
302

Fig.2 Front Panel and Block Diagram of a simple
 demonstration to read data from the fast ADC.

REFERENCES

[1] M.Bohnert, O.Hensler, D.Hoppe, K. Rehlich, Distributed Object Oriented Control System
(DOOCS), internal DESY document, Abt. MVP.
[2] O.Hensler, K. Rehlich, P. Shevtsov,Equipment Name Server and Tesla Test Facility Control
System. Proceedings of this Conference.

301

.Eq_Int.vi gives an example of LabVIEW Equipment Access VI:

Int_Data_In - input data which have to be sent to the equipment.

Int_Data_Out - data received from the equipment.

 Built-in LabVIEW Help Window shows information about all available LabVIEW VIs for the
DOOCS communication, so the user is informed about all required data for selected VI.

Here is also an example of LabVIEW VI, where Equipment Access SubVIs is used. Example
represents VIs front panel and block diagram (Fig.2).
VIs front panel represents the user interface to the system, block diagram contains graphical
representation of programing code, which is executed when VI runs.
The described set of LabVIEW SubVIs with DOOCS communication protocol was used in
several control applications at TTF during one year. This testing have shown the reliability and
convenience of this software tools especially in control systems for the equipment, which is new,
because the interface and even the layout of the system require numerous significant changes
during testing.

Time_Stamp_In

Int_Data_In

Facility

Device

Location

Property

RW_Mode

Error_Code_In

Error_String_In

Int_Data_Out

Error_Code_Out

Error_String_Out

Time_Stamp_Out

I32

I32

300

by controls and indicators with correspondent data types. That is :

Before each request, which will read data from or write data to the equipment, user must define
the next parameters of Equipment Access VIs:

Facility
Device
Location
Property
RW_Mode

 When SubVI finishs its execution, the Error_Code_Out parameter will contain the error code
as an integer value and Err_String_Out will contain ASCII string with an error description. For
this parameters, it's possible to wire the Error_Code_Out parameter of previous VI to the
Error_Code_In parameter of the next VI. The same is true for the Err_String_Out and
Err_String_In parameters. This allows to wire the error parameters of all Equipment Access
SubVIs being used in the user's VI into chain and put the indicators for the error code and error
string at the end of this chain.

Facility - facility name of the equipment address,

Device- device name of the equipment address,

Location - location name of the equipment address,

Property - property name of the equipment address,

RW_Mode - read from = 0 or write to = 1 the equipment,

Error_Code_In - input error code of the call,

Err_String_In - input error as a string,

Error_Code_Out - returned error code of the call,

Err_String_Out - returned error as a string,

Time_Stamp_In - time stamp of the input data,

Time_Stamp_Out - returned time stamp of the data,

Length_In - length of the buffer array, provided by the caller,

Length_Out - actual length of the data array, returned to the caller,

T_Start - start time of reqest,

T_Stop - end time of reqest.

abc

abc

abc

abc

I32

I32

abc

I32

abc

I32

I32

I32

I32

I32

I32

299

device = ‘PENNING’ // char(0)
location = ‘V_1’ // char(0)
property =’P’ // char(0)
rw_mode = 0
c/*Read a single float from the equipment. */
call eq_float (facility, device, location, property, & %VAL(rw_mode),
float_data,
error_code, & err_string, time_stamp)
print *,”!!!”
write (*,1) facility, device, location, property
write (*,2) float_data
write (*,3) error_code, err_string
format (“Facility = “, A, “Device = “, A, “Location = “, A, “Property = “, A)
2format (“DATA = “, F13.10)
3format (“ERROR_CODE = “, I6, “ , ERR_STRING = “, A)
c/**************** Checking EPICS call.******************/
facility = ‘TTF.EPICS’ // char(0)
device = ‘TEMPERATURE’ // char(0)
location = ‘COLDB.4K.1.OUT’ // char(0)
property =’TEMP’ // char(0)
err_string = ‘NO_ERROR_AT_ALL’ // char(0)
c /*Read a single float from the equipment. */
eq_float (facility, device, location, property, & %VAL(rw_mode), float_data,
error_code, & err_string, time_stamp)
write (*,1) facility, device, location, property
write (*,2) float_data
write (*,3) error_code, err_string
END

This example shows a single float read request from the equipment at TTF.VAC/PENNING/
V_1/P and also reads a temperature from TF.EPICS/TEMPERATURE/COLDB.4K.1.OUT/
TEMP, which is accessible through EPICS communication.

LabVIEW VIs for DOOCS communications

 LabVIEW applications are called VIs and they can call shared library functions directly or call
SubVIs, which in turn call shared library function. For LabVIEW users a set of SubVIs, which
realize access to the DOOCS sever properties was created. Users can use that SubVIs in their
LabVIEW programms (VIs) in order to access device data and thus realise Equipment Data
Access from LabVIEW VIs.
 The following VIs are available:
Eq_Int.vi, Eq_Float.vi, Eq_String.vi, Eq_Int_Array.vi, Eq_Float_Array.vi,
String_Array_Read.vi , String_Array_Write.vi, Eq_Hist_Read.vi, Eq_Hist_Write.vi,
Eq_Spectrum_Read.vi, Eq_Spectrum_Write.vi

 All this SubVIs do their job by the interfacing shared library call.
There are a number of parameters, which are common for all Equipment Access VIs. This is
almost the same set, as for shared library functions, but parameters in LabVIEW VI are defined

298

length.

void eq_spectrum (char* facility, char* device, char* location, char* property,
int rw_mode,float* float_data_array, int* length, char* comment, float* start,
float* inc, int* status, int t_start, int t_stop, int* error_code, char* err_string,
int* time_stamp)
Read or write a spectrum from/to the device. A spectrum consists of a floating
point array with length data samples. The samples are starting at start and are
ending at start+inc*length. The calling program must provide a buffer for the
comment field with a length of STRING_LENGTH (80) characters.

 With the aid of that library functions users can access data and perform permitted actions,
recognized by different DOOCS servers in the network.
The following simple program codes give examples of this library function calls from C and
FORTRAN applications.

EXAMPLES

Example of read function call from C application programm.
#include <lv_eq.h>
main() {
float f1;
char err_str[16];
int err, time;
/* read a single float from a device: */
eq_float (“TTF.VAC”, “ION_PUMP”, “V_1”, “P”, 0, &f1, &err, err_str,
&time);
if (err) printf(“Error in eq_float : %s\n”, err_str);
else printf(“Result is: %g \n”, f1);
}
File lv_eq.h includes library function prototypes as shown before. In this example
C client program reads single floating point value from DOOCS address
"TTF.VAC/ION_PUMP/V_1/P" and prints on the screen the result value,
obtained from the server or displays an error message.
 See extended information about DOOCS "addresses" and DOOCS data types
in [1].

Example of read functions calls from FORTRAN program.
CHARACTER*80 facility, device, location, property
INTEGER rw_mode, error_code, time_stamp
REAL float_data
CHARACTER*16 err_string
external eq_float !$pragma C (eq_float)

c /*************Checking the eq_float(...) function*******************/
err_string = ‘NO_ERROR_AT_ALL’ // char(0)
facility = ‘TTF.VAC’ // char(0)

297

modified. The rw_mode determines the direction of the call. A rw_mode=0 selects a read
from the device. The caller has to provide all buffers. The length argument specifies the
length of the buffers the caller has provided. On return it contains the actual number of ele-
ments filled by device server. The t_start and t_stop argument selects a time range for the
request. If it’s set to zero all available data is returned. With rw_mode=1 data is sent to the
device. All calls return an error_code. If the error_code is not zero an additional error string
is copied into the err_string buffer. The caller must provide the buffer for error string with the
length of 16 characters.Here is list of functions from the interfacing libraries :

void eq_int (char* facility, char* device, char* location,char* property, int
rw_mode, int* int_data, int* error_code,char* err_string, int* time_stamp)
Read or write a single integer from/to the device.

void eq_float (char* facility, char* device, char* location, char* property, int
rw_mode, float* float_data, int* error_code, char* err_string, int* time_stamp)
Read or write a single float from/to the device.

void eq_string (char* facility, char* device, char* location, char* property, int
rw_mode,char* string_data, int* error_code, char* err_string, int* time_stamp)
Read or write a single string from/to the device.

void eq_int_array (char* facility, char* device, char* location, char* property,
int rw_mode, int* int_data_array, int* length, int* error_code,
char*err_string,int* time_stamp)
Read or write a int array from/to the device.

void eq_float_array (char* facility, char* device, char* location, char* property,
int rw_mode, int* float_data_array, int* length, int* error_code, char*
err_string, int* time_stamp)
Read or write a float array from/to the device.

void eq_string_array (char* facility, char* device, char* location, char* prop-
erty, int rw_mode, char* string_array, int* int_array, float* f1_array, float*
f2_array, int* time_array, int* length, int t_start, int t_stop,int* error_code,
char* err_string, int* time_stamp)
Read or write a string array from/to the device. A string array is an array of a
record of a char string, an integer, two floats and a time stamp. All five parts of
the record are stored in five separate arrays with the length length. Each char
string need a buffer of STRING_LENGTH (80) characters.

void eq_hist (char* facility, char* device, char* location, char* property, int
rw_mode, int* time_array, float* float_data_array, int* status_array, int*
length, int t_start, int t_stop, int* error_code, char* err_string, int* time_stamp)

Read or write a historical array from/to the device. The history record consists of
three elements: an array with time stamps, an array with the floating point data
values and an array with status informations. All three arrays are of the same

296

set of LabVIEW VIs, which calls these C-style functions from it’s interfacing library, is
provided.
This configuration allows C, Fortran and LabVIEW applications to communicate with DOOCS
Servers, EPICS IOCs and systems using other protocols.

Fig.1 Structure of DOOCS API.

C & LabVIEW Interface Library Functions

An intermediate interfacing C-style libraries is available for Solaris1 and Solaris2 platforms and
is into operation at the TTF at DESY site. Functions allow to send requests to DOOCS servers and
cover frequently used data types, which are available in the DOOCS communication. All
functions have some common parameters:

char* facility - facility name of the equipment address
char* device - device name of the equipment address
char* location - location name of the equipment address
char* property - property name of the equipment address
int rw_mode - read from = 0 or write to = 1 the equipment
int* error_code - returned error code of the call
char* err_string - returned error code of the call
int* time_stamp - returned time stamp of the data
int* length - length of the array
int t_start - start time of request
int t_stop - end time of request
int t_stop - end time of request

The equipment address is set by the calling program. It is an input to the call and will not be

Application Program

C & LabVIEW Interface
to API Shared Library

C++ Client Lib.

DOOCS call EPICS call

RPC CA ENS -RPC

NameServer
 call

Server Table

API
Shared Library

Ethernet

...

Multi Protocol Interface

FORTRAN, C, LabVIEW

C++

Structure of DOOCS API.

295

Integration of LabVIEW into TTF Control System.

S.Goloborodko (IHEP, Protvino), O. Hensler (DESY, Hamburg),
K. Rehlich (DESY, Hamburg).

 Abstract

TESLA is an international collaboration which has been established to design and build a
prototype for a superconducting (SC) linac. The Tesla Test Facility (TTF) consists of the
infrastructure for SC cavity processing and the prototype linac including control system to operate
it and test stands for equipment tests.
 At TTF linac the Distributed Object Oriented Control System (DOOCS) from DESY
with Remote Procedure Call (RPC) based communication is used and also provides a Multi
Protocol Interface to the accelerator systems. It’s modular design allows to add additional control
protocols in order to realize access from application programs to distributed control subsystems
with different communication protocols.
 The LabVIEW industrial package for graphical programming is widely used in the TTF control
system as a convenient tool to evaluate the performance of the linac and its subsystems.
Integration of the LabVIEW package into the TTF control system requires an interface to
DOOCS. The paper describes software tools, which provide interface to the controls for
LabVIEW Virtual Instruments (VI) and also for the application programs, written in C or
FORTRAN programming languages.

Introduction

 DOOCS is a control system tool which is used to solve a variaty of control tasks in TTF [1].
The communication in DOOCS is based on RPCs with eXternal Data Representation (XDR)
network format. It runs on SUN SPARC stations under SunOS, Solaris 2.4 and on PCs with
UNIX operating systems. The DOOCS libraries are completely written in C++ and follow the
client-server model. The DOOCS approach defines each hardware device as a separate object and
this object is represented in a network by a device server, which handles all device functions.
Such object oriented approach defined a choice of C++ as a programming language for the client
and server parts of DOOCS libraries. Instances of devices and all properties of these devicies are
defined in the server program. All this definitions are transparent to the client programs and after
the start of the device server all properties for that partial device are available to all clients in the
network. This completely separates client programs from device servers and modification of the
server program has no influence on the clients because of symbolic access to the data.
With the DOOCS Multi Protocol Interface client Application Programming Interface (API) can
handle not only RPC, but also EPICS calls and uses an Equipment Name Server (ENS) [2], which
resolves the names (IP-addreses) of device servers in the network. The DOOCS API is a C++
library.
In the LabVIEW package VIs send or receive data to/from device via Call Library Function
node. This node calls specified shared library function directly. But called functions must be
written in C code.
 In order to link these two different systems two level interface was designed (Fig.1).
The first level is a C++ shared library with C-style functions to access C++ API. On top of it a

