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We suggest a theory of nonsymmetrical tensor field in the Minkowski space. This theory generalizes

the relativistic theory of gravity with a symmetrical potential and preserves all its basic postulates. The

connection of the effective space-time in wich the gravitational field equations can be represented possesses

a torsion and nonmeticity.

1. The relativistic theory of gravity (RTG) [1] can be regarded as a gauge theory of group
of Lie variations for dynamic variables. The related transformations are variations of the form of

function for generally covariant transformations, and they form the internal symmetry group. That
the action be invariant for this group under the transformations of the dynamic variables alone

requires replasing the “nondynamic” density γ̃ik =
√−γγik of the Minkowski metric in the matter

Lagrangian with g̃ik =
√−ggik =

√−γ(γik + kψik), where γ = detγik, g = detgik and k2 is the

Einstein constant, and thus introducing the gauge gravitational potential ψik. The expression gik is
interpreted here as the metric of the effective space-time from which the connection, the Christoffel
bracket, can be uniquely constructed. On the order hand, the gauge invariancepermits using a more

general form of the efffective metric,

√
−ggik =

√
−γ(γik + khik), (1)

where hik is a nonsymmetrical potential. Accordingly, we conjecture that the gravitational field is

described by a nonsymmetrical tensor potential. In this paper, we elaborate a theory of such field
that generalizes the RTG and investigate the sructure of the resulting effective space-time. As is

known, Einstein already used a nonsymmetrical metric in the attempts to construct a unified theory
of gravitation and electromagnetism. It was introduced in the Moffat theory [2] in the framework

of the geometrical description of purely gravitational interaction. The consideration in the present
paper is close to the latest version of this theory [3], but the field equations here differ from those
in [3]. Although the presently existing experimental basis of gravitational theories gives no direct

indications for the necessity of generalizing Riemannian geometry, these theoretical schemes have
been much investigated in the literature beginning Einstein-Cartan theory. As can be seen in our

further consideration, the only way to go beyond the scope of the effective Riemannian geometry
in describing gravitational interaction in the Minkowski space in the framework oe tensor theory is

just exactly introducing a nonsymmetrical potential.

2. We construct the theory of the nonlinear field hik proceeding from the following postulates

accepted in the RTG:
1. The theory of a massless field must be gauge invariant.
2. The field equations must have the form of equations with a linear identically preserved

left-hand side and nonlinear universal source.
3. The field must be described by states with helicity two and zero.

4. The interaction between the gravitational field and matter must be minimal, which means
the absance oe the effective connection in the matter Lagrangian.
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By the requirement of gauge invariance, the matter Lagrangian LM has the form

LM (h̃ik, γ̃ik, QA) = LM(g̃ik, QA), (2)

where QA are the dynamic matter variables. It is follows from (1) and (2) that the field source in

the field equations δL

δh̃ik
= 0 that relates to matter is

ÃMik = −δLM

δf̃ ik |fik=γik
, (3)

where f ik is hte Minkowski metric and is assumed to be nonsymmetrical under the variation and
equal to γik after the variation. To simplify the representation in what follows, we omit the notation

relating to the transition from f ik to γik in the corresponding formulas. To obtain the RTG equations
under the transition to the symmetrical potential, it is necessary to pass to a linear combination of

this equations that involves

AikM = − 2√−γ
δLM

δfik
, (4)

as a source, where fik is the inverse tensor of f ik. As in the RTG, we now assume that the full

matter and gravitational field source is universal and find its form,

Aik = − 2√−γ
δL

δfik
, (5)

where L = Lg +LM is the Lagrangian of the entire system. The symmetrical part Aik of the source

is the Hilbert energy-momentum tensor

A(ik) = tik = − 2√−γ
δL

δγik
, (6)

and the antisymmetrical part can be written as

A[ik] = − 2√−γ
∂L

∂fik
+ (Sikl + Skli + Slik)|l. (7)

The vertical bar in (7) symbolizes covariant differentation with respect to the Minkowski metric,
and Sikl is the spin moment tensor, which can be expressed in terms of the generators of the generally

covariant transformations ΩkBiA for QA under an infinitesimal displacement ξi(δQA = ΩkBiAQBξ
i
,k) and

has the form

Sikl =
∂L

∂QA|i
Ω[kl]ABQB . (8)

Using defenition (8), the formula

QA|i = QA,i −ΩlAkBΓ̈
k
liQ

B (9)

for the covariant derivate, and the expression for the Minkowski space connection, which under the
replacement γik with fik becomes Γ̈kli =

1
2
fkn(fni,l+ fnl,i + fli,n), we can easily show that (7) holds.

Because the matter Lagrangian does not contain the coordinate connection, the totally antisym-
metrized spin moment in (7) enters only the source specified by the gravitational field itself.

According to the second postulate, we seek the equations of the free massless field in the form

Lil = hil|m
m − him|m

l − hml|m
i + hrs|rsγ

il,= kAil , Lil|l = Lil|i = 0 . (10)

217



System (10) can now be split into the equations for the symmetrical fields ψik and antisymmet-

rical fields φik

J ik(ψ) = ψik|m
m − ψim|m

k − ψmk|m
i + ψrs|rsγ

ik = ktik(h) , (11)

F ik(φ) = φik|m
m − φim|m

k − φmk |m
i = kA[ik](h) . (12)

Equation (11) has the same form as in the RTG with the distinction that the Hilbrt tensor of the

entire field plays the role of the source. Equation (12) is a nonlinear generalization of the equation
for the antisymmetrical tensor field that was first considered in [4], where the object with helicity

zero was called “notohp” (“photon” backwards).

We note that if the source of the symmetrical field is preseved in the equations for any generally
covariant Lagrangian, then the source A[ik] is preseved only because of the identity F ik |k = 0 . This

situation relates to the absence of the antisymmetrical Noether current of the gauge group.

The free field Lagrangian density with first derivatives and a gauge- invariant massless part can

be written in the general form

Lg =
1

k2
[R̃(g,Γ)− div] + LQN + Lm , (13)

where R̃ =
√−gR is the scalar curvature density (constructed from the metric and the connection

Γikn)

R = gikRik = gik(Γlik,l − Γlil,k + ΓlikΓ
m
lm − Γmil Γ

l
mk) . (14)

The connection can possess a torsion Qikn and a nonmetricity Ñ kn
i

Qikn = Γi[kn] , Ñ
kn
i = ∇ig̃kn = g̃kn,i + Γkrig̃

rn + Γnrig̃
kr − Γrir g̃

kn . (15)

The Lagrangian LQN can be constructed using different combinations of the torsion and non-

metrisity tensors. Finally, the Lagrangian Lm describing the field mass and violating the gauge
invariance has the form

Lm = −m2

k2
(
1

2
γikg̃

ik −
√
−g −

√
−γ) , (16)

as in the RTG. Lagrangian (16) contains the antisymmetrical part of the field only in the term√−g, and the linear term 1
k
m2φik in the field equations therefore enters the source A[ik].

We note, that the part of Lagrangian related to the curvature can be represented in the more
general form

Lg1 =
1

k2
(ag̃ik + bg̃ki)Rik , (17)

where a and b are coefficients satisfying the condition a + b = 1 . However, it is easy to see that

the Lagrangians Lg and Lg1 are equivalent because the transition between them simly reduces to
redefining the potential φik .

Discarding the scalar density in R̃, which form the divergence and involves second derivatives,
we obtain a Lagrangian that contains first derivatives and is expressible in terms of the affine
deformation tensor Dlik = Γlik − Γ̈lik

Lg =
1

k2
[g̃ik(DlimD

m
kl −DlikD

m
lm) +DlilÑ

ik
k −DlikÑ

ik
l ] + LQN + Lm . (18)
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We now consider the field equations. We assume that the only relation between the met-

ric(potential) and the connection must follow from the field equations δL
δΓl
ik

= 0 . This approach

corresponds to the well-known Palatini method in General Relativity. The equation relating the
metric to the connection cannot be resolved explicity with respect to the connection in the case of

a nonsymmetrical metric, and it therefore becomes necessary to use the first-order formalism here.
The relation between the metric and the connection must be differential, therefore, to obtain these

equations, the Lagrangian LR , involving second derivatives,

LR =
1

k2
R̃(g,Γ)+ LQN + Lm (19)

must be used. On the other hand, to obtain equations of form (10), the Lagrangian Lg with first
derivatives must be used because the source for Lagrangian (19) vanishes by virtue of the field

equations.
We consider the variational derivative δLg

δfik
. The Minkowski metric enters Lagrangian (18)

implicitly via the metric g̃ik and explicity via the coordinate connection Γ̈lik. Consequently,

δLg

δfik
=

δ�Lg

δfik
+

δLg

δg̃rs
∂g̃rs

∂fik
, (20)

where δ� symbolizes the variation with respect to the expression fik entering the coordinate con-

nection. By (20) and the field equations δLg

δg̃rs
= 0 , these equations assume the form

− 2√−γ
δ�Lg

δfik
= Aik . (21)

If the chosen Lagrangian is such that

− 2√−γ
δ�Lg

δfik
≡ Lik −m2ψik , (22)

then the equations for the potential hik take the desired form (10). Eor the field φik to describe only
the state with helicity zero in the linear approximation, it is necessary (see [4]) that the condition

φik|k = 0 . (23)

hold. We recuire that this condition hold for the exact solutions as well. Then the simplest
Lagrangian simultaneously resulting in identity (22) and condition (23) is the sum of the scalar

curvature density and the massive term. to prove this, we find the relation between the metric and
the connection inplied by the field equations δL

R

δΓl
ik

= 0 . This relation is written as

∇lg̃ik = 2Qkmlg̃
im − 2

3
Qmg̃

imδkl . (24)

Formula (24) implies

∇lg̃il = −
2

3
Qlg̃

il ,∇lg̃li = 2Qimng̃
nm − 2

3
Qlg̃

il . (25)

Combining relations (25), we obtain condition (23).

Substituting (25) in (18) (for LQN = 0), we obtain

Lg =
1

k2
g̃ik(DlimD

m
lk −DlikD

m
lm + 2DlikQk) + Lm . (26)

We note that substituting part of the field equations into the Lagrangian is legitimate in this
case becouse Γlik and fik are inderpendent and fik is not a field variable. We vary relation (26)
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with respect to the metric fik. Passing to the Cartesian coordinates after the variation, using the

formulas pEREHODQ POSLE WARXIROWAENIQ K DEKARTOWYM KOORDINATAM I ISPOLXZUQ

∂Γ̈lnm
∂fik

= 0 ,
∂Γ̈lnm
∂fik,s

=
1

2
(γ liδsnδ

k
m + γ lkδinδ

s
m − γ lsδinδ

k
m) , (27)

and taking (23) into account, we obtain the field equations

Lik −m2ψik + 2γik(Qng̃
mn)|m = kAik . (28)

We now take into consideration that Eq. (24) has some additional invariance with respect to
the connection transformation

′Γlik = Γlik + δlivk , (29)

where vk is an arbitrary vector field. By the existence of this invariance, the torsion trace Qk
remains arbitrary. We shall use the gauge Qn = 0, which totally violates the indicated invariance.

An analysis of all possible scalar densities LQN shows that there is a unique Lagrangian

LQN = −Qi∇k g̃ik −
1

3
g̃ikQiQk . (30)

leading to condition (23) and to a relation invariant with respect to the more general gauge trans-
formation

′Γlik = Γlik + δlivk − δlkvi . (31)

Under the condition Qn = 0, we obtain field equations in form (21), which, however, coincide
with the equations for the Lagrangian constructed from the scalar curvature. Hence, we ultimately
conclude that the Lagrangian

LR = − 1

k2
R̃ + Lm + LM (32)

leads to the field equations in the effective space with the nonsymmetrical metric gik and the
cnnection Γlik

Rik(g,Γ)− 1

2
m2(gik − γik) = −k2 δL

M

δg̃ik
, (33)

∇k g̃mn = 2Qnlk g̃
ml , (34)

Qn = 0 , (35)

A consequence of Eqs. (33)–(35) is the conditions

g̃
(ik)
|k = g̃

[ik]
|k = 0 . (36)

Equations (33)–(35) and conditions (36) become

�ψik −m2ψik = ktik , (37)

�φik = kA[ik] , (38)

ψik|k = φik|k = 0 (39)

in the Minkowski space, where � is the d’Alembert operator in this space.
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3. We consider some matter systems interacting with the gravitational field. As a consequence

of the interaction minimality, the connection of the effective space-time in which the matter motion
occurs is determined by the metric alone. Regarding the matter as a field source, we can easily see

that a field φik for matter systems with a zero source AikM is nonzero begining with the first nonlinear
approximation. These systems include point masses, wich can be charged and possess an “innate”
dipole moment, and also scalar fields. The fields ψik and φik are the source of an antisymmetrical

field for these systems in nonlinear approximations. At the same time, the source AikM is nonzero
for a rotating particle and an electromagnetic field, and an antisymmetrical field already appears

here in the linear approximation.
The action for a moment-free test particle of a mass m moving in a external field has the form

S = −mc

∫ √
gikdxidxk , (40)

whence it follows that the particle moves in the effective Riemannian space determined by the
symmetrical part of the metric gik. Therefore, the particle does not interact with the antisymmetrical

field in the linear approximation.
Clearly, the scalar field with the Lagrangian

L = φ,iφ,kg̃
ik −m2φ2 (41)

does not interact with the antisymmetrical part of the external field at all.
The Lagrangian of a spinor field involves only the symmetrical part of the metric because the

tetradic coefficients hia which are used to determine the spinor connection, are found from the
condition

hiah
k
bη
ab = gik (42)

As in the case of test particle, the spinor field equations are defined in the effective Riemannian
space with the metric g(ik), and the interaction with the antisymmetrical gravitational field appears
begining with the first nonlinear approximation.

The situation is different in the case of an electromagnetic field because the Lagrangian

L = −1

4
FikFmn(g̃

(im)g(kn)+ g̃[im]g[kn]) , Fik = Ak,i − Ai,k (43)

involves the antisymmetrical part of the metric. The equation for the vector potential Ak

(Fikg̃
imgkn),n = 0 (44)

is distinct from the corresponding RTG equation even in the linear approximation. In particular,
a result is that a light does not propogate in a week field hik along the isotropic geodesics of the

Riemannian space with the metric g(ik).
Comparing the above theory with the geometric generalization of General Relativity, we indicate

their fundamental difference in describing the geometric characteristics of the space-time. The
torsion and nonmetricity are new field potentials in the geometric theories and are algebraically

related to their sources. In the presented theory, these quantities play the role of “intensity” for the
field φik, which changes their physical meaning. Generally speaking, the field φik and the torsion
do not dissapear in the vacuum, whereas, for instance, the torsion in the Einstein-Cartan theory

is nonzero only in the presence of spinning matter [5],[6]. The torsion and the nonmetricity in
the Moffat nonsymmetrical theory are also determined by the derivatives of the metric, but the

Lagrangian in this theory is different from that in (32), and the field equations cannot be brought
to the form with the universal source in the Minkowski space.
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In conclusion, we note that the postulated additional interaction realized by the antisymmet-

rical tensor field can by defined in different ways. However, the requirements of gauge invariance,
interaction minimality, and universality of the field source lead exactly to Lagrangian (32) and an

effective space-time with a nonsymmetrical metric, torsion and nonmetricity.

I am sincerely grateful to Academician A.A. Logunov and Professor S.S. Gershtein for usful

discussions.
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