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Exclusive semileptonic B decays to radially excited charmed mesons and rare radiative B decay to the

orbitally excited tensor K∗2 (1430) meson are investigated in the framework of the relativistic quark model

based on the quasipotential approach in quantum field theory. The heavy quark expansion is applied for the

semileptonic B → D(∗)′eν decays. Both relativistic and the 1/mQ corrections are found to play an impor-

tant role for these decays and substantially modify results. For rare radiative B → K∗2 (1430)γ decay such an

expansion is not used for the s quark. Instead we apply the expansion in inverse powers of large recoil momen-

tum of final K∗2 (1430) meson. The calculated branching fraction BR(B → K∗2 (1430)γ) = (1.7± 0.6)× 10−5

as well as the ratio BR(B → K∗2 (1430)γ)/BR(B → K∗(892)γ) = 0.38 ± 0.08 are found to be in a good

agreement with recent experimental data from CLEO.

Introduction

The investigation of weak B decays to excited mesons presents a problem interesting both from
the experimental and theoretical point of view. The current experimental data on semileptonic
B decays to ground state D mesons indicate that a substantial part (≈ 40%) of the inclusive
semileptonic B decays should go to excited D meson states. First experimental data on some
exclusive B decay channels to excited charmed mesons are becoming available now [1, 2, 3] and
more data are expected in near future. Thus the comprehensive theoretical study of these decays
is necessary. The presence of a heavy quark in the initial and final meson states in these decays
considerably simplifies their theoretical description. A good starting point for this analysis is the
infinitely heavy quark limit, mQ → ∞ [4]. In this limit the heavy quark symmetry arises, which
strongly reduces the number of independent weak form factors [5]. The heavy quark mass and spin
then decouple and all meson properties are determined by light-quark degrees of freedom alone. This
leads to a considerable reduction of the number of independent form factors which are necessary
for the description of heavy-to-heavy semileptonic decays. For example, in this limit only one form
factor is necessary for the semileptonic B decay to S-wave D mesons (both for the ground state and
its radial excitations), while the decays to P states require two form factors [5]. It is important to
note that in the infinitely heavy quark limit matrix elements between a B meson and an excited D
meson should vanish at the point of zero recoil of the final excited charmed meson in the rest frame
of the B meson. In the case of B decays to radially excited charmed mesons this follows from the
orthogonality of radial parts of wave functions, while for the decays to orbital excitations this is
the consequence of orthogonality of their angular parts. However, some of the 1/mQ corrections to
these decay matrix elements give nonzero contributions at zero recoil. As a result the role of these
corrections could be considerably enhanced, since the kinematical range for B decays to excited
states is a rather small region around zero recoil.

Rare radiative decays of B mesons are induced by flavour changing neutral currents and thus
they can serve as sensitive probes of new physics beyond the standard model. Such decays are
governed by one-loop (penguin) diagrams with the main contribution from a virtual top quark
and a W boson. The statistics of rare radiative B decays considerably increased since the first
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observation of the B → K∗γ decay in 1993 by CLEO [6]. This allowed a significantly more precise
determination of exclusive and inclusive branching fractions [7]. Recently the first observation of
rare B decay to the orbitally excited tensor strange meson B → K∗2 (1430)γ has been reported by
CLEO [7] with a branching fraction

BR(B → K∗2 (1430)γ) = (1.66+0.59
−0.53 ± 0.13)× 10−5, (1)

as well as the ratio of exclusive branching fractions

r ≡ BR(B → K∗2 (1430)γ)

BR(B → K∗(892)γ)
= 0.39+0.15

−0.13. (2)

These new experimental data provide a challenge to the theory. Many theoretical approaches
have been employed to predict the exclusive B → K∗(892)γ decay rate (for a review see [8] and
references therein). Less attention has been payed to rare radiative B decays to excited strange
mesons [9, 10, 11]. Most of these theoretical approaches [10, 11] rely on the heavy quark limit both
for the initial b and final s quark and the nonrelativistic quark model. However, the two predictions
[10, 11] for the ratio r in Eq. (2) differ by an order of magnitude, due to a different treatment
of the long distance effects and, as a result, a different determination of corresponding Isgur-Wise
functions. Only the prediction of Ref. [11] is consistent with data (1), (2). Nevertheless, it is
necessary to point out that the s quark in the final K∗ meson is not heavy enough, compared to the
Λ̄ parameter, which determines the scale of 1/mQ corrections in heavy quark effective theory [12].
Thus the 1/ms expansion is not appropriate. Notwithstanding, the ideas of heavy quark expansion
can be applied to the exclusive B → K∗(K∗2 )γ decays. From the kinematical analysis it follows that
the final K∗(K∗2 ) meson bears a large relativistic recoil momentum |∆| of order of mb/2 and an
energy of the same order. So it is possible to expand the matrix element of the effective Hamiltonian
both in inverse powers of the b quark mass for the initial state and in inverse powers of the recoil
momentum |∆| for the final state [13, 14].

Our relativistic quark model is based on the quasipotential approach in quantum field theory
with a specific choice of the quark-antiquark interaction potential. It provides a consistent scheme
for the calculation of all relativistic corrections at a given v2/c2 order and allows for the heavy quark
1/mQ expansion. In preceding papers we applied this model to the calculation of the mass spectra
of orbitally and radially excited states of heavy-light mesons [15], as well as to the description of
the rare radiative decay B → K∗γ [13] and of weak decays of B mesons to ground state heavy and
light mesons [16, 17]. The heavy quark expansion for the ground state heavy-to-heavy semileptonic
transitions [18] was found to be in agreement with model-independent predictions of the heavy
quark effective theory (HQET).

1. Relativistic quark model

In our model a meson is described by the wave function of the bound quark-antiquark state,
which satisfies the quasipotential equation [19] of the Schrödinger type [20]:(

b2(M)

2µR
− p2

2µR

)
ΨM (p) =

∫
d3q

(2π)3
V (p,q;M)ΨM (q), (3)

where the relativistic reduced mass is

µR =
M4 − (m2

q −m2
Q)2

4M3
. (4)
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In the center-of-mass system the relative momentum squared on mass shell reads

b2(M) =
[M2 − (mq +mQ)2][M2 − (mq −mQ)2]

4M2
. (5)

The kernel V (p,q;M) in Eq. (3) is the quasipotential operator of the quark-antiquark interac-
tion. It is constructed with the help of the off-mass-shell scattering amplitude, projected onto the
positive energy states. An important role in this construction is played by the Lorentz-structure
of the confining quark-antiquark interaction in the meson. In constructing the quasipotential of
the quark-antiquark interaction we have assumed that the effective interaction is the sum of the
usual one-gluon exchange term and the mixture of vector and scalar linear confining potentials. The
quasipotential is then defined by [21]

V (p,q;M) = ūq(p)ūQ(−p)V(p,q;M)uq(q)uQ(−q)
= ūq(p)ūQ(−p)

{
4

3
αsDµν(k)γµq γ

ν
Q + V V

conf(k)ΓµqΓQ;µ + V S
conf(k)

}
uq(q)uQ(−q), (6)

where αs is the QCD coupling constant, Dµν is the gluon propagator in the Coulomb gauge and
k = p− q; γµ and u(p) are the Dirac matrices and spinors

uλ(p) =

√
ε(p) +m

2ε(p)

 1
σp

ε(p) +m

χλ (7)

with ε(p) =
√

p2 +m2. The effective long-range vector vertex is given by

Γµ(k) = γµ +
iκ

2m
σµνk

ν , (8)

where κ is the Pauli interaction constant characterizing the nonperturbative anomalous chromomag-
netic moment of quarks. Vector and scalar confining potentials in the nonrelativistic limit reduce
to

V V
conf(r) = (1− ε)(Ar +B), V S

conf(r) = ε(Ar +B), (9)

reproducing
Vconf(r) = V S

conf(r) + V V
conf(r) = Ar +B, (10)

where ε is the mixing coefficient.
The quasipotential for the heavy quarkonia, expanded in v2/c2, can be found in Refs. [21, 22] and

for heavy-light mesons in [15]. All the parameters of our model, such as quark masses, parameters
of the linear confining potential, mixing coefficient ε and anomalous chromomagnetic quark moment
κ, were fixed from the analysis of heavy quarkonia masses [21] and radiative decays [23]. The quark
masses mb = 4.88 GeV, mc = 1.55 GeV, ms = 0.50 GeV, mu,d = 0.33 GeV and the parameters of
the linear potential A = 0.18 GeV2 and B = −0.30 GeV have the usual quark model values. In
Ref. [18] we have considered the expansion of the matrix elements of weak heavy quark currents
between pseudoscalar and vector meson ground states up to the second order in inverse powers of
the heavy quark masses. It has been found that the general structure of the leading, first, and
second order 1/mQ corrections in our relativistic model is in accord with the predictions of HQET.
The heavy quark symmetry and QCD impose rigid constraints on the parameters of the long-range
potential in our model. The analysis of the first order corrections [18] fixes the value of the Pauli
interaction constant κ = −1. The same value of κ was found previously from the fine splitting of
heavy quarkonia 3PJ - states [21]. The value of the parameter mixing vector and scalar confining
potentials ε = −1 was found from the analysis of the second order corrections [18]. This value is
very close to the one determined from considering radiative decays of heavy quarkonia [23].
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Figure 1. Lowest order vertex function Γ(1) corresponding to Eq. (12).
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Figure 2. Vertex function Γ(2) corresponding to Eq. (13). Dashed lines represent the
effective potential V in Eq. (6). Bold lines denote the negative-energy part of the
quark propagator.

In the quasipotential approach, the matrix element of the weak current Jµ = f̄Gb (f = {c or s},
G = {γµ(1− γ5) or i

2k
νσµν(1 + γ5)}) between the states of a B meson and an excited F (D(∗)′ or

K∗2 ) meson has the form [24]

〈F |Jµ(0)|B〉 =

∫
d3p d3q

(2π)6
Ψ̄F (p)Γµ(p,q)ΨB(q), (11)

where Γµ(p,q) is the two-particle vertex function and ΨB,F are the meson wave functions projected
onto the positive energy states of quarks and boosted to the moving reference frame. The contri-
butions to Γ come from Figs. 1 and 2. The contribution Γ(2) is the consequence of the projection
onto the positive-energy states. Note that the form of the relativistic corrections resulting from the
vertex function Γ(2) explicitly depends on the Lorentz structure of the qq̄-interaction. The vertex
functions look like

Γ(1)
µ (p,q) = ūf (p1)Gub(q1)(2π)3δ(p2 − q2), (12)

and

Γ(2)
µ (p,q) = ūf (p1)ūq(p2)

{
G

Λ
(−)
b (k1)

εb(k1) + εb(p1)
γ0

1V(p2 − q2)

+V(p2 − q2)
Λ

(−)
f (k′1)

εf (k′1) + εf (q1)
γ0

1G

}
ub(q1)uq(q2), (13)

where k1 = p1 −∆; k′1 = q1 + ∆; ∆ = pF − pB;

Λ(−)(p) =
ε(p)− (mγ0 + γ0(γp))

2ε(p)
.
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It is important to note that the wave functions entering the weak current matrix element (11)
cannot be both in the rest frame. In the B meson rest frame, the F meson is moving with the
recoil momentum ∆. The wave function of the moving F meson ΨF ∆ is connected with the F
wave function in the rest frame ΨF 0 ≡ ΨF by the transformation [24]

ΨF ∆(p) = D
1/2
f (RWL∆

)D1/2
q (RWL∆

)ΨF 0(p), (14)

where RW is the Wigner rotation, L∆ is the Lorentz boost from the meson rest frame to a moving
one. The wave functions of B, D(∗)′ and K∗2 mesons at rest were calculated by numerical solution
of the quasipotential equation (3).

2. Semileptonic decays to radially excited states

The matrix elements of the vector and axial vector currents between the B and radially excited
D′ or D∗′ mesons can be parameterized by six hadronic form factors:

〈D′(v′)|c̄γµb|B(v)〉√
mD′mB

= h+(v + v′)µ + h−(v − v′)µ,
〈D′(v′)|c̄γµγ5b|B(v)〉 = 0,
〈D∗′(v′, ε)|c̄γµb|B(v)〉√

mD∗′mB
= ihV ε

µαβγε∗αv
′
βvγ ,

〈D∗′(v′, ε)|c̄γµγ5b|B(v)〉√
mD∗′mB

= hA1(w + 1)ε∗µ − (hA2v
µ + hA3v

′µ)(ε∗ · v), (15)

where v (v′) is the four-velocity of the B (D(∗)′) meson, εµ is a polarization vector of the final vector
charmed meson, and the form factors hi are dimensionless functions of the product of velocities
w = v · v′.

The HQET analysis [25] shows that five independent functions ξ̃3, χb and χ̃1,2,3, as well as
two mass parameters Λ̄ and Λ̄(n) are necessary to describe first order 1/mQ corrections to matrix
elements of B meson decays to radially excited D meson states. The function ξ̃3 emerges from
corrections to the current in effective theory, while χb and χ̃1,2,3 parameterize corrections to HQET
Lagrangian. The resulting structure of the decay form factors is [25]

h+ = ξ(n) + εc [2χ̃1 − 4(w − 1)χ̃2 + 12χ̃3] + εbχb,

h− = εc

[
2ξ̃3 −

(
Λ̄(n) +

Λ̄(n) − Λ̄

w − 1

)
ξ(n)

]
− εb

[
2ξ̃3 −

(
Λ̄− Λ̄(n) − Λ̄

w − 1

)
ξ(n)

]
,

hV = ξ(n) + εc

[
2χ̃1 +

(
Λ̄(n) +

Λ̄(n) − Λ̄

w − 1

)
ξ(n) − 4χ̃3

]
+ εb

[
χb +

(
Λ̄− Λ̄(n) − Λ̄

w − 1

)
ξ(n) − 2ξ̃3

]
,

hA1 = ξ(n) + εc

[
2χ̃1 − 4χ̃3 +

w − 1

w + 1

(
Λ̄(n) +

Λ̄(n) − Λ̄

w − 1

)
ξ(n)

]

+εb

{
χb +

w − 1

w + 1

[(
Λ̄− Λ̄(n) − Λ̄

w − 1

)
ξ(n) − 2ξ̃3

]}
,

hA2 = εc

{
4χ̃2 − 2

w + 1

[(
Λ̄(n) +

Λ̄(n) − Λ̄

w − 1

)
ξ(n) + ξ̃3

]}
,

hA3 = ξ(n) + εc

[
2χ̃1 − 4χ̃2 − 4χ̃3 +

w − 1

w + 1

(
Λ̄(n) +

Λ̄(n) − Λ̄

w − 1

)
ξ(n) − 2

w + 1
ξ̃3

]
+εb

[
χb +

(
Λ̄− Λ̄(n) − Λ̄

w − 1

)
ξ(n) − 2ξ̃3

]
, (16)

where εQ = 1/(2mQ) and Λ̄(Λ̄(n)) = M(Mn)−mQ.
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Now we can perform the heavy quark expansion for the matrix elements of B decays to excited D
mesons in the framework of our model and determine leading and subleading Isgur–Wise functions.
To do this we substitute the vertex functions Γ(1) and Γ(2) given by Eqs. (12) and (13) in the decay
matrix element (11) and take into account the wave function properties (14). The resulting structure
of this matrix element is rather complicated, because it is necessary to integrate both over d3p and
d3q. The δ function in expression (12) permits us to perform one of these integrations and thus
this contribution can be easily calculated. The calculation of the vertex function Γ(2) contribution
is more difficult. Here, instead of a δ function, we have a complicated structure, containing the Qq̄
interaction potential in the meson. However, we can expand this contribution in inverse powers of
heavy (b, c) quark masses and then use the quasipotential equation in order to perform one of the
integrations in the current matrix element. We carry out the heavy quark expansion up to first
order in 1/mQ. It is easy to see that the vertex function Γ(2) contributes already at the subleading
order of the 1/mQ expansion. Then we compare the arising decay matrix elements with the form
factor decompositions (16) for decays to radial excitations and determine the form factors. We find
that, for the chosen values of our model parameters (the mixing coefficient of vector and scalar
confining potential ε = −1 and the Pauli constant κ = −1), the resulting structure at leading and
subleading order in 1/mQ coincides with the model-independent predictions of HQET. This allows
us to determine leading and subleading Isgur-Wise functions [25]:

ξ(1)(w) =

(
2

w + 1

)1/2∫ d3p

(2π)3
ψ̄

(0)

D(∗)′

(
p +

2εq
MD(∗)′(w + 1)

∆

)
ψ

(0)
B (p), (17)

ξ̃3(w) =

(
Λ̄(1) + Λ̄

2
−mq +

1

6

Λ̄(1) − Λ̄

w − 1

)(
1 +

2

3

w − 1

w + 1

)
ξ(1)(w), (18)

χ̃1(w) ∼= 1

20

w − 1

w + 1

Λ̄(1) − Λ̄

w − 1
ξ(1)(w)

+
Λ̄(1)

2

(
2

w + 1

)1/2∫ d3p

(2π)3
ψ̄

(1)si

D(∗)′

(
p +

2εq
MD(∗)′(w + 1)

∆

)
ψ

(0)
B (p), (19)

χ̃2(w) ∼= − 1

12

1

w + 1

Λ̄(1) − Λ̄

w − 1
ξ(1)(w), (20)

χ̃3(w) ∼= − 3

80

w − 1

w + 1

Λ̄(1) − Λ̄

w − 1
ξ(1)(w)

+
Λ̄(1)

4

(
2

w + 1

)1/2∫ d3p

(2π)3
ψ̄

(1)sd

D(∗)′

(
p +

2εq
MD(∗)′(w + 1)

∆

)
ψ

(0)
B (p), (21)

χb(w) ∼= Λ̄

(
2

w + 1

)1/2∫ d3p

(2π)3
ψ̄

(0)

D(∗)′

(
p +

2εq
MD(∗)′(w + 1)

∆

) [
ψ

(1)si
B (p)− 3ψ

(1)sd
B (p)

]
, (22)

where ∆2 = M2
D(∗)′(w

2 − 1). Here we used the expansion for the S-wave meson wave function

ψM = ψ
(0)
M + Λ̄MεQ

(
ψ

(1)si
M + dMψ

(1)sd
M

)
+ · · · ,

where ψ
(0)
M is the wave function in the limit mQ → ∞, ψ

(1)si
M and ψ

(1)sd
M are the spin-independent

and spin-dependent first order 1/mQ corrections, dP = −3 for pseudoscalar and dV = 1 for vector
mesons. The symbol ∼= in the expressions (19)–(22) for the subleading functions χ̃i(w) means that
the corrections suppressed by an additional power of the ratio (w−1)/(w+1), which is equal to zero
at w = 1 and less than 1/6 at wmax, were neglected. Since the main contribution to the decay rate
comes from the values of form factors close to w = 1, these corrections turn out to be unimportant.

It is clear from the expression (17) that the leading order contribution vanishes at the point of
zero recoil (∆ = 0, w = 1) of the final D(∗)′ meson, since the radial parts of the wave functions
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ΨD(∗)′ and ΨB are orthogonal in the infinitely heavy quark limit. The 1/mQ corrections to the
current also do not contribute at this kinematical point for the same reason. The only nonzero
contributions at w = 1 come from corrections to the Lagrangian 1 χ̃1(w), χ̃3(w) and χb(w). From
Eqs. (16) one can find for the form factors contributing to the decay matrix elements at zero recoil

h+(1) = εc [2χ̃1(1) + 12χ̃3(1)] + εbχb(1),
hA1(1) = εc [2χ̃1(1)− 4χ̃3(1)] + εbχb(1). (23)

Such nonvanishing contributions at zero recoil result from the first order 1/mQ corrections to the
wave functions (see Eq. (22) and the last terms in Eqs. (19), (21)). Since the kinematically allowed
range for these decays is not broad ( 1 ≤ w ≤ wmax ≈ 1.27) the relative contribution to the
decay rate of such small 1/mQ corrections is substantially increased. Note that the terms εQ(Λ̄(n)−
Λ̄)ξ(n)(w)/(w−1) have the same behaviour near w = 1 as the leading order contribution, in contrast
to decays to the ground state D(∗) mesons, where 1/mQ corrections are suppressed with respect to
the leading order contribution by the factor (w − 1) near this point (this result is known as Luke’s
theorem [26]). Since inclusion of first order heavy quark corrections to B decays to the ground state
D(∗) mesons results in approximately a 10-20% increase of decay rates [18, 12], one could expect
that the influence of these corrections on decay rates to radially excited D(∗)′ mesons will be more
essential. Our numerical analysis supports these observations.

Table 1: Decay rates Γ (in units of |Vcb/0.04|2× 10−15 GeV) and branching fractions BR (in %) for
B decays to radially excited D(∗)′ mesons in the infinitely heavy quark limit and taking account of
first order 1/mQ corrections. Σ(B → D(∗)′eν) represent the sum over both channels. R′ is a ratio
of branching fractions taking account of 1/mQ corrections to branching fractions in the infinitely
heavy quark limit.

mQ →∞ With 1/mQ

Decay Γ Br Γ Br R′

B → D′eν 0.53 0.12 0.92 0.22 1.74
B → D∗′eν 0.70 0.17 0.78 0.18 1.11

Σ(B → D(∗)′eν) 1.23 0.29 1.70 0.40 1.37

We can now calculate the decay branching fractions by integrating double differential decay
rates. Our results for decay rates both in the infinitely heavy quark limit and taking account of the
first order 1/mQ corrections as well as their ratio

R′ =
Br(B → D(∗)′eν)with 1/mQ

Br(B → D(∗)′eν)mQ→∞

are presented in Table 1. We find that both 1/mQ corrections to decay rates arising from corrections
to HQET Lagrangian (19)–(22), which do not vanish at zero recoil, and corrections to the current
(18), vanishing at zero recoil, give significant contributions. In the case of B → D′eν decay both
types of these corrections tend to increase the decay rate leading to approximately a 75% increase
of the B → D′eν decay rate. On the other hand, these corrections give opposite contributions
to the B → D∗′eν decay rate: the corrections to the current give a negative contribution, while
corrections to the Lagrangian give a positive one of approximately the same value. This interplay of

1There are no normalization conditions for these corrections contrary to the decay to the ground state D(∗) mesons,
where the conservation of vector current requires their vanishing at zero recoil [26].
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1/mQ corrections only slightly (≈ 10%) increases the decay rate with respect to the infinitely heavy
quark limit. As a result the branching fraction for B → D′eν decay exceeds the one for B → D∗′eν
after inclusion of first order 1/mQ corrections. In the infinitely heavy quark mass limit we have for
the ratio Br(B → D′eν)/Br(B → D∗′eν) = 0.75, while the account for 1/mQ corrections results in
the considerable increase of this ratio to 1.22.

In Table 1 we also present the sum of the branching fractions over first radially excited states.
Inclusion of 1/mQ corrections results in approximately a 40% increase of this sum. We see that our
model predicts that 0.40% of B meson decays go to the first radially excited D meson states. If
we add this value to our prediction for B decays to the first orbitally excited states 1.45% [27], we
get the value of 1.85%. This result means that approximately 2% of B decays should go to higher
charmed excitations.

3. Rare radiative B → K∗2 (1430)γ decay

In the standard model B → K∗∗γ decays are governed by the contribution of the electromagnetic
dipole operator O7 to the effective Hamiltonian which is obtained by integrating out the top quark
and W boson and using the Wilson expansion [8]:

O7 =
e

16π2
s̄σµν(mbPR +msPL)bFµν , PR,L = (1± γ5)/2. (24)

The matrix elements of this operator between the initial B meson state and the final state of the
orbitally excited tensor K∗2 meson have the following covariant decomposition

〈K∗2 (p′, ε)|s̄ikνσµνb|B(p)〉 = ig+(k2)εµνλσε
∗νβ pβ

MB
kλ(p+ p′)σ,

〈K∗2 (p′, ε)|s̄ikνσµνγ5b|B(p)〉 = g+(k2)

(
ε∗βγ

pβpγ

MB
(p+ p′)µ − ε∗µβ

pβ

MB
(p2 − p′2)

)

+g−(k2)

(
ε∗βγ

pβpγ

MB
kµ − ε∗µβ

pβ

MB
k2

)

+h(k2)((p2 − p′2)kµ − (p+ p′)µk2)ε∗βγ
pβpγ

M2
BMK∗2

, (25)

where εµν is a polarization tensor of the final tensor meson and k = p − p′ is the four momentum
of the emitted photon. The exclusive decay rate for the emission of a real photon (k2 = 0) is
determined by the single form factor g+(0) and is given by

Γ(B → K∗2γ) =
α

256π4
G2
Fm

5
b |VtbVts|2|C7(mb)|2g2

+(0)
M2
B

M2
K∗2

(
1−

M2
K∗2

M2
B

)5(
1 +

M2
K∗2

M2
B

)
, (26)

where Vij are the Cabibbo-Kobayashi-Maskawa matrix elements and C7(mb) is the Wilson coefficient
in front of the operator O7. It is convenient to consider the ratio of exclusive to inclusive branching
fractions, for which we have

RK∗2 ≡
BR(B → K∗2 (1430)γ)

BR(B → Xsγ)
=

1

8
g2

+(0)
M2
B

M2
K∗2

(
1−M2

K∗2
/M2

B

)5 (
1 +M2

K∗2
/M2

B

)
(
1−m2

s/m
2
b

)3 (
1 +m2

s/m
2
b

) . (27)

The recent experimental value for the inclusive decay branching fraction [28]

BR(B → Xsγ) = (3.15± 0.35± 0.41)× 10−4

is in a good agreement with theoretical calculations.
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For the calculation of the decay matrix elements in our model we use the same framework as in
previous calculations of B to excited D decays. However, for a heavy-to-light transition we cannot
expand Γ(2) contribution in inverse powers of the s quark mass. Instead we expand this contribution
in inverse powers of the large recoil momentum |∆| ∼ mb/2 of the final K∗2 meson. The resulting
expressions for the form factor g+(0) up to the second order in 1/mb can be found in [29].

We can check the consistency of our expressions for g+(0) by taking the formal limit of b and s

quark masses going to infinity. 2 In this limit according to the heavy quark effective theory [30] the

function ξF = 2
√
MBMK∗2 g+/(MB +MK∗2 ) should coincide with the Isgur-Wise function τ for the

semileptonic B decay to the orbitally excited tensor D meson, B → D∗2eν. Such semileptonic decays
have been considered by us in Ref. [27]. It is easy to verify that the equality of ξF and τ is satisfied
in our model if we also use the expansion in (w− 1)/(w+ 1) (w is a scalar product of four-velocities
of the initial and final mesons), which is small for the B → D∗2eν decay [27]. Calculating the ratio
of the form factor g+(0) in the infinitely heavy b and s quark limit to the same form factor in
the leading order of expansions in inverse powers of the b quark mass and large recoil momentum
|∆| we find this ratio to be equal to MB/

√
M2
B +M2

K∗2
≈ 0.965. The corresponding ratio for the

form factor F1(0) of the exclusive rare radiative B decay to the vector K∗ meson [13] is equal to

MB/
√
M2
B +M2

K∗ ≈ 0.986. Therefore we conclude that the form factor ratios g+(0)/F1(0) in the

leading order of these expansions differ by factor
√
M2
B +M2

K∗/
√
M2
B +M2

K∗2
≈ 0.98. This is the

consequence of the relativistic dynamics leading to the effective expansion in inverse powers of the
s quark energy εs(p + ∆) =

√
(p + ∆)2 +m2

s, which is large in one case due to the large s quark
mass and in the other one due to the large recoil momentum ∆. As a result both expansions give
similar final expressions in the leading order. Thus we can expect that the ratio r from (2) in our
calculations should be close to the one found in the infinitely heavy s quark limit [11].

Table 2: Our results in comparison with other theoretical predictions and experimental data for

branching fractions and their ratios RK∗ ≡ BR(B→K∗γ)
BR(B→Xsγ) , RK∗2 ≡

BR(B→K∗2γ)
BR(B→Xsγ) , r ≡ BR(B→K∗2γ)

BR(B→K∗γ) . Our

values for the B → K∗γ decay are taken from Ref. [13].

Value our Ref. [9] Ref. [10] Ref. [11] Exp. [7]

BR(B → K∗γ)× 105 4.5± 1.5 1.35 1.4− 4.9 4.71± 1.79 4.55+0.72
−0.68 ± 0.34a

3.76+0.89
−0.83 ± 0.28b

RK∗ (%) 15± 3 4.5 3.5− 12.2 16.8± 6.4

BR(B → K∗2γ)× 105 1.7± 0.6 1.8 6.9− 14.8 1.73± 0.80 1.66+0.59
−0.53 ± 0.13

RK∗2 (%) 5.7± 1.2 6.0 17.3− 37.1 6.2± 2.9

r 0.38± 0.08 1.3 3.0− 4.9 0.37± 0.10 0.39+0.15
−0.13

The results of numerical calculations are given in Table 2. There we also show our previous pre-
dictions for the B → K∗γ decay [13]. Our results are confronted with other theoretical calculations
[9, 10, 11] and recent experimental data [7]. We find a good agreement of our predictions for decay
rates with the experiment and estimates of Ref. [11]. Other theoretical calculations substantially
disagree with data either for B → K∗γ [9] or for B → K∗2γ [10] decay rates. As a result our
predictions and those of Ref. [11] for the ratio r from (2) are well consistent with experiment, while
the r estimates of [9] and [10] are several times larger than the experimental value (see Table 2).
As it was argued above, it is not accidental that r values in our and Ref. [11] approaches are close.
The agreement of both predictions for branching fractions could be explained by some specific can-

2As it was noted above such limit is justified only for the b quark.
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cellation of finite s quark mass effects and relativistic corrections which were neglected in Ref. [11].
We believe that our analysis is more consistent and reliable. We do not use the ill-defined limit
ms → ∞, and our quark model consistently takes into account some important relativistic effects,
for example, the Lorentz transformation of the wave function of the final K∗2 meson (see Eq. (14)).
Such a transformation turns out to be very important, especially for B decays to orbitally excited
mesons [27]. The large value of the recoil momentum |∆| ∼ mb/2 makes relativistic effects to play
a significant role. On the other hand this fact simplifies our analysis since it allows to make an
expansion both in inverse powers of the large b quark mass and in the large recoil momentum.
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[28] J. Trampetić, hep-ph/0002131.

[29] D. Ebert, R.N. Faustov, V.O. Galkin, and H. Toki, Phys. Lett. B 495 (2000) 309.

[30] S. Veseli and M.G. Olsson, Phys. Lett. B 367 (1996) 302.

78


