Tz
File Edit Operate Controls Windows Text Help

[o16Eh TR (x] [AlRM[+]

Micky_Mouse_TestZ.wi

o Ampl_Graph

Facility| =
TTF.RF 3.50000-
Device| 3.00000-
ADC 2.50000-
Location|
g 2.00000-
ADC3
Property] 1.50000-
CHo2.TD.AM 1.00000-

0.50000-
Period AT

E il 1 1 1 1 1 1 1 1 1 i

§|10.00 <||__LI ; .- 1] 200 400 600 &00 1000 1200 1400 1600 1500 2044

0.0 250 60.0 1] B2 3 4| Data_Arrayl Time_Stamp_QOut

T uyy

_ Il %0 |[a377z080 | [s41920862 |
Length_O E Code_O i
eng utf rror_Code_QOut Err_String_Qut Ston Buiton
2047 jo | [|

(B
File Edit Operate Functions Windows Text Help

R BN AR

Micky_Mouse_TestZvi Diagram

O0000000000000000 0000000000000 000
™ = P
2043 N

Ampl_Graph

Error_Code_Oul
abc
LTE |-
0000000 00000000000 00000000000000000000

Fig.2 Front Panel and Block Diagram of a simple
demonstration to read data from thefast ADC.

REFERENCES

[1] M.Bohnert, O.Hender, D.Hoppe, K. Rehlich, Distributed Object Oriented Control System
(DOOCYS), internal DESY document, Abt. MVP.

[2] O.Hendler, K. Rehlich, P. Shevtsov,Equipment Name Server and Tesla Test Facility Control
System. Proceedings of this Conference.

302

.Eq_Int.vi gives an example of LabVIEW Equipment Access VI:

Time_Stamp_In

Int_Data_In

Facility
Device
Int_Data_Out
Location L
1 EQ Error_Code_Out

Property Int. i
Error_String_Out
Time_Stamp_Out

RW_Mode

Error_Code_In

Error_String_In

Int Data In - input datawhich have to be sent to the equipment.
132 Int_Data_Out - data received from the equipment.

Built-in LabVIEW Help Window shows information about all available LabVIEW Vs for the

DOOCS communication, so the user isinformed about all required data for selected VI.
Hereisaso an example of LabVIEW VI, where Equipment Access SubVIsis used. Example

represents Vs front panel and block diagram (Fig.2).

Vlisfront panel represents the user interface to the system, block diagram contains graphical

representation of programing code, which is executed when V1 runs.

The described set of LabVIEW SubVIswith DOOCS communication protocol was used in

several control applications at TTF during one year. Thistesting have shown the reliability and

convenience of this software tools especially in control systems for the equipment, which is new,

because the interface and even the layout of the system require numerous significant changes

during testing.

301

by controls and indicators with correspondent data types. That is:

Facility - facility name of the equipment address,

=2 Device- device name of the equipment address,

— Location - location name of the equipment address,
Property - property name of the equipment address,
RW_Mode - read from = 0 or write to = 1 the equipment,

Error_Code_In - input error code of the call,

132

Err_String_In - input error as astring,

Error_Code Out - returned error code of the call,

132

Err_String_Out - returned error as a string,

abc

Time_Stamp_In - time stamp of the input data,

132

Time_Stamp_Out - returned time stamp of the data,

132

Length_In - length of the buffer array, provided by the caller,

132

Length_Out - actual length of the data array, returned to the caller,

132

T_Start - start time of regest,

132

T_Stop - end time of regest.

132

Before each request, which will read data from or write data to the equipment, user must define
the next parameters of Equipment Access VIs:

Facility

Device

Location

Property

RW_Mode
When SubV| finishs its execution, the Error_Code_Out parameter will contain the error code
asaninteger valueand Err_String_Out will contain ASCI| string with an error description. For
this parameters, it's possible to wire the Error_Code_Out parameter of previous V1 to the
Error_Code_|n parameter of the next V1. The sameistrue for the Err_String_Out and
Err_String_I n parameters. This allows to wire the error parameters of all Equipment Access
SubV s being used in the user's VI into chain and put the indicators for the error code and error
string at the end of this chain.

300

device = 'PENNING’ // char(0)

location =*V_1' // char(0)

property ='P’ // char(0)

rw_mode =0

c/*Read a single float from the equipment. */

call eq_float (facility, device, location, property, & %VAL (rw_mode),

float_data,

error_code, & err_string, time_stamp)

write (*,1) facility, device, location, property

write (*,2) float_data

write (*,3) error_code, err_string

format (“ Facility=", A, “Device=", A, “Location =“, A, “Property =", A)

2format (“DATA =", F13.10)

3format (“ERROR_CODE =, 16, , ERR_STRING =", A)

C/**************** Checklng EPI CS Ca“.******************/

facility =‘TTF.EPICS // char(0)

device="'TEMPERATURE' // char(0)

location = ‘COLDB.4K.1.0UT’ // char(0)

property =" TEMP’ // char(0)

err_string =‘NO_ERROR_AT_ALL’ // char(0)

¢ /*Read a single float from the equipment. */

eq_float (facility, device, location, property, & %VAL (rw_mode), float_data,

error_code, & err_string, time_stamp)

write (*,1) facility, device, location, property

write (*,2) float_data

write (*,3) error_code, err_string

END
This example shows a single float read request from the equipment at TTF.VAC/PENNING/
V_1/P and also reads atemperature from TF.EPICS TEMPERATURE/COLDB.4K.1.0UT/
TEMP, which is accessible through EPICS communication.

LabVIEW VIs for DOOCS communications

LabVIEW applications are called VIs and they can call shared library functions directly or call
SubVIs, which inturn call shared library function. For LabVIEW usersaset of SubVIs, which
realize access to the DOOCS sever properties was created. Users can use that SubVIs in their
LabVIEW programms (V1s) in order to access device data and thus realise Equipment Data
Accessfrom LabVIEW Vis.

Thefollowing Vis are available:

Eq_Int.vi, Eq_Float.vi, Eq_String.vi, Eq_Int_Array.vi, Eq _Float_Array.vi,
String_Array_Read.vi , String_Array Writevi, Eq_Hist_Read.vi, EqQ_Hist_Write.vi,
Eq_Spectrum_Read.vi, Eq_Spectrum_Write.vi

All this SubVIs do their job by the interfacing shared library call.

There are anumber of parameters, which are common for all Equipment AccessVls. Thisis
almost the same set, as for shared library functions, but parametersin LabVIEW VI are defined

299

length.

void eq_spectrum (char* facility, char* device, char* location, char* property,
int rw_mode,float* float_data_array, int* length, char* comment, float* start,
float* inc, int* status, int t_start, int t_stop, int* error_code, char* err_string,
int* time_stamp)

Read or write a spectrum from/to the device. A spectrum consists of afloating
point array with length data samples. The samples are starting at start and are
ending at start+inc* length. The calling program must provide a buffer for the
comment field with alength of STRING_LENGTH (80) characters.

With the aid of that library functions users can access data and perform permitted actions,
recognized by different DOOCS serversin the network.

The following simple program codes give examples of thislibrary function calls from C and
FORTRAN applications.

EXAMPLES

Example of read function call from C application programm.
#include <lv_eg.h>

main() {

float f1;

char err_str[16];

int err, time;

* read a single float from a device: */

eq float (“TTF.VAC”,“1ON_PUMP”,“V_1",“P", 0, &f1, &err, err_str,
&time);

if (err) printf(* Error in eq_float : %s\n”, err_str);

else printf(“ Result is: %g \n”, f1);

Filelv_eg.hincludeslibrary function prototypesas shown before. Inthisexample
C client program reads single floating point value from DOOCS address
"TTE.VAC/ION_PUMP/V_1/P" and prints on the screen the result value,
obtained from the server or displays an error message.

See extended information about DOOCS "addresses’ and DOOCS data types
in[1].

Example of read functions callsfrom FORTRAN program.
CHARACTER*80 facility, device, location, property
INTEGER rw_mode, error_code, time_stamp

REAL float_data

CHARACTER* 16 err_string

external eq_float ! $pragma C (eq_float)

C/*************Chmking the eq_ﬂoat() functiOn*******************/

err_string ='NO_ERROR_AT_ALL’ // char(0)
facility = ‘TTF.VAC' // char(0)

298

modified. The rw_mode determines the direction of the call. A rw_mode=0 selects a read
from the device. The caller hasto provide all buffers. The length argument specifies the
length of the buffers the caller has provided. On return it contains the actual number of ele-
mentsfilled by device server. The t_start and t_stop argument selects atime range for the
request. If it's set to zero all available datais returned. With rw_mode=1 datais sent to the
device. All calsreturn an error_code. If the error_code is not zero an additional error string
iscopiedinto the err_string buffer. The caller must provide the buffer for error string with the
length of 16 characters.Here islist of functions from the interfacing libraries :

void eq_int (char* facility, char* device, char* location,char* property, int
rw_mode, int* int_data, int* error_code,char* err_string, int* time_stamp)
Read or write a single integer from/to the device.

void eq float (char* facility, char* device, char* location, char* property, int
rw_mode, float* float_data, int* error_code, char* err_string, int* time_stamp)
Read or write a single float from/to the device.

void eq_string (char* facility, char* device, char* location, char* property, int
rw_mode,char* string_data, int* error_code, char* err_string, int* time_stamp)
Read or write asingle string from/to the device.

void eq_int_array (char* facility, char* device, char* location, char* property,
int rw_mode, int* int_data_array, int* length, int* error_code,
char*err_string,int* time_stamp)

Read or write aint array from/to the device.

void eg_float_array (char* facility, char* device, char* location, char* property,
int rw_mode, int* float_data_array, int* length, int* error_code, char*
err_string, int* time_stamp)

Read or write afloat array from/to the device.

void eq_string_array (char* facility, char* device, char* location, char* prop-
erty, int r_mode, char* string_array, int* int_array, float* f1_array, float*
f2_array, int* time_array, int* length, int t_start, int t_stop,int* error_code,
char* err_string, int* time_stamp)

Read or write a string array from/to the device. A string array is an array of a
record of achar string, an integer, two floats and a time stamp. All five parts of
the record are stored in five separate arrays with the length length. Each char
string need a buffer of STRING_LENGTH (80) characters.

void eq_hist (char* facility, char* device, char* location, char* property, int
rw_mode, int* time_array, float* float_data array, int* status_array, int*
length, int t_start, int t_stop, int* error_code, char* err_string, int* time_stamp)

Read or write ahistorical array from/to the device. The history record consists of

three elements: an array with time stamps, an array with the floating point data
values and an array with status informations. All three arrays are of the same

297

set of LabVIEW Vs, which calsthese C-style functions fromit’ sinterfacing library, is
provided.

This configuration alows C, Fortran and LabVIEW applications to communicate with DOOCS
Servers, EPICS IOCs and systems using other protocols.

Application Program

FORTRAN, C, LabVIEW

C & LabVIEW Interface
to API Shared Library

I
[C++ Client Lib. |

C++

API

Shared Library
[Multi Protocol Interface |
|
TR
Server Table
[Doocscall] [EPICScall | ...
| |
Cre D (A
Ethernet

Structure of DOOCS API.

Fig.1 Structureof DOOCSAPI.
C & LabVIEW Interface Library Functions

Anintermediate interfacing C-style librariesisavailable for Solarisl and Solaris2 platforms and
isinto operation at the TTF at DESY site. Functionsallow to send requeststo DOOCS servers and
cover frequently used data types, which are available in the DOOCS communication. All
functions have some common parameters:

char* facility - facility name of the equipment address
char* device - device name of the equipment address
char* location - location name of the equipment address
char* property - property name of the equipment address
int rw_mode - read from =0 or writeto = 1 the equipment
int* error_code - returned error code of the call
char* err_string - returned error code of the call
int* time_stamp - returned time stamp of the data
int* length - length of thearray
intt_start - start time of request
int t_stop - end time of request
intt_stop - end time of request

The equipment address is set by the calling program. It is an input to the call and will not be

296

Integration of LabVIEW into TTF Control System.

S.Goloborodko (IHEP, Protvino), O. Hender (DESY, Hamburg),
K. Rehlich (DESY, Hamburqg).

Abstract

TESLA isan international collaboration which has been established to design and build a
prototype for a superconducting (SC) linac. The Tesla Test Facility (TTF) consists of the
infrastructurefor SC cavity processing and the prototype linac including control systemto operate
it and test stands for equipment tests.

At TTF linac the Distributed Object Oriented Control System (DOOCS) from DESY
with Remote Procedure Call (RPC) based communication is used and also provides a Multi
Protocol Interface to the accelerator systems. It’ smodular design allowsto add additional control
protocolsin order to realize access from application programs to distributed control subsystems
with different communication protocols.

The LabVIEW industrial package for graphical programming iswidely used in the TTF control
system as a convenient tool to evaluate the performance of the linac and its subsystems.
Integration of the LabVIEW package into the TTF control system requires an interface to
DOOCS. The paper describes software tools, which provide interface to the controls for
LabVIEW Virtua Instruments (V1) and also for the application programs, written in C or
FORTRAN programming languages.

| ntroduction

DOOCS isacontrol system tool which is used to solve avariaty of control tasksin TTF [1].
The communication in DOOCS is based on RPCs with eXternal Data Representation (XDR)
network format. It runson SUN SPARC stations under SunOS, Solaris 2.4 and on PCswith
UNIX operating systems. The DOOCS libraries are completely written in C++ and follow the
client-server model. The DOOCS approach defines each hardware device as a separate object and
this object is represented in a network by a device server, which handles all device functions.
Such abject oriented approach defined achoice of C++ asaprogramming language for the client
and server parts of DOOCS libraries. Instances of devicesand all properties of these deviciesare
definedin the server program. All thisdefinitionsare transparent to the client programsand after
the start of the device server al propertiesfor that partial device are available to all clientsin the
network. This completely separates client programs from device servers and modification of the
server program has no influence on the clients because of symbolic access to the data.

With the DOOCS Multi Protocol Interface client Application Programming Interface (API) can

handle not only RPC, but also EPICS calls and uses an Equipment Name Server (ENS) [2], which
resolves the names (| P-addreses) of device serversin the network. The DOOCS APl isaC++

library.

Inthe LabVIEW package VIs send or receive data to/from device via Call Library Function
node. This node calls specified shared library function directly. But called functions must be
written in C code.

In order to link these two different systems two level interface was designed (Fig.1).

Thefirst level isa C++ shared library with C-style functions to access C++ API. Ontop of it a

295

