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Using an effective field theory approach we try to show that quantum fluctuations and vacuum polarization

effects lead to generation of finite-energy objects in QCD.

Introduction

A topic of my talk is some possible way of generation of finite-energy compact objects in non-
abelian quantum field theory. The basis of our approach are singular solutions of classical Yang-Mills

theory, and we try to show that vacuum polarization effects play the role of some regularization of
singularity of classical solutions. Such approach is analogous to the regularization of self–energy of

Coulomb potential (problem of singular self–energy of electron).
I would like to begin with a small remark about the searching of classical solutions of Yang–Mills

(YM) theory. The crucial point of such analysis stems from the fact that classical YM theory has
no solutions with such properties. This is a mathematical theorem [1] that is a consequence of the

scale invariance of YM theory. From methodological point of view this theorem is a modification
of the well–known Derrick theorem [2]. After this theorem the searching of classical solutions
of YM theory had separated into three branches. First of all, this is the searching of nontrivial

topological structure of vacuum sector of YM theory and the problem of ground state of this theory.
Such problem is connected to the well-known instanton physics. Second branch is the searching

of singular solutions of YM theory. The first example of such solutions was proposed by Wu and
Yang [3]. Wu–Yang monopole has singular self–energy due to the singularity in origin. This solution

plays the very important role in physics of singular solutions of YM theory because the singular
Wu–Yang monopole is a prototype, in YM theory plus Higgs fields of the finite-energy ’t Hooft-

Polyakov monopole [4] in modified theory. This example is the basis of modern point of view on
singular solution of classical YM equations as some prototype of finite-energy objects in modified

theories.
The searching of solutions of such modified field theories is a third branch of modern development

of classical solutions of YM theory. First of all, these are very interesting solutions of YM+Higgs

theory that have nontrivial topological nature: monopoles [4], dyons [5] and sphalerons [6]. There
are many interesting solutions had been founded in YM theory with external sources [7].

In our approach another type of singular solutions of YM equations will be studied. In contrast
with Wu–Yang monopole that has singularity at some point (at origin), our solutions have a singular

behavior on some two–dimensional surface: on sphere [8, 9], on cylinder [10], on torus [11] and so on.
In the present work spherically–symmetrical solutions with singularity on a finite-radius sphere

will be considered. This is a simple example of such type of singular solutions.
Let us consider the classical field theory with a pure YM lagrangian

LεY M = −
1

4
(Fµν)

a(Fµν)a , (1)

where (Fµν)
a = ∂µA

a
ν − ∂νA

a
µ + εabcAbµA

c
ν and (Dµ)

ab = δab∂µ + εabcAcµ. Here we deal with a SU(2)
Yang–Mills field.
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We consider the spherically symmetrical chromomagnetic field configuration and substituting

the well-known [3] Wu–Yang ansatz

Aa0 = 0, Aai = εaijnj
1−H(r)

r
, ni = xi/r r =

√
x2i , (2)

in Yang–Mills equations, we get the following Wu–Yang equation for amplitude H(r)

r2H(r)′′ = H(r)
(
H(r)2− 1

)
. (3)

This equation has solutions with singularity at the finite-radius sphere that had been obtained in

the different approaches. [12, 13, 8, 9] (see Fig. 1)

Figure 1: Singular solutions of Wu-

Yang equation.

Recently a gauge-invariant approach to the YM theory had been proposed [14]. In this ap-
proach YM theory can be reformulated in terms of the bimetrical gravity and one get that typical

spherically-symmetrical solution is a black-hole-like solution with Schwarzschild singularity on a
finite-radius sphere [8, 9] (see Fig. 1). Because of such singular behavior, this solution has infinite

self-energy and physical interpretation of such solution is a very difficult problem, some regulariza-
tion procedure should be proposed. But on the other hand, on the basis of these solutions one can

construct a model of hadron gluonic bag where such solutions play the role of confinement potential
for color particle [9].

But how the vacuum polarization effects can be taken into account? One can find an answer to
this question in the classical work of J. Schwinger [15]. Using the proper-time technique, Schwinger

has shown that in case of quantum electrodynamics corrections to the static electro-magnetic poten-
tial from vacuum polarization effects can be taken into account by means of some effective c-number
field theory. Lagrangian of such theory consists of a standard lagrangian of QED and some addi-

tional part that correspond to the polarization of electron-positron vacuum. Using such effective
theory, one can obtain corrections to the Coulomb law from polarization process. Of course, such

corrections are absolutely identical to the well-known loop results [16], but such approach seems
very useful in cases where perturbation expansion is invalid and nonperturbative effects dominate.

In the present work a very similar approach of consideration of vacuum polarization effects is
used in the case of nonabilian field theory. There are many approaches of finding such effective

field theory for nonabelian gauge theories. First of all, the quasiclassical effective lagrangian was
obtained by Diakonov, Petrov and Yung [17]. A very similar lagrangian had been introduced in the

series of papers [18]-[26]. As a result, in leading approximation for gluon field one obtaineds the
theory with a new lagrangian L = LYM +∆L for the c-number field Aeff and this classical Yang–
Mills field is an average of the initial gluon field A0 over quantum fluctuations: Aeff = 〈A0〉. In
[20, 21, 22] the investigation of classical solutions in such effective theories was discussed in context
of the color confinement problem. A very similar problem is discussed in paper [27] also.

In the present work we try to find compact finite-energy objects by using of an effective approach
to the QCD that was discussed above.
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1. Finite-energy gluon clusters

In this section we investigate the classical Yang-Mills theory with a nonstandard modified la-
grangian

LεY M = −
1

4
(Fµν)

a(Fµν)a − ε2

6
εabc(Fµν)

a(F νρ)
b(F ρµ)c , (4)

where effective coupling constant ε = 1/M is an inverse mass dimensional parameter characterizing
the intensity of quantum fluctuation and polarization effects.

Such form of modification of the Yang-Mills lagrangian is chosen due to the fact that the theory
obtained contains only second-order derivative terms. Thus the dynamics of this field theory can

be studied in detail.

Using the variation principle, we get the equation of motion

Dabµ (F
µν − ε2Gµν)b = 0. (5)

where (Gµν)a = εabc(F νρ)
b(F ρµ)c.

Adding the divergence

∂ρ[(F
νρ − ε2Gνρ)aAaµ], (6)

to the energy-momentum tensor

T νµ = ∂µA
a
ρ

∂LεY M
∂(∂νAaρ)

− δνµLεY M = −(F νρ − ε2Gνρ)a∂µA
a
ρ − δνµLεY M , (7)

we obtain the symmetrical form of this tensor

T νµ = −(F νρ − εGνρ)a(Fµρ)
a − δνµLεY M . (8)

Now we consider the spherically symmetrical chromomagnetic field configuration. Substituting

the ansatz (2) in (5), we get the following equation on amplitude H(r):

(
1− ε2

r2
(H(r)2− 1)

)
r2H(r)′′ = H(r)

(
H(r)2 − 1

)
+

+
ε2

r2

(
(rH(r)′)2H(r)− 2rH(r)′(H(r)2− 1)

)
. (9)

The energy of field configuration generated by the solution of equation (9) H(r) is the functional

Eε[H ] =

∫
T 00d3x =

= 4π

∞∫
0

[(
1− ε2

r2
(H(r)2− 1)

)
(H(r)′)

2
+
(H(r)2− 1)2

2r2

]
dr =

∞∫
0

E(r)dr. (10)

The next aim of our investigation is finding the solutions of equation (9). Notice that only
finite-energy solutions are interesting for us. Hence the functional Eε[H ] (10) should be finite on

such solutions.

Equation (9) is a very complicated nonlinear differential equation. In order to solve it only
numerical or approximation methods seem applicable. The crucial point of such analysis is that the
leading derivative term in this equation contains the factor

Φ[H ](r) =
(
r2 − ε2(H(r)2− 1)

)
. (11)
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If Hs(r) is a solution of equation (9) and there is a point r = R such that Φ[Hs](R) = 0, then this

solution Hs has singular behavior in a neighborhood of this point r = R due to smallness of the
factor Φ[Hs]. Using the standard procedure, one obtains the asymptotic behavior near this point

Hs(r)
r→R±0
−→ ±

√
1 +R2/ε2 − C (R− r)2/3 +O(R− r), (12)

where C is a constant. Of course, the Hs(R) finite but its derivative at the point r = R is singular.
Indeed,

H ′s(r)
r→R±0
−→ 2

3
C (R− r)−1/3 +O(1) −→∞. (13)

Such singular behavior is analogous to the singular behavior on finite sphere of solutions of pure

Yang–Mills field [9] discussed above but there is a principal difference. Energy of such solutions in
the pure Yang–Mills case is infinite but in the modified Yang–Mills case energy (and other physical

characteristics) of solution with singular behavior (13) should be finite:

E(r)|r=R ∼ 4π
(
± 8ε

2

9R2

√
1 + R2/ε2C3 +

R2

2ε4

)
<∞. (14)

Therefore such solutions are physical.

Now we should discuss the numerical investigation of solutions of equation (9) that have the
asymptotic behavior (13) at some point r = R.

We should choose this asymptotics at origin (r→ 0)

H(r) � −1 + a1 r
2 + a21

2ε2a1 − 3
10(1 + 2a1ε2)

r4 +O(r6), (15)

and at infinity (r→∞)

H(ρ) � 1 + a2 ρ+
3

4
a22 ρ

2 +
11

20
a32 ρ

3 +
193a22 − 240ε2

480
a22ρ

4+

+
329a22 − 1280ε2

1120
a32ρ

5 + O(ρ6), ρ = 1/r, (16)

where a1 > 0 and a2 > 0 are constants.

Notice that equation (9) has very useful symmetries. First of all, this equation is symmetrical
with respect to the changes H ↔ −H . So, if we have a solution H(r), then −H(r) is a solution too.

Now let ε = ε1 and we have a set of solutions {Hε1(r)}. If we perform the change of variable

r→ ε1
ε2
r, {Hε1(r)}

r→ε1r/ε2
=⇒ {Hε2(r) = Hε1(

ε1
ε2
r)}, (17)

we get equation (9) again but with new ε = ε2. If we know a solution for some ε > 0, say, ε = 1,

then using (17) we can obtain a solution for any other ε1 > 0.
The numerical investigation of equation (9) is presented in Fig. 2. (the solution with ε = 1). In

Fig. 3 we can see the energy density (10) corresponding to this solution.
The solution H< starting at the origin (or internal) increases monotonically and its energy

density increases too. Evidently, as energy density grows, the role of quantum fluctuations grows

too. At the point r = R, the energy density attains its critical value Ecr and H(r) becomes
singular (12). The solution H> starting at the infinity (or external) demonstrates an absolutely

similar behavior. Now, a vary essential questions arises: How to connect these two sets of solutions
and how to determine such solutions on the whole space?
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Figure 2: Gluon cluster object. Amplitude
H(r) (ε = 1, a1 = 0.544 and R = 1.425).

Figure 3: Gluon cluster object. Density of
energy.

These questions have no mathematical answer because in this case we deal with the solutions

that can not be extended to the right (to the left) because the point of singularity r = R is essential.

Obviously, this nonuniqueness of solution in the whole space is due to underdetermination of our
effective model. It is necessary to introduce some additional physical condition that would allow to

choose a physically reasonable solution from the broad class of solutions described above.
Since this solution of the model (4) has to be an effective approximation to an existing gluon

object, the general properties of the latter should be represented by the former. Thus, if energy
density of this gluon object is continuous everywhere, then it should be continuous for the approx-

imating solution of equation (9) as well. We show below that the condition of continuity of energy
density is sufficient for the construction of a unique solution and investigation of its properties.

According to mathematical structure of solutions of this model, the condition of continuity of
energy density can be formulated as follows: There exists a critical density of the energy for classical

solutions in our effective Yang–Mills theory and the value of this critical density Ecr is a physical
property of the theory. Therefore Ecr shouldn’t depend on kind of solution (internal or external). It

follows that

E(r)<|r=R = E(r)>|r=R =⇒ C< = C>. (18)

It is easily shown that condition (18) uniquely determines our solution and its properties (a1,

a2 and R) for any ε. This solution is shown in Fig. 2 (if ε = 1, a1 = 0.544 and R = 1.425). This
solution looks like a shell with radius R.

Using (17), one obtains the following expression for energy of such gluon cluster

Eε =
1

ε
Eε=1 =M Eε=1, (19)

where Eε=1 = 110.75 is the energy of field configuration if ε = 1. Expression (19) is intuitively clear.

Indeed, the pure Yang–Mills theory is scale invariant and has no mass-dimensional parameters.
Modified Yang–Mills theory (4) has such parameter ε = 1/M and the mass of gluon objects under

investigation is proportional to this parameter.
Now to predict the physical mass Mcluster and effective radius we should have a prediction of

the value of parameter ε = 1/M . In this paper, following [21], we proposed that M � 0.59πGeV ,
and our model gives the following prediction of the mass and effective radius of investigated gluon

clusters:

M = 1/ε � 0.59πGeV, Mcluster � 205GeV, R � 0.15fm (20)

In the next section we give some conclusions and perspectives of such investigations are discussed.
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Conclusions

The aim of this paper is to show that quantum fluctuations of nonabelian Yang-Mills field can
lead to generation of the cluster finite-energy solution. In our work we used the gauge-invariant

approach [18, 19, 20, 25, 26] in which such quantum fluctuation should be taken into account by
adding high-derivative terms to the pure Yang–Mills lagrangian. In the present work, we inves-

tigated the effective SU(2) Yang–Mills theory and chromomagnetic spherically symmetrical field
configurations.

One of the interesting consequences of this effective theory is a fact that for the investigated
field configuration there exists a critical value of energy density. This fact is due to the physical

condition of continuity of energy density. Such condition allowed us to construct the cluster solution
for all space points. We predicted that the mass of such object should be about two hundred GeV

and effective radius should be about 0.2 fm.
Of course, we do not give a comprehensive investigation of this effective Yang–Mills theory. The

questions about dyon solution or about a role of contributions from other high derivative modified

term in pure Yang–Mills lagrangian are clear now. But maybe the most important question in such
investigation is about physical consequences of existence of such gluon cluster objects and about

their experimental status. All of these questions should be the themes for future investigation.
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