Выходы вторичных нейтронов из мишеней при облучении протонами с энергией 100 МэВ

Г.И. Крупный, В.Н. Пелешко, Я.Н. Расцветалов ГНЦ РФ Институт физики высоких энергий, Протвино, Россия

Для решения многих прикладных радиационных задач необходима экспериментальная информация по спектрально-угловым распределениям и интегральным выходам вторичного нейтронного излучения от мишеней, бомбардируемых пучками протонов средних энергий (100-1000 МэВ). В ряде задач требуется знание соотношения вторичных нейтронов и фотонов по флюенсу или поглощенной дозе. В последнее время такая информация становится все более актуальной в связи с проектами электроядерных атомных реакторов и с решениями проблем трансмутации [1,2].

В настоящей работе, выполненной по тематике безопасности космических полетов, приводятся экспериментальные данные по выходам вторичных нейтронов в переднюю полусферу от различных мишеней, бомбардируемых пучком 100 МэВ протонов. Измерения выполнены в зале линейного ускорителя протонов ИФВЭ.

Детекторы располагались на расстоянии 1 м от мишени под углами 0; 30; 60; 90 и 120⁰ по отношению к оси протонного пучка (геометрия опыта выбрана после измерения фоновых условий). В измерениях использовались мишени из алюминия (ПП — толщиной t=40 мм, плотностью $\rho=2.70 \text{ г/см}^3$), графита (С — t=29.0 мм, $\rho=1.78 \text{ г/см}^3$), циркония (Zr — $t=15.0 \text{ мм}, \rho=6.44 \text{ г/см}^3$), сплава алюминия (АМГ $t=13.3 \text{ мм}, \rho=2.7 \text{ г/см}^3$, состав: Al=97%, Mn=1.6%, Ti=1.4%) и композитных материалов ($K_1 - t=17 \text{ мм}, \rho=1,41 \text{ г/см}^3$, состав по объему: 50%-е графитовые волокна и 50%-й бакелитовый лак на основе формальдегидной смолы, состоящая на 90% из углерода, 3% водорода, 7% кислорода; и $K_2 - t=20 \text{ мм}, \rho=2.84 \text{ г/см}^3$, состав по объему: 25% токсикаучуковое связующее, 75% наполнитель, содержащий оксид церия, гадолиний и диспрозий).

Для регистрации вторичного нейтронного излучения из мишеней применялись пороговые активационные детекторы из фосфора (с $E_n > 2$ MэB), алюминия ($E_n > 6$ МэB) и углерода (пластический сцинтиллятор, $E_n > 20$ МэB). Характеристики детекторов приведены в [3]. Для измерения энергетических распределений нейтронов использовался спектрометр Боннера с детектором тепловых нейтронов (ДТН) на основе индия [4].

Спектры нейтронов определялись с помощью модифицированной программы восстановления PENS [5] по откликам ДТН спектрометра Боннера с подключением откликов пороговых детекторов. Флюенсы нейтронов получены интегрированием энергетических распределений. Так как используемые мишени (кроме мишени ПП) не являлись мишенями полного поглощения первичных 100 МэВ протонов, вклад в активацию детекторов, обусловленный рассеянными высокоэнергетическими протонами, учитывался дублированием каждой экспозиции, в одной из которых детектор заключался в дополнительный защитный экран [6]. Соотношение между вторичными нейтронами и гамма-излучением по поглощенной дозе для ПП-мишени изменяется от 0,98 до 1,62 в зависимости от угла [6].

Мониторирование пучка протонов осуществлялось интегрально за экспозицию по активации алюминиевой фольги и дифференциально в каждом цикле ускорителя изме-

рением заряда фольги за счет выбивания δ -электронов [6]. Мониторирование воспроизводимости и стабильности поля вторичного излучения при повторных экспозициях осуществлялось по отношению показаний мониторной фольги и углеродсодержащего детектора, устанавливаемого под углом 90⁰ к оси пучка на расстоянии 1 м от мишени.

Интегральные характеристики спектров вторичных нейтронов под различными углами от мишени полного поглощения (ПП) приведены в табл. 1.

Таблица 1: Интегральные характеристики спектров нейтронов от мишени ПП.

Угол	Средняя	Компонентный состав флюенса, %					
	энергия, МэВ	0,5 эВ-200 кэВ	0,2-20 МэВ	>20 МэВ			
0^{o}	$23\pm11\%$	7	60	33			
30^{o}	$16{\pm}8\%$	12	63	25			
120^{o}	$4{,}6{\pm}15\%$	19	78	3			

Скорости реакций ${}^{31}P(n,p){}^{31}Si$, ${}^{27}Al(n,\alpha){}^{24}Na$ и ${}^{12}C(n,2n){}^{11}C$ для пороговых детекторов в экспозициях под разными углами приведены в табл. 2.

Угловые распределения флюенса вторичных нейтронов с энергией > 0,5 эВ от мишеней представлены в табл. 3. Скорости реакции и флюенсы вторичных нейтронов под 0° от тонких мишеней не измерялись из-за преобладания протонного компонента первичного пучка и оценивались на основе экстраполяции с использованием углового распределения нейтронов от мишени полного поглощения (ПП).

Выходы нейтронов из мишеней в переднюю полусферу определялись интегрированием угловых распределений флюенса и приведены в табл. 4.

При определении суммарной погрешности данных по выходу нейтронов учитывались погрешности экспериментальных данных (статистика, анизотропия, фоновые условия), мониторирования, определения флюенса, экстраполяции данных, интегрирования.

Decomposed	Marray	00	200	600	0.00	1200
энергия	мишень	0.	30°	00°	90°	120°
$E_n n > 2$ МэВ	ПП	$4,7{\cdot}10^{-31}$	$3,5 \cdot 10^{-31}$	$2,1\cdot 10^{-31}$	$1,4.10^{-31}$	$1,5 \cdot 10^{-31}$
	$AM\Gamma$		$3,7{\cdot}10^{-31}$	$1,4 \cdot 10^{-31}$	$1,1{\cdot}10^{-31}$	$8,3 \cdot 10^{-32}$
	С		$3,2 \cdot 10^{-31}$	$7,4{\cdot}10^{-32}$	$4,3.10^{-32}$	$3,3 \cdot 10^{-32}$
	Zr		$4,8 \cdot 10^{-31}$	$3,5 \cdot 10^{-31}$	$1,9{\cdot}10^{-31}$	$1,5 \cdot 10^{-31}$
	K_1		$3,0{\cdot}10^{-31}$	$6, 6 \cdot 10^{-32}$	$2,5{\cdot}10^{-32}$	$2,6{\cdot}10^{-32}$
	K_2		$3,9{\cdot}10^{-31}$	$1,9{\cdot}10^{-31}$	$1,0{\cdot}10^{-31}$	$1,6 \cdot 10^{-31}$
$E_n > 6$ МэВ	ПП	$3,6{\cdot}10^{-32}$	$2,7{\cdot}10^{-32}$	$1,4{\cdot}10^{-32}$	$6,9{\cdot}10^{-33}$	$7,0.10^{-33}$
	$AM\Gamma$		$1,1.10^{-32}$	$4,8 \cdot 10^{-33}$	$2,1{\cdot}10^{-33}$	$3,7{\cdot}10^{-33}$
	\mathbf{C}		$3,9{\cdot}10^{-32}$	$1,6{\cdot}10^{-32}$	$5,7{\cdot}10^{-33}$	$6, 4 \cdot 10^{-33}$
	Zr		$2,3 \cdot 10^{-32}$	$1,3 \cdot 10^{-32}$	$5,7{\cdot}10^{-33}$	$7,0.10^{-33}$
	K_1		$8,7 \cdot 10^{-33}$	$2,4 \cdot 10^{-33}$	$4,8{\cdot}10^{-34}$	$1,4.10^{-33}$
	K_2		$1,9{\cdot}10^{-32}$	$7,5 \cdot 10^{-33}$	$3,3{\cdot}10^{-33}$	$5,2 \cdot 10^{-33}$
$E_n > 20$ МэВ	ПП	$4,1{\cdot}10^{-32}$	$2,2 \cdot 10^{-32}$	$4,1 \cdot 10^{-33}$	$1,1{\cdot}10^{-33}$	$4,9 \cdot 10^{-34}$
	$AM\Gamma$		$2,9{\cdot}10^{-32}$	$4,2 \cdot 10^{-33}$	$7,8{\cdot}10^{-34}$	$4,8.10^{-34}$
	\mathbf{C}		$2,4 \cdot 10^{-32}$	$4, 4 \cdot 10^{-33}$	$9,7{\cdot}10^{-34}$	$2,4 \cdot 10^{-34}$
	Zr		$1,1{\cdot}10^{-32}$	$3,5 \cdot 10^{-33}$	$8,0{\cdot}10^{-34}$	$4, 4 \cdot 10^{-34}$
	K_1		$1,3 \cdot 10^{-32}$	$2,9{\cdot}10^{-33}$	$6,8{\cdot}10^{-34}$	$3,1.10^{-34}$
	K_2		$2,0.10^{-32}$	$4,7{\cdot}10^{-33}$	$1,2.10^{-33}$	$8,0.10^{-34}$

Таблица 2: Скорости реакции, протон⁻¹.

Таблица 3: Угловые распределения нейтронов с $E_n > 0.5$ эВ, нейтрон см⁻² протон⁻¹.

Мишень	0^{o}	30^{0}	60^{0}	90^{0}	120^{0}
ПП	$4,8.10^{-6}$	$4,3.10^{-6}$	$3,2{\cdot}10^{-6}$	$2,7{\cdot}10^{-6}$	$2,2{\cdot}10^{-6}$
$AM\Gamma$	$4,8.10^{-6}$	$2,9{\cdot}10^{-6}$	$1,8{\cdot}10^{-6}$	$1,6{\cdot}10^{-6}$	$1,3.10^{-6}$
\mathbf{C}	$5,3 \cdot 10^{-6}$	$2,9{\cdot}10^{-6}$	$1,6{\cdot}10^{-6}$	$1,1{\cdot}10^{-6}$	$8,5 \cdot 10^{-7}$
Zr	$5,5{\cdot}10^{-6}$	$4,8 \cdot 10^{-6}$	$3,2{\cdot}10^{-6}$	$2,7{\cdot}10^{-6}$	$2,4.10^{-6}$
K1	$4,5 \cdot 10^{-6}$	$2,2.10^{-6}$	$1,0.10^{-6}$	$7,0.10^{-7}$	$4,8.10^{-7}$
K2	$7,0{\cdot}10^{-6}$	$5,\!6{\cdot}10^{-6}$	$4,0{\cdot}10^{-6}$	$3,\!8{\cdot}10^{-6}$	$3,7{\cdot}10^{-6}$

Таблица 4: Интегральные выходы нейтронов в переднюю полусферу, нейтрон/протон.

Мишени	ПП	$AM\Gamma$	С	Zr	K1	K2
$F_n > 0,5$ эВ	$0,\!22{\pm}0,\!04$	$0{,}13{\pm}0{,}02$	$0,\!12{\pm}0,\!02$	$0,\!23{\pm}0,\!04$	$0,\!085{\pm}0,\!02$	$0{,}25{\pm}0{,}05$

Список литературы

- [1] Ю.М.Адо. Препринт ИФВЭ 93-24, Протвино, 1993.
- [2] In.: Proceed. Advanced Nuclear Energy Research, Evoluation by Accelerators. Mito, Jbaraki, Japan, 1990.
- [3] А.И.Волынчиков, В.Б.Гетманов, Г.И.Крупный и др. Препринт ИФВЭ 83-86, Серпухов, 1983.
- [4] Е.А.Белогорлов и др. Препринт ИФВЭ 85-3, Серпухов, 1985.
- [5] Е.А.Белогорлов, В.П.Жигунов. Препринт ИФВЭ 83-54, Серпухов, 1983.
- [6] А.Г.Алексеев, Ю.В.Быстров, Г.И.Крупный и др. Препринт ИФВЭ 94-1, Протвино, 1994.