structure (Fig. 7) and the evidence for a contribution

of the exotic resonance could only be obtained by coupled analysis of data for a liquid and a gaseous
hydrogen target [2]. With the latter target, the relative contribution from the atomic P-state is
enhanced. The analysis yields relative contributions of the exotic resonance of 1% and 4% for the

liquid and the gaseous target, respectively, and resonance parameters consistent with the values
given above. Here the dominant contribution comes from the atomic 3P1 state. The 1S0 state is

strongly suppressed, in contrast to the dominance of the 3S1 state in p̄n. Hence, the exotic resonance
is produced preferably from spin triplet states.
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Figure 7. Dalitz plot for p̄p → π0π0η obtained with a
gaseous hydrogen target at 12 atm (2 entries per event).
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