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The problem of field quantization in the vicinity of an arbitrary classical solution of the equation
of motion is being discussed wide nowadays, and in principle the correct method of quasi-classical
field expansion on the classical background has been solved by N.N.Bogoliubov in 1950.

The Bogoliubov method permits to perform quantization taking into account conservation laws
precisely;

explicit separation of the classical component gives a possibility to avoid the zero-mode problem;
descriptive picture of interaction consents to calculate various quantum corrections to the clas-

sical parameters.
Nowadays there is large enough amount of works that specialize and develop the original idea.

All of them underline the structure of the essential role of the Hamiltonian, however they are not
applicable for the accurate account of conservation laws related to time transformation invariance,

for example, because the Hamiltonian as the generator of time translations becomes clear only after
solution of equations of motion, so the task was rather indefinite.

We have proposed such technique for the systems with time transformations: to define group

variables together with developing of perturbation theory, and to specify formulae of variables
substitutions step by step, in according with forthcoming to accurate solutions of field equations.

This scheme has been developed using the simplest model of self-acting Poincare-invariant scalar
field. The application of this method to the nonstationary polaron is published in the Proceeding

of the previous Workshop, and our approach is applicable to any system with symplectic structure.
One of such systems is the general relativity, and the main difficulty in gravity field quantization

consists in the consecutive account of classical field.
There are 24 types of exact solution of Einstein equation, so in the present report we would like

to apply the method of Bogoliubov group variables to the gravitational field quantization in the
neighbourhood of such solutions.

We consider gravitational field in (3+1)-dimensioned formalism that has been proposed by

Arnowitt-Deser-Misner (ADM).
Metrical tensor in this formalism looks like

gαβ =

(−a2 + btbt bt
bt γst

)
,

here γst is metrix of 3D-space in 4D-manyfold.
Canonical momentum πst is determined as usual:

πst = −√γ
(
Kst − γstK

)
,

here √
γ =

√
det ‖γst‖; Ktp = −aΓ0tp;

Γstp =
1

2
γspΓtlp; Γtlp = γpl,t + γpt,l − γtl,p

denoting as usually
Rκλ = Γ

σ
κλ,σ − Γσκσ,λ + ΓσκλΓρσρ − ΓσκρΓρλσ,
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we can represent the action of gravitational field

S =

∫
d3x
√
ggκλRκλ

in the following form:

S =

∫
d3x
(
πstγst,0− aH − bsHs

)
,

here

H =
1
√
γ

(
πstπ

st − 1
2
π2
)
−√γR,

Hs = −2πsl;l .

General principles of canonical formalism for the systems with constraints leads us to the fol-
lowing statement: Lichnerowicz, Choquet-Bruhat, Dirac, Arnowitt-Deser-Misner:

If the following evolutions equations

γst,0 =
2a
√
γ

(
πst −

1

2
γstπ

)
+ bs;t + bt;s;

πst,o = −a
√
γ

(
Rst − 1

2
γstR

)
+

a

2
√
γ

(
πstπ

st − 1
2
π2
)
γst+

− a

2
√
γ

(
πsl π

lt − 1
2
πstπ

)
+
√
γ
(
γslct;l − γstcl;l

)
+

+
(
πstbl

)
;l
− πslbt;l − πltbs;l; cl = γ lsa;s

and constraint equations:
1
√
γ

(
πstπ

st − 1
2
π2
)
−√γR = 0;

πsl;l = 0

holds true on the 3D-space, then in 4D manifold the Einstein equations holds true:

Rµν −
1

2
gµνR = 0,

(
Rnikl;m + R

n
imk;l +R

n
ilm;k = 0

)
.

Suppose that 4D manifold with given metric permits to choose a space-like hypersurface and to

set normal fields on this hypersurface. Those normals are tangent to geodesic and determine time
coordinate. Hence geometry of 4D manifold could be described via Gaussian coordinates:

gαβ =

(−a2 0
0 γst

)
,

Let’s variables x
′
are connected with x by space-time translations:

xα = x
′α + τα.

Note that conservation laws performance in curved space-time is connected with Killing vectors
existence, they are not straightforward sequence of system space-time transformation invariance.

In present case Bogoliubov transformation reconstructs translation invariance that has been
violated due to presence of a classical field.
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It means the following: if we have made quantization in some surface Σ in definite moment,

application of group variables permits to state that we can move this surface Σ, including moving
in time axis.

We define Bogoliubov transformation as following:

fst(x) = vst(x
′
) + εust(x

′
),

dimensionless parameter ε is assumed to be small, and τ are new independent variables.

The problem is how to formulate invariant conditions, which we have to impose on functions
ust(x

′
). The substitution gst(x)→ {ust, (τ)} enlarges the number of independent variables to 4, so

those conditions are necessary.
We consider systems in which there are invariant symplectic forms that look like the following

ω
(
ust,
(
N st
)k)
=

∫
Σ
(ustn (x

′
)
(
Nst(x

′
)
)k
− ust(x

′
)
(
N stn (x

′
)
)k
)dx

here Σ is some space-like surface and ustn (x
′
) means normal derivative of ust(x

′
) in the surface Σ.

We choose some functions N kst(x
′
) (k is the number of group parameters).

Using this condition one can obtain equations, which define group variables as functionals of

γst(x) and γ
st
n (x) on the Σ in the differential form

δτa

δγst(x)
= −εQab Ñ stn

b
(x

′
),

δτa

δγstn (x)
= εQabÑ

b
st(x

′
),

where Qab are the solution of the equation:

Qab = δ
a
b − εRacQcb.

Here
(
Ñ st
)a
is a linear combination of (N st)

a
, such that the equations ω

((
Ñ st
)a
, vstb

)
= δab holds

true; and Rac is a c-number, calculated with help of vst(x
′
) and ust(x

′
).

It is possible to define on Σ operators q̂st(x) and p̂
st(x)

p̂st(x) =
1√
2

(
f stn (x) + i

δ

δfst(x)

)
,

q̂st(x) =
1√
2

(
fst(x)− i

δ

δf stn (x)

)
.

They are hermitian in the appropriately chosen space and satisfy the formal commutation relation

[q̂st(x), p̂
s
′
t
′

(x
′
)] = iδs

′
t
′

st δ(x− x
′
).

So we can treat q̂st(x) and p̂
st(x) as operators of coordinate and momentum of oscillators of field and

we can develop the secondary quantization scheme. However there is another pair of selfconjugated
operators which satisfies the same commutation relations. So the number of possible field states

turns out to be doubled, so we have to reduce the number of possible field states.
The following scheme is proposed:

we use Bogoliubov transformation and, in spite of appearance of extra states, we will develop
scheme of perturbation theory. After that reduction of number of states is made, so it will depend
on dynamic system equations.

Now we can quantize and substitute γst(x
′
), and πst(x

′
) as follows

γst(x
′
) −→ q̂st(x), πst(x

′
) −→ p̂st(x).
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In terms of new variables q̂st(x) and p̂
st(x) are the series with respect to inverse powers of the

coupling constant. Hence integrals of motion of the system can be represented as series with respect
to inverse powers of the coupling constant

O = O0 + εO1 + ε
2O1 + ...

In this series operators O0 are C-numbers and operators O1 are linear with respect to ust(x
′
),

ustn (x
′
), ∂
∂ust(x

′)
, ∂
∂ustn (x

′)
. There are unnormalizable eigenvectors of these operators, so it is required

to set them to zero for perturbation theory construction. Let’s explore if it is possible. We define
some functions Fst(x

′
) that proportional to the classical component vst(x

′
). In terms of values

Fst(x
′
) operators O−1 are equal to zero if some boundary conditions are accomplished, and the

following equation holds true

Fn =
2a
√
γ

(
Fnst −

1

2
FstFn

)
,

F stn = −a
√
F

(
Rst − 1

2
F stR

)
+

a

2
√
F

(
FnstF

st
n −

1

2
F 2n

)
F st

− a

2
√
F

(
F snlF

lt
n −

1

2
F stn Fn

)
+
√
F
(
F slct;l − γstcl;l

)
,

+
(
F stn b

l
)
;l
− F sln bt;l − F ltn bs;l

1√
F

(
FnstF

st
n −

1

2
F 2n

)
−
√
FR = 0.

We can treat the 1st and 2nd equations as equations of evolution and 3rd and 4th as constraint

equations, so we can state that for the perturbation theory application one should demand for
Einstein equation to hold.

Hereinafter we assume Fst(x) to be a solution of the Cauchy problem with given data on Σ and
we treat Fst(x) as a 3D classical background metric.

As we have mentioned above the number of possible field states is doubled. That is why state
number reduction is necessary.

Primarily let’s analyze the number of independent variables. Original number of independent

variables was ∞. After defining of Bogoliubov group variables (they are considered to be indepen-
dent) the number became ∞ + 4. This number was doubled due to determination of coordinate-

momentum operators: (∞ + 4)) ∗ 2 = 2 ∗ ∞ + 8. Additional conditions reduced the number of
independent variables on 4, that is at present time the number of possible field states is 2 ∗∞+ 4.

Let’s separate from field variables ust(x
′
) four variables ra which has no any physical sense and

are connected with the method of perturbation scheme realization. Then the state number is 2∗∞,
and the field is described via wst(x

′
) variables which are determined as follows:

ust(x
′
) = wst(x

′
) + Ñ ast(x

′
)ra, u

st
n (x

′
) = wstn (x

′
) + Ñ stn

a
(x

′
)ra.

Necessary reduction of the state number can be made by the following way: let’s suppose that
the field condition is defined by functionals of wst(x

′
) and wstn (x

′
), in which δ

δwst(x
′)
and δ

δwstn (x
′)

become
δ

δwst(x
′)
−→ δ

δwst(x
′)
− iwstn (x

′
),

δ

δwstn (x
′)
−→ −iwst(x

′
).
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After reduction the independent variables become:

(4 group parameters )+(4 variables ra)+
(∞− 4–dimensioned function wst space)

The variables ra have no physical sense. They have appeared as a rest of the state space reduction
in the terms of Bogoliubov group variables. Separation of these variables is connected with integrals
of motion structure in the zero-point order, so it is dynamic by nature.

As a result of our investigation we have got the expression for the field operator ψst(x):

ψst(x) = Fst(x
′
) + ε

(
Φ̂st(x

′
) + φ̂sta

∂

∂ra

)
+ ε2A(x

′
, τ)

(here Φ̂st(x
′
) is the solution of the wave equations:

Φnst =
2a√
F

(
Φnst −

1

2
FstΦn

)
,

Φstnn = 2
√
FUΦst,

with a known boundary condition on the Σ, U depends on space coordinates; and the state vector

is
f = φ(w)e−wwn ∗ eAαβrαrβ ,

here we know explicit expressions for the coefficients Aαβ, that depend on a concrete choice of
symmetry type.

We applied Bogoliubov transformation to the quantization of gravitational field in the neigh-
bourhood of a nontrivial classical component, that permitted us to avoid zero-mode problem.

Einstein equations for the classical component has been obtained as a necessary condition for

the perturbation theory to be applicable, not as a sequence of variational principle.
We obtained expression for quantum corrections of the field operator and explicit form of the

state vector, that permits us to calculate quantum corrections to the observables like effective mass,
energy spectrum and so on.

Such kind of calculations for the physically interesting cases like Kerr, Schwartzshild and others
exact solutions of Einstein equation are the nearest future project research; however those calcula-

tions demands only high level mathematical techniques, while the main principles of our approach
are represented in the paper above.
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