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The potential between heavy quarks can be rigorously defined in a QCD effective field theories framework.

I discuss the general situation when the coupling constant may not be considered small and provide an explicit

expression for the potential valid up to order 1/m2. Spin dependent and spin independent terms are expressed

in terms of Wilson loops, completing an ideal journey started twenty years ago with the classical work of

Eichten and Feinberg.

INTRODUCTION

The mass of the b and the c quarks is usually considered large enough to treat as non-relativistic
(NR) heavy-quark–antiquark systems made up by them (heavy quarkonia: ψ, Υ, Bc, ...). Therefore,
these systems are characterized by, at least, three separated scales: hard (the mass m of the heavy
quarks), soft (the momentum scale |p| ∼ mv, v � 1), and ultrasoft (the typical kinetic energy
E ∼ mv2 of the heavy quark in the bound-state system). This NR picture is supported by the
success of traditional potential models. In this case a description of heavy quarkonia systems in
terms of a NR Schrödinger equation is assumed and the interaction potential is shaped in order
to reproduce as best as possible the data (for some reviews see [1, 2, 3]). The fact that such
a description turns out to work reasonably well even with simple ansätze on the potential (like,
for instance, the Cornell potential) suggests that a NR quantum-mechanical description of heavy
quarkonium systems, may, indeed, be appropriate and justified from QCD.

Fig. 1, taken from [4], shows the static potential versus the size of different heavy quarkonium
systems. It suggests that heavy quarkonium ground states may belong to the region of validity of
perturbative QCD (the region where the static potential has a 1/r behaviour). The perturbative
QCD potential has been calculated up to order α4

s (with respect to the energy level) in [5] (the two-
loop static potential) and in [6] (the one-loop 1/m potential and the tree-level 1/m2 potentials).
Non-potential effects show up in perturbation theory at the NNNLO and have been investigated
in [7, 8]. Fig. 1 shows, however, that most of the quarkonia states lie in a region where the inverse
of the size of the system is close to the scale ΛQCD of non-perturbative physics (i.e. in the region
where the static potential starts to rise linearly in r). In this situation the potential can no longer
be expressed as an expansion in αs, but, starting from the seminal work of Wilson [9], it has been
related to Wilson loop operators. These operators can be eventually calculated on the lattice [10]
or in QCD vacuum models [11].

Despite the fact that the non-perturbative QCD potential has been investigated for more than
twenty years [12, 13, 14, 15, 16, 17, 18, 19] only recently the complete (in pure gluodynamics) and
correct expression valid up to order 1/m2 has been calculated [20, 21]. Here, I will report about
these last progresses. The theoretical framework is NRQCD [22] and pNRQCD [23, 7], which are
the suitable effective field theories for systems made up by two heavy quarks. NRQCD is obtained
from QCD by integrating out the hard scale m. It is characterized by an ultraviolet cut-off much
smaller than the mass m and much larger than any other scale, in particular much larger than
ΛQCD. This means that the matching from QCD to NRQCD can be done perturbatively, as well as
within an expansion in 1/m [24, 25]. By integrating out the momentum scale mv one is left with the
effective field theory called pNRQCD, where the soft and ultrasoft scales have been disentangled and
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Figure 1: The size of some heavy quarkonia is
shown with respect to the Cornell potential [4].

where the connection between NRQCD and a NR quantum-mechanical description of the system
may be formalized in a systematic way. We will assume that the matching between NRQCD and
pNRQCD can be performed order by order in the 1/m expansion. Whereas this can be justified
within a perturbative framework, in the non-perturbative case, we cannot, in general, guaranty the
validity of the 1/m expansion. For instance, a situation where certain degrees of freedom cannot
be integrated out in this way has been considered in [26]. The possibility of a failure of the 1/m
expansion has never been studied in this context and also here we will not deal with this possibility,
which, however, deserves further investigations.

In [20, 21] the matching of NRQCD to pNRQCD has been performed at order 1/m2 in the general
situation ΛQCD <∼ mv. This has been proved to be equivalent to compute the heavy quarkonium

potential at order 1/m2. More precisely, a pure potential picture emerges at the leading order in
the ultrasoft expansion under the condition that all the gluonic excitations have a gap of O(ΛQCD).
Higher order effects in the 1/m expansion as well as extra ultrasoft degrees of freedom such as hybrids
and pions can be systematically included and may eventually affect the leading potential picture
(like in the perturbative regime ultrasoft gluons [7]). The obtained expression for the potential is
also correct at any power in αs in the perturbative regime. In the following I will introduce the
formalism and outline the derivation of the quarkonium potential in pNRQCD. I will discuss the
results and briefly the non-perturbative power counting.

1. NRQCD

After integrating out the hard scale m, we obtain NRQCD [22]. Neglecting operators involving
light quark fields [27], the NRQCD Hamiltonian for a quark of mass m1 and an antiquark of mass
m2 up to O(1/m2) is given by:

H = H(0) +
∑

`+n=1,2

H(`,n)

m`
1m

n
2

, (1)

H(0) =

∫
d3x

1

2
(ΠaΠa + BaBa) , (2)

H(1,0) = −1

2

∫
d3xψ†

(
D2 + gc

(1)
F σ ·B

)
ψ, (3)

H(0,1) = −H(1,0)(ψ ↔ χ; 1↔ 2) (4)

128



H(2,0) =

∫
d3xψ†

{
−c(1) ′

D g
[D·,E]

8
− ic(1)

S g
σ · [D×,E]

8

}
ψ −

∫
d3x d

(1) ′
3 gfabcG

a
µνG

b
µαG

c
να, (5)

H(0,2) = H(2,0)(ψ ↔ χ; 1↔ 2), (6)

H(1,1) = −
∫
d3x

(
dssψ

†ψχ†χ+ dsvψ
†σψχ†σχ +dvsψ

†Taψχ†Taχ+ dvvψ
†Taσψχ†Taσχ

)
, (7)

where ψ is the Pauli spinor field that annihilates the fermion and χ is the Pauli spinor field that
creates the antifermion, iD = i∇ + gA, [D·,E] = D ·E − E ·D and [D×,E] = D×E−E×D.
Πa = Ea + O(1/m2) is the canonical momentum conjugated to Aa and the physical states are
constrained to satisfy the Gauss law:

D ·Πa|phys〉 = g(ψ†T aψ + χ†T aχ)|phys〉.
The coefficients cF , c′D, cS , d2 and d′3 can be found in Ref. [24, 21] and dij (i, j = s, v) in [25] for
the MS scheme.

In the static limit the one-quark–one-antiquark sector of the Fock space may be spanned by

|n; x1,x2〉(0) = ψ†(x1)χ†c(x2)|n; x1,x2〉(0),

where |n; x1, x2〉(0) is a gauge-invariant eigenstate (up to a phase) of H(0), as a consequence of

the Gauss law, with energy E
(0)
n (x1,x2), and χc(x) = iσ2χ∗(x). |n; x1,x2〉(0) encodes the gluonic

content of the state, i.e. it is annihilated by χc(x) and ψ(x) (∀x). The normalization condition is

(0)〈m; x1,x2|n; y1,y2〉(0) = δnm

2∏
j=1

δ(3)(xj − yj).

The positions x1 and x2 of the quark and antiquark respectively are good quantum numbers for
the static solution |n; x1,x2〉(0); n generically denotes the remaining quantum numbers, which are
classified by the irreducible representations of the symmetry group D∞h (substituting the parity
generator by CP). We also choose the basis such that T |n; x1,x2〉(0) = |n; x1,x2〉(0), where T is

the time-inversion operator. The ground-state energy E
(0)
0 (x1,x2) can be associated to the static

potential of the heavy quarkonium under some circumstances (see Sec. 2.). The remaining energies

E
(0)
n (x1,x2), n 6= 0, are usually associated to the potentials describing heavy hybrids or heavy

quarkonium (or other heavy hybrids) plus glueballs. They can be computed on the lattice (see,

for instance, [28] and [29]). Translational invariance implies that E
(0)
n (x1,x2) = E

(0)
n (r), where

r = x1 − x2.
Beyond the static limit, but still working order by order in 1/m, the normalized eigenstates,

|n; x1,x2〉, and eigenvalues, En(x1,x2; p1,p2), of the Hamiltonian H satisfy the equations

H|n; x1,x2〉 =

∫
d3x′1d

3x′2|n; x′1,x
′
2〉En(x′1,x

′
2; p′1,p

′
2)

2∏
j=1

δ(3)(x′j − xj), (8)

〈m; x1,x2|n; y1,y2〉 = δnm

2∏
j=1

δ(3)(xj − yj). (9)

Note that the positions x1 and x2 of the static solution still label the states even if the position
operator does not commute with H beyond the static limit. We are interested in the eigenvalues En.
E0 corresponds to the quantum-mechanical Hamiltonian of the heavy quarkonium (in some specific
situation). The other energies En for n>0 are related to the quantum-mechanical Hamiltonian of
higher gluonic excitations between heavy quarks. Expanding Eqs. (8) and (9) around the static
solution we get up to O(1/m2)
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En(x1,x2; p1,p2)
2∏
j=1

δ(3)(x′j − xj) = E(0)
n (x1,x2)

2∏
j=1

δ(3)(x′j − xj)

+ (0)〈n; x1,x2|
∑

`+j=1,2

H(`,j)

m`
1m

j
2

|n; x′1,x
′
2〉(0)

− 1

2

∑
k 6=n

∫
d3y1 d

3y2
(0)〈n; x1,x2|

∑
`+j=1

H(`,j)

m`
1m

j
2

|k; y1,y2〉(0) (0)〈k; y1,y2|
∑
`+j=1

H(`,j)

m`
1m

j
2

|n; x′1,x
′
2〉(0)

×
(

1

E
(0)
k (y1,y2)− E(0)

n (x′1,x′2)
+

1

E
(0)
k (y1,y2)− E(0)

n (x1,x2)

)
. (10)

Explicit expressions for the energies En, obtained from the above formula, can be found in [20, 21].

2. pNRQCD

In the static limit, the gap between different states at fixed r depends on the dimensionless

parameter ΛQCDr. In general there will be a set of states {nus} such that E
(0)
nus(r) ∼ mv2 for the

typical r of the actual physical system. We call these states ultrasoft. The aim of pNRQCD is to
describe the behaviour of the ultrasoft states. Therefore, in order to obtain pNRQCD all the physical
degrees of freedom with energies larger than mv2 are integrated out from NRQCD. In this context
one may work order by order in 1/m (in particular for the kinetic energy), and the calculation of
the previous section becomes the matching calculation between NRQCD and pNRQCD.

In the perturbative situation, ΛQCDr � 1, {nus} corresponds to a heavy-quark–antiquark state,
in either a singlet or an octet configuration, plus gluons and light fermions, all of them with energies
of O(mv2) [7]. In a non-perturbative situation, ΛQCDr ∼ 1, it is not obvious what {nus} is. One
may think of different possibilities. In particular, one could consider the situation where, because of
a mass gap in QCD, the energy splitting between the ground state and the first gluonic excitation is
larger than mv2, and, because of chiral symmetry breaking of QCD, Goldstone bosons (pions/kaons)
appear. Hence, in this situation, {nus} would be the ultrasoft excitations about the static ground
state, which we will call the singlet, plus the Goldstone bosons. If one switches off the light fermions
(pure gluodynamics), only the singlet survives and pNRQCD reduces to a pure two-particle NR
quantum-mechanical system. Therefore, the situation assumed by all potential models, may be now
rigorously derived under a specific set of circumstances.

Here, I shall discuss the pure singlet sector with no further reference to ultrasoft degrees of free-
dom. In this situation, pNRQCD only describes the ultrasoft excitations about the static ground
state of NRQCD. In terms of static NRQCD eigenstates, this means that only |0; x1,x2〉(0) is kept
as an explicit degree of freedom, whereas |n; x1,x2〉(0) with n 6= 0 are integrated out. This provides
the only dynamical degree of freedom of the theory. It is described by means of a bilinear colour
singlet field, S(x1,x2, t), which has the same quantum numbers and transformation properties un-
der symmetries as the static ground state of NRQCD in the one-quark–one-antiquark sector. In the
above situation, the Lagrangian of pNRQCD reads

LpNRQCD = S†
(
i∂0 − hs(x1,x2,p1,p2)

)
S, (11)

where hs is the Hamiltonian of the singlet, p1 = −i∇x1 and p2 = −i∇x2 . It has the following
expansion up to order 1/m2

hs(x1,x2,p1,p2) =
p2

1

2m1
+

p2
2

2m2
+ V (0) +

V (1,0)

m1
+
V (0,1)

m2
+
V (2,0)

m2
1

+
V (0,2)

m2
2

+
V (1,1)

m1m2
. (12)
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The integration of the higher excitations is trivial using the basis |n; x1,x2〉 since, in this case,
they are decoupled from |0; x1,x2〉. The matching of NRQCD to pNRQCD simply consists in a
renaming of things in a way such that pNRQCD reproduces the matrix elements of NRQCD for the
ground state, in particular the energy. This fixes the matching condition

E0(x1,x2,p1,p2) = hs(x1,x2,p1,p2). (13)

Let us note that, since, in practice, we are integrating over all the states, in the situation where
some states, different from the singlet, are ultrasoft, we would need to subtract them later on. This
is analogous to what happens in the perturbative situation where the subtraction is done order by
order in the multipole expansion. Therefore, in the perturbative situation our calculation should
be understood as the leading term in the multipole expansion.

3. HEAVY QUARKONIUM POTENTIAL

To express the heavy quarkonium potential in terms of Wilson loops is quite convenient for
lattice simulations [10]. We shall use the following notations: 〈. . .〉 will stand for the average
over the Yang–Mills action, W2 for the rectangular static Wilson loop of dimensions r × TW and
〈〈. . .〉〉 ≡ 〈. . .W2〉/〈W2〉. We define 〈〈O1(t1)O2(t2)...On(tn)〉〉c as the connected Wilson loop with
O1(t1), O2(t2), ... On(tn) operators insertions for TW /2 ≥ t1 ≥ t2 ≥ . . . ≥ tn ≥ −TW /2. We also
define in a short-hand notation lim

T→∞
≡ lim

T→∞
lim

TW→∞
, where T ≤ TW is the time-length appearing in

the time integrals. By performing first the limit TW →∞, the averages 〈〈. . .〉〉 become independent
of TW and thus invariant under global time translations.

Using the matching condition (13) and Eq. (10) we get in terms of Wilson loops [20]

V (0)(r) = lim
T→∞

i

T
ln〈W2〉, (14)

V (1,0)(r) = −1

2
lim
T→∞

∫ T

0
dt t 〈〈gE1(t) · gE1(0)〉〉c = V (0,1)(r), (15)

where Ej ≡ E(xj).

Let us now consider the terms of order 1/m2. We define

V (2,0) =
1

2

{
p2

1, V
(2,0)
p2 (r)

}
+
V

(2,0)
L2 (r)

r2
L2

1 + V (2,0)
r (r) + V

(2,0)
LS (r)L1 · S1,

where Lj ≡ r×pj . Analogous definitions held for V (0,2), for which, by using invariance under charge

conjugation plus m1 ↔ m2 transformation, we have V
(2,0)
p2 (r) = V

(0,2)
p2 (r), V

(2,0)
L2 (r) = V

(0,2)
L2 (r) and

V
(2,0)
r, LS (r) = V

(0,2)
r, LS (r;m2 ↔ m1). Using Eqs. (13) and (10) we get, in terms of Wilson loops,

V
(2,0)
p2 (r) =

i

2
r̂ir̂j lim

T→∞

∫ T

0
dt t2〈〈gEi

1(t)gEj
1(0)〉〉c, (16)

V
(2,0)
L2 (r) =

i

4

(
δij − 3r̂ir̂j

)
lim
T→∞

∫ T

0
dt t2〈〈gEi

1(t)gEj
1(0)〉〉c, (17)

V (2,0)
r (r) = −c

(1) ′
D

8
lim
T→∞

∫ T

0
dt 〈〈[D1, gE1(t)]〉〉c
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− ic
(1) 2
F

4
lim
T→∞

∫ T

0
dt 〈〈gB1(t) · gB1(0)〉〉c

− i
2

lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 (t2 − t3)2〈〈gE1(t1) · gE1(t2)gE1(t3) · gE1(0)〉〉c

+
1

2

(
∇i
r lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2 (t1 − t2)2〈〈gEi

1(t1)gE1(t2) · gE1(0)〉〉c
)

− i
2

(
∇i
rV

(0)
)

lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2 (t1 − t2)3〈〈gEi

1(t1)gE1(t2) · gE1(0)〉〉c

−1

2
lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2 (t1 − t2)2〈〈[D1., gE1](t1)gE1(t2) · gE1(0)〉〉c

+
i

8
lim
T→∞

∫ T

0
dt t2〈〈[D1., gE1](t)[D1., gE1](0)〉〉c

− i
4

(
∇i
r lim
T→∞

∫ T

0
dt t2〈〈gEi

1(t)[D1., gE1](0)〉〉c
)

−1

4
lim
T→∞

∫ T

0
dt t3〈〈[D1., gE1](t)gEj

1(0)〉〉c(∇j
rV

(0))

+
1

4

(
∇i
r lim
T→∞

∫ T

0
dt t3〈〈gEi

1(t)gEj
1(0)〉〉c(∇j

rV
(0))

)

+
1

2
(∇2

rV
(2,0)
p2 )− i

12
lim
T→∞

∫ T

0
dt t4〈〈gEi

1(t)gEj
1(0)〉〉c(∇i

rV
(0))(∇j

rV
(0))

−d(1) ′
3 fabc

∫
d3x lim

TW→∞
g〈〈Gaµν(x)Gbµα(x)Gcνα(x)〉〉, (18)

V
(2,0)
LS (r) =

c
(1)
S

2r2
r · (∇rV

(0))− c
(1)
F

r2
ir · lim

T→∞

∫ T

0
dt t 〈〈gB1(t)× gE1(0)〉〉. (19)

For the V (1,1) potential we define

V (1,1) = −1

2

{
p1 · p2, V

(1,1)
p2 (r)

}
− V

(1,1)
L2 (r)

2r2
(L1 · L2 + L2 · L1) + V (1,1)

r (r)

+V
(1,1)
L1S2

(r)L1 · S2 − V (1,1)
L2S1

(r)L2 · S1 + V
(1,1)
S2 (r)S1 · S2 + V

(1,1)
S12

(r)S12(r̂),

where S12(r̂) ≡ 3r̂ · σ1 r̂ · σ2 − σ1 · σ2. Due to invariance under charge conjugation plus m1 ↔ m2

transformation, we have V
(1,1)
L1S2

(r) = V
(1,1)
L2S1

(r;m1 ↔ m2). Using Eqs. (13) and (10) we get, in terms
of Wilson loops,

V
(1,1)
p2 (r) = ir̂ir̂j lim

T→∞

∫ T

0
dt t2〈〈gEi

1(t)gEj
2(0)〉〉c, (20)

V
(1,1)
L2 (r) = i

δij − 3r̂ir̂j

2
lim
T→∞

∫ T

0
dt t2〈〈gEi

1(t)gEj
2(0)〉〉c, (21)

V (1,1)
r (r) = −1

2
(∇2

rV
(1,1)
p2 )

−i lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 (t2 − t3)2〈〈gE1(t1) · gE1(t2)gE2(t3) · gE2(0)〉〉c
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+
1

2

(
∇i
r lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)2〈〈gEi

1(t1)gE2(t2) · gE2(0)〉〉c
)

+
1

2

(
∇i
r lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)2〈〈gEi

2(t1)gE1(t2) · gE1(0)〉〉c
)

− i
2

(
∇i
rV

(0)
)

lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)3〈〈gEi

1(t1)gE2(t2) · gE2(0)〉〉c

− i
2

(
∇i
rV

(0)
)

lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)3〈〈gEi

2(t1)gE1(t2) · gE1(0)〉〉c

−1

2
lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)2〈〈[D1., gE1](t1)gE2(t2) · gE2(0)〉〉c

+
1

2
lim
T→∞

∫ T

0
dt1

∫ t1

0
dt2(t1 − t2)2〈〈[D2., gE2](t1)gE1(t2) · gE1(0)〉〉c

− i
4

lim
T→∞

∫ T

0
dt t2〈〈[D1., gE1](t)[D2., gE2](0)〉〉c

+
i

4

(
∇i
r lim
T→∞

∫ T

0
dt t2

{
〈〈gEi

1(t)[D2., gE2](0)〉〉c − 〈〈gEi
2(t)[D1., gE1](0)〉〉c

})

−1

4
lim
T→∞

∫ T

0
dt t3

{
〈〈[D1., gE1](t)gEj

2(0)〉〉c − 〈〈[D2., gE2](t)gEj
1(0)〉〉c

}
(∇j

rV
(0))

+
1

4

(
∇i
r lim
T→∞

∫ T

0
dt t3

{
〈〈gEi

1(t)gEj
2(0)〉〉c + 〈〈gEi

2(t)gEj
1(0)〉〉c

}
(∇j

rV
(0))

)

− i
6

lim
T→∞

∫ T

0
dt t4〈〈gEi

1(t)gEj
2(0)〉〉c(∇i

rV
(0))(∇j

rV
(0))

+(dss + dvs lim
TW→∞

〈〈T a1 T a2 〉〉) δ(3)(x1 − x2), (22)

V
(1,1)
L2S1

(r) = −c
(1)
F

r2
ir · lim

T→∞

∫ T

0
dt t 〈〈gB1(t)× gE2(0)〉〉, (23)

V
(1,1)
S2 (r) =

2c
(1)
F c

(2)
F

3
i lim
T→∞

∫ T

0
dt 〈〈gB1(t) · gB2(0)〉〉

−4(dsv + dvv lim
TW→∞

〈〈T a1 T a2 〉〉) δ(3)(x1 − x2), (24)

V
(1,1)
S12

(r) =
c

(1)
F c

(2)
F

4
ir̂ir̂j lim

T→∞

∫ T

0
dt
[
〈〈gBi

1(t) gBj
2(0)〉〉 − δij

3
〈〈gB1(t) · gB2(0)〉〉

]
. (25)

A critical comparison of the above results with the previous literature will be done in the
conclusions. Here, I mention that the potentials (15), (18) and (22) have been calculated for the
first time in Ref. [20] and [21]. Since the potential we get here is a well defined quantity, derived
from QCD via a systematic and unambiguous procedure, and complete up to order 1/m2, it is not
affected by the usual ambiguities (ordering, retardation corrections, etc.), which affect all potential
models and all phenomenological reductions of Bethe–Salpeter kernels [1]. For the same reason the
above result may be relevant for the study of the properties of the QCD vacuum in the presence
of heavy sources. While the lattice data for the spin structure of the potential seem to suggest the
so-called “scalar confinement”, the data for the momentum dependent and spin independent part of
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the potential seem to support a flux-tube picture [1, 30]. It will be interesting to see how consistent
these pictures are with the new momentum and spin independent potentials, once lattice data will
be available for them. I note that some of them are not simply expressed by two field insertions on a
static Wilson loop. In particular an extended object coming from the Yang–Mills sector is required
(similar extended objects would also show up by taking into account operators with light quarks).

Perturbatively the leading contribution of Eq. (15) to the potential is at the one loop level
(∼ α2

s/r
2). In Ref. [20] it has been checked that this result agrees with known results. The tree

level contribution of Eq. (18) to the potential comes from the Darwin term (the term proportional
to cD), while the tree level contribution of Eq. (22) to the potential comes only from the first term,
which gives a delta type contribution.

4. POWER COUNTING

The standard power counting of NRQCD, as discussed, for instance, in [31], has been tested
in the perturbative regime. However, even in this regime, due to the different dynamical scales
still involved, the matrix elements of NRQCD do not have an unique power counting in v. In the
non-perturbative regime the problem of the power-counting of NRQCD is still open. The above non-
perturbative formulation of pNRQCD has translated this problem to obtaining the power counting
of the different potentials. This is expected to be of some advantage. Since the scale mv has been
integrated out, the power counting of pNRQCD is simpler. Since all the potentials are expressed in
terms of Wilson loops, there are or there will be direct lattice measurements of them.

Here, let us only say few words about the expected behaviour of the potential using arguments of
naturalness on the scale mv, i.e. assuming that the potentials scale with mv. We first consider V (0).
In principle, V (0) counts as mv, but, by definition, the kinetic energy counts as mv2. Therefore,
the virial theorem constrains V (0) also to count as mv2. In the perturbative case this extra v

suppression comes from the factor αs ∼ v in the potential. Using naturalness, V (1,0)/m scales
like mv2. Therefore, it could be in principle as large as V (0). This makes a lattice calculation of
this potential urgent. Perturbatively, due to the factor α2

s , it is O(mv4). For what concerns the
1/m2 potentials, the naturalness argument suggests that they are of order mv3. However, also here
several constraints apply. Terms involving ∇V (0) are suppressed by an extra factor v, due to the

virial theorem. The Gromes relations [14],
1

2r

dV (0)

dr
+ V

(2,0)
LS − V

(1,1)
L2S1

= 0, suppresses by an extra

factor v the combination V
(2,0)
LS − V

(1,1)
L2S1

. Similar constraints also exist for the spin-independent
potentials [15]. Finally, it may be important to consider that some of the potentials are O(αs)
suppressed in the matching coefficients inherited from NRQCD.

CONCLUSIONS AND OUTLOOK

I have reported about a new derivation of the QCD potential in an effective field theory frame-
work. Explicit expressions for the heavy quarkonium potential up to order 1/m2, valid beyond
perturbation theory, have been written.

I now compare with previous results in the literature. For the spin-dependent potentials we
find agreement with the Eichten–Feinberg results [13, 14] (once the NRQCD matching coefficients

have been taken into account) except for the 1/m1m2 spin-orbit potential V
(1,1)
L2S1

. Our result gives
back the well-known tree-level calculation, whereas the Eichten–Feinberg expression gives half of
the expected result. Moreover, our perturbative result fulfills the Gromes relation. An analysis of
this error, present in the original papers and in several others appeared afterwards, is done in [21].
The spin-independent potentials have been computed before only by Barchielli, Brambilla, Montaldi
and Prosperi in [15] (the analysis done in [17], which appears to be inconclusive, has never been
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published). We agree (once the NRQCD matching coefficients have been taken into account) with
their result for the momentum-dependent terms but not for the momentum-independent terms,
where new contributions are found. An approach similar to that one presented here has been used
in [32] in order to derive, from the QCD Hamiltonian in Coulomb gauge, the spin-dependent part
of the potential up to O(1/m2). Our expression (10) differs from that one used in [32], which,
in general, would give incorrect spin-independent potentials. However, if we take our matching
coefficients at tree level and neglect the tree-level annihilation contributions in the equal mass case,
we find essential agreement for the spin-dependent potentials.

I conclude, commenting on two possible developments of the present work. First, it is worthwhile
to explore the possibility of expressing the potentials associated with higher gluonic excitations
in terms of Wilson loop operators as done here for the heavy quarkonium ground state. The
corresponding quantum-mechanical expressions are known and have been calculated in [21]. Second,
our results are complete at O(1/m2) in the case of pure gluodynamics. If we want to incorporate
light fermions, the procedure to follow is analogous and our results still remain valid (considering
now matrix elements and Wilson loops with dynamical light fermions incorporated) except for new
terms appearing in the energies at O(1/m2) due to operators involving light fermions. They may
be incorporated along the same lines as the terms discussed here.
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