Моделирование поля мюонного детектора установки ALICE

П.Г. Акишин, А.С. Водопьянов, И.В. Пузынин, Ю.А. Шишов, М.Б. Юлдашева, О.И. Юлдашев Объединенный институт ядерных исследований, Дубна, Россия

Введение

Доклад посвящен проблемам, связанным с построением трехмерной модели магнитной системы для LHC эксперимента ALICE [1] в рамках предложений от ОИЯИ [2-4]. Магнитная система мюонного детектора состоит из большого соленоидального магнита L3, работающего в настоящее время на пучке LEP, проектируемого дипольного магнита и мюонного фильтра. На рис. 1 представлена симметричная часть расчетной конфигурации магнитной системы со сверхпроводящим дипольным магнитом.

Рис. 1: Часть магнитной системы со сверхпроводящим дипольным магнитом.

В работе рассматриваются вопросы, связанные с взаимным влиянием магнита L3 и дипольного магнита. Расчеты проводились с использованием двух подходов: метода объемных интегральных уравнений (IAMAG3D [5]) и метода дифференциальных уравнений в частных производных для двух потенциалов (MSFE3D [6]).

Моделирование поля магнита L3

Соленоидальный магнит L3 занимает объем $15, 8 \times 15, 8 \times 14, 3 \text{ м}^3$ и имеет сложную сборную конструкцию [1]. В работе [2] была разработана расчетная модель магнита, проведены сравнения с картой поля для магнита в конфигурации 1989 года и с результатами расчетов по программе TOSCA [7]. На рис. 2 приведено распределение расчетной компоненты поля B_z , а также данные карты поля. Как видно из рисунков, разница не

превосходит 1%, а в рабочей области основных детекторов (|z| < 2, 5 м) — не больше 0,2%. На рис. 3 дано сравнение результатов расчетов по программе TOSCA и программам IAMAG3D и MSFE3D. Как видно из рисунков, результаты, полученные по последним программам, более гладкие, разница также не превосходит 1%, а при |z| < 2, 5 м — тоже не больше 0,2%. Аналогичные результаты имеют место и для компоненты поля B_r [2].

Моделирование поля дипольных магнитов

Моделирование поля проводилось как для сверхпроводящего, так и для теплого вариантов магнита, которые имеют совершенно различные конфигурации. Сверхпроводящий магнит имеет размеры 8 × 5, 6 × 5 м³, а теплый — 8, 1 × 6, 1 × 5 м³. Для обеспечения в центре магнита поля величиной в 0.75 Тл плотность тока задавалась

5588 и 146 A/см² соответственно. В табл. 1, 2 для сверхпроводящего и теплого магнитов даны интегралы основной дипольной компоненты внутри апертур вдоль лучей, выходящих из центра магнита L3, в полярной системе координат. Запасенная энергия для магнитов составила 27 и 32 МДж соответственно. Более подробные результаты моделирования приведены в работах [3,4].

Габлица 1: $\int B_y dl ({ m T} \pi \cdot { m M}).$						
	$arphi=0^o$	$\varphi = 45^o$	$\varphi = 90^{\circ}$			
$\theta = 0^{o}$	2,79	2,79	2,79			
$\theta = 2^o$	$2,\!84$	$2,\!80$	2,77			
$\theta = 7, 5^{o}$	$3,\!56$	$2,\!99$	$2,\!68$			
$\theta = 9^{o}$	3,71	3,02	2,74			

Таблица	2:]	$(B_y dl)$	(Тл	•	M))
---------	------	------------	-----	---	----	---

	$arphi=0^o$	$\varphi = 45^o$	$\varphi = 90^o$				
$\theta = 0^o$	$2,\!54$	$2,\!54$	$2,\!54$				
$\theta = 2^o$	$2,\!56$	$2,\!55$	$2,\!55$				
$\theta = 7^{o}$	$2,\!88$	$2,\!68$	$2,\!82$				
$\theta = 9^{o}$	$3,\!11$	2,71	$3,\!03$				

Рис. 2: Сравнение расчетной компоненты B_z с данными карты поля для магнита L3.

Рис. 3: Сравнение компоненты поля B_z , вычисленной по разным программам.

Моделирование поля полной магнитной системы

Вместе с мюонным фильтром, который занимает объем 6, 4 × 6 × 1, 2 м³, вся магнитная система имеет протяженность 23, 1 м. Основными факторами, определяющими сложность задачи, являются, во-первых, увеличение общего числа описываемых объектов и, во-вторых, потеря симметрий задачи. Так, если в случае магнита L3 имелось 32 симметрии, а в случае дипольного магнита — 8 симметрий, то вся магнитная система имеет только 2 симметрии. Кроме того, сложность задачи также увеличивается ввиду того, что ось магнита L3 на 0, 23 м ниже оси дипольного магнита и мюонного фильтра. На рис. 4 представлены расчеты компонент поля вдоль оси магнитной системы со сверхпроводящим дипольным магнитом: B_z — основная компонента поля для магнита L3 и B_y — основная компонента поля для дипольного магнита. Из рисунков видно изменение основных компонент поля каждого магнита. На рис. 5 приводится компонента B_z в рабочей области основных детекторов для четырех различных конфигураций магнитной системы.

Рис. 4: Компоненты поля вдоль оси полной магнитной системы.

Рис. 5: *B_z*-компонента в медианной плоскости основных детекторов для четырех различных конфигураций магнитной системы.

Благодарности. Авторы признательны Ж.Ж.Мусульманбекову за помощь при работе с графическим пакетом AVS. Авторы М.Б.Юлдашева и О.И.Юлдашев выражают благодарность за частичную поддержку данной работы РФФИ по грантам № 95-01-00737а и № 95-01-01467а.

Литература

- 1. ALICE. Technical Proposal. CERN/LHCC 95-71, LHCC/P3, 15, December 1995.
- P.G.Akishin et al. Computing Models of the L3 Magnet and Dipole Magnet for the ALICE Experiment. ALICE 96-06, Int. Note/Mag, 4 April, 1996.
- **3.** A.S.Vodopianov et al. Superconducting Dipole Magnet for ALICE Dimuon Arm Spectrometer. Proposal of JINR, 15 May, 1996.
- 4. P.G.Akishin et al. Conceptual Design of the Warm Dipole Magnet for the ALICE Forward Muon Spectrometer. ALICE 96-26, Int. Note/Mag, 30 September, 1996.
- П.Г.Акишин, Е.П.Жидков, В.Д.Кравцов. Параллельный алгоритм для решения трехмерных интегральных уравнений магнитостатики. Математическое моделирование, т.1, № 7, 100-107, 1989.
- Е.П.Жидков, М.Б.Юлдашева, О.И.Юлдашев. Векторные алгоритмы для решения трехмерных нелинейных задач магнитостатики. Математическое моделирование, т.6, № 9, 99-116, 1994.
- V.I.Klyukhin, W.Klempt, L.Leistam, D.Swoboda. The ALICE Magnetic System Computation. ALICE 95-46, Int. Note/MAG, 12 November, 1995.