ЯМР-релаксация в двухкомпонентной системе

А.И.Вагин, Б.А.Макаров, В.Г.Рыжов Московский радиотехнический институт РАН, Россия

Метод ядерного магнитного резонанса (ЯМР) применяют в различных областях науки, промышленности, в геологоразведке и т.д. [1,2], при этом изучаемые объекты, как правило, имеют сложную гетерогенную структуру [3]. Модель двухкомпонентной системы ядерных спинов часто используют для интерпретации экспериментальных данных при исследовании различных физико-химических и биологических систем [3,4], например рабочее вещество ЯМР-магнитометров и тесламетров с динамической поляризацией ядер представляет собой бинарную систему ядерных спинов [2].

Ядерная магнитная релаксация в двухкомпонентной системе одноименных ядерных спинов с обменом намагниченности между компонентами описывается уравнениями Блоха, модифицированными с учетом обмена [5]. Однако сложная зависимость формы сигнала ЯМР, решений этих уравнений [6], от набора параметров, ряд из которых часто не известен, затрудняет применение известных выражений. В результате используют различные предельные выражения, которые далеко не исчерпывают весь спектр практических случаев и нередко ведут к ошибочной интерпретации полученных данных.

В работе изложены результаты модельного исследования формы релаксационного сигнала, приведены и обсуждаются экспериментальные данные.

Рассмотрим бинарную систему ядерных спинов, для которой выполняется условие динамического равновесия

$$P_a \cdot K_a = P_b \cdot K_p, \tag{1}$$

где P_a , P_b — нормированные населенности компонент ($P_a + P_b = 1$) и K_a , K_b — скорости обмена спинов в компонентах "а" и "b" соответственно. В этом случае выражения, полученные в работе [6], можно представить в виде

$$T_a/T_a' = K(A_1 - A_2), (2)$$

$$T_b/T_b' = A_1 + A_2, (3)$$

$$P_a' = 1/2(1 + A_3/A_2),\tag{4}$$

где $A_1 = [(1+K)/K + V/P_a]/2$, $A_2 = \{(1-K)/K + V(1-2P_a)/P_a]^2 + 4V^2(1-P_a)/P_a\}^{1/2}/2$, $A_3 = [(1-2P_a)(1-K)P_a + KV]/2KP_a$, $V = T_bK_b$, $K = T_a/T_b$. Здесь T_a , T_b $(T_a > T_b)$ — времена поперечной (продольной) релаксации в фазах "а" и "b" в отсутствии обмена ($K_a = K_b = 0$); T'_a , T'_b — амплитуды компонент сигнала ЯМР.

Из выражений (2)-(4) следует, что нормированные величины T'_a/T_a , T'_b/T_b и $P'_a = P'_a/(P'_a + P'_b)$ являются функциями обобщенных параметров: отношения времени релаксаций $K = T_a/T_b$ в компонентах "а" и "b", относительной скорости обмена $V = T_b K_b$ и величины населенности P_a (или P_b). Отношение $K = T_a/T_b$ будем называть коэффициентом релаксации бинарной системы.

На рис. 1а,б представлены кривые изменения наблюдаемой амплитуды медленной компоненты сигнала ЯМР-релаксации P'_a как функции относительной скорости обмена при K=100 и различных значениях населенностей фаз "а" и "b". С ростом скорости обмена значение P'_a возрастают, причем на кривых можно выделить пять различных областей: две области "постоянства" амплитуды $P'_a \cong P_a$ и $P'_a \cong 1$, область резкого изменения P'_a и две "переходные" области. Например, при $P_a = 0, 2$ в области V < 0, 01 имеет место

очень медленный обмен (K_a , $K_b << 1/T_a$, $1/T_b$), и наблюдаемые амплитуды соответствуют действительным населенностям фаз: $P'_a \cong P_a = 0, 2$. При изменении V от ~ 0,05 до ~ 0,33 измеряемая амплитуда возрастает от ~ 0,3 до ~ 0,9. При V > 1 выполняется условие быстрого обмена (K_a , $K_b >> 1/T_a$, $1/T_b$), и релаксационная кривая описывается одной экспонентой ($P'_a \cong 1$). Из рис. 1а,6 следует, что наблюдаемая амплитуда P'_a "искажена" в меньшей степени процессом обмена при фиксированном значении относительной скорости обмена V с ростом населенности фазы "а", при этом на быстром участке с увеличением P_a уменьшается скорость возрастания амплитуды медленной компоненты. Первый переходный участок, вычисленный для десятипроцентного отклонения P'_a от P_a , при изменении P_a в интервале 0,05–0,9 составляет $\Delta V \cong 10^3$ (рис. 6, кривая 1). Аналогичный рост населенной компоненты достигает единицы, в интервале, составляющем только около двух порядков. Следовательно, скорость изменения P'_a на первом переходном участке медленнее, чем на втором. Это также непосредственно следует из вида кривых рис. 1а,б.

Рис. 1:

На рис. 2 представлены кривые изменения наблюдаемой амплитуды медленной компоненты сигнала ЯМР-релаксации P'_a как функции относительной скорости обмена при двух значениях коэффициента релаксации бинарной системы K=10 и K=100 и двух значениях населенности фазы "a": $P_a = 0, 3$ и $P_a = 0, 6$. Интервал изменения K от 10 до 100 наиболее часто встречается в исследуемых системах [3–6]. Кривые рис. 2 показывают небольшие различия только на быстром участке изменения зависимости $P'_a = f(V)$ в исследуемом интервале значений коэффициента релаксации. Аналогичные зависимости наблюдаются при других населенностях фаз.

Кривые изменения наблюдаемого времени релаксации медленной компоненты сигнала ЯМР также имеют пять различных участков (кривые 1, 2, 3, 4 на рис. За соответствуют населенностям $P_a = 0, 1; 0, 2; 0, 3; 0, 4$ при K=100; кривые 5–8 — те же населенности при K=10; кривые 1, 2, 3, 4 рис. Зб обозначают населенности $P_a = 0, 5; 0, 6; 0, 7; 0, 8$ при K=100; кривые 5–8 — те же населенности при K=10 соответственно), аналогично слабее

проявляется зависимость от V при увеличении населенности фазы "a". Однако имеет место отличие: выявлена сильная зависимость от коэффициента релаксации системы К.

На рис. 5 приведены кривые $lgV = f(P_a)$ при отклонении T'_a от T_a на 10% при двух значениях К: К=10 и К=100. При изменении P_a в интервале от 0,05 до 0,95 скорость обмена увеличивается более чем на два порядка для обоих значений коэффициента релаксации. Разница значений относительной скорости V двух кривых составляет примерно порядок для любого фиксированного значения населенности P_a в исследуемом диапазоне. Кроме того, наблюдается заметная зависимость времени релаксации медленной компоненты от населенности P_a .

Рис. 3:

Разница значений $V(\delta T'_a = 0, 1)$ и $V(\delta P'_a = 0, 1)$ при K=100 составляет около двух порядков в интервале изменения $P_a = 0, 05 - 0, 95$ (рис. 6, кривые 1 и 3). "Искажения" времени релаксации быстрой компоненты сигнала ЯМР T'_b происходят при значительно больших значениях V по сравнению с аналогичными по величине изменениями параметров T'_a и P'_a (рис. 4), причем фактически не зависит от скорости релаксации системы (разность величин V при двух значениях K=10 и K=100 отличается не более, чем на несколько десятков процентов в интервале изменения P_a от 0,05 до 0,95). Имеет место более слабая по сравнению с амплитудой и временем релаксации медленной компоненты зависимость T'_b от населенности компоненты "а" (рис. 4, кривые 1, 2, 3, 4, 5 обозначают $P_a=0,05; 0,1; 0,2; 0,4; 0,8$ соответственно). Кривая $V = f(P_a)$, для точек которой T'_b отличается от T_b на 5%, изменяется примерно в 5 раз в диапазоне $P_a=0,05-0,3$ и практически не меняется при населенностях $P_a > 0, 3$ (рис.6, кривая 2).

Рис. 7:

Таким образом, результаты модельного исследования показывают, что изменение времени релаксации медленной компоненты T'_a релаксационной кривой определяется вариациями значений трех параметров: К, V и P_a . "Искажения" амплитуды P'_a этой компоненты и времени релаксации быстрой компоненты T'_b зависят главным образом от изменений двух параметров V и P_a , при этом изменения времени релаксации быстрой компоненты от последнего параметра значительно слабее.

Заметим, что условие $T'_a \cong T_a$ является достаточным для выполнения равенств $T'_b \cong T_b$ и $P'_a \cong P_a$, так как последние имеют место при значительно больших значениях скорости обмена (рис. 1–3). Очевидно также, что условие $T'_b \cong T_b$ является только необходимым для выполнения равенств $T'_a \cong T_a$ и $P'_a \cong P_a$. На рис. 7 приведена форма кривой поперечной намагниченности протонов воды, адсорбированной на силикагеле. Кривая представляет собой сумму двух экспонент, параметры быстрой компоненты (P'_b, T'_b) получены вычитанием из экспериментальной кривой значений медленной компоненты (P'_a, T'_a) .

Изучена температурная зависимость сигнала ЯМР-релаксации протонов воды в тенях эритроцитов с добавкой во внеклеточный объем парамагнитных ионов Mn^{2+} в концентрации ~ 3 ммоль. Парамагнитные частицы значительно сокращают время релаксации протонов внеклеточной воды, в то время как внутриклеточная вода остается "невозмущенной". Мембрана эритроцитов непроницаема для ионов марганца и проницаема для молекул воды, в результате внеклеточная и внутриклеточная вода, различающаяся скоростями релаксации протонов, представляет двухкомпонентную систему с обменом. Наблюдаемый сигнал ЯМР аппроксимируется суммой двух экспонент.

На рис. 8а кривая 1 соответствует измеренной амплитуде медленной компоненты P'_a , кривая 2 — эта же величина, рассчитанная согласно выражения (4). Величины T_a и P_a измерены независимо: T_a — методом ЯМР, P_a — методом гематокрита [4, 7]. Значения T_b и K_b определены по формулам (2) и (3). Наблюдается хорошее совпадение расчетной и экспериментальной зависимостей амплитуды медленной компоненты. На рис.86 те же кривые отложены в логарифмическом масштабе в зависимости от расчетных значений относительной скорости обмена, здесь кривая 3 показывает скорость обмена молекул воды K_b . Следовательно, увеличение амплитуды медленной компоненты P'_a с повышением температуры полностью определяется возрастанием подвижности молекул воды и скорости их обмена через эритроцитарную мембрану.

Рис. 8:

Обычно свойства бинарной системы оценивают согласно приближенным выражениям, полученным из (1)–(4) и справедливым для различных соотношений между параметрами $T_a, T_b, P_a, P_b, K_a, K_b$ [3]. Однако выбор того или иного приближения предполагает известными довольно детальные сведения о системе, кроме того, существует вероятность изменения в ходе эксперимента самих свойств бинарной системы. В итоге необходимо использовать различные выражения, иначе возможны ошибки в интерпретации экспериментальных данных.

В качестве примера на рис. 9 представлены кривые изменения скорости обмена молекул внутриклеточной воды через мембрану теней эритроцитов от обратной температуры, наклон которых характеризует энергию активации. Значения K_a pacсчитаны по формулам (1)-(4), К' согласно соотношению $K'_a = 1/T'_a - 1/T_a$, которое справедливо для случая медленного обмена V << 1 и сильно различающихся времен релаксаций в отдельных компонентах $T_a >> T_b$. Из рисунка следует существенное отличие в поведении кривых. Зависимость lnK_a — линейная с одним коэффициентом наклона во всем исследуемом диапазоне температур. Поведение кривой lnK'_a сложнее. Во-первых, ее точки лежат ниже

точек линии lnK_a . Далее, ее можно условно разбить на три участка, два из которых линейные с различным коэффициентом наклона: $+4^{\circ}C(3,61\cdot10^{3} \text{ K}^{-1}) - +14^{\circ}C(3,49), +14 - +25^{\circ}C(3,36)$, и нелинейный при $t > +25^{\circ}C$.

Определим выполнение вышеприведенных условий медленного обмена в исследованном интервале температур. Эти отношения соответственно равны

Таким образом, условия, при которых справедлива формула $K'_a = 1/T'_a - 1/T_a$, имеют место только в диапазоне 4–14°C. Второй линейный участок 14–25°C можно рассматривать как переходной интервал со слабо нелинейными свойствами. Причина различия кривых рис. 9 заключается в невыполнении при t > +14°C условий медленного обмена. В этой связи вполне объяснимы отличия в поведении кривых, полученных разными авторами при различных концентрациях парамагнитных ионов для мембран эритроцитов и рассчитанных по приближенным формулам [7].

Оптимальная концентрация парамагнитных ионов в рабочем веществе датчика ЯМРмагнитометра определяется скоростью изменения и неоднородностью измеряемого магнитного поля [1,2] и может быть оценена из анализа кривых рис. 1–3 [8]. В магнитометрах на основе динамической поляризации ядер для создания эффективных условий передачи электронной упорядоченности ядерным спинам необходимо проводить детальный анализ свойств бинарной системы. Предпринятое изучение, несомненно, будет полезным в этом вопросе.

Таким образом, проведенные исследования позволяют судить о характере трансформации формы релаксационной кривой при изменении свойств бинарной системы в результате изменений параметров внешней среды или иных воздействий, динамике движения "рабочей точки" в ходе эксперимента, обоснованности используемых приближений, избежать артефактов при интерпретации полученных данных, оценивать оптимальные концентрации парамагнитных частиц в рабочем веществе датчика ЯМР-магнитометров.

Список литературы

- [1] Абрагам А. Ядерный магнетизм. М.: ИЛ, 1963, 551 с.
- [2] Афанасьев Ю.В., Студенцов Н.В., Хорев В.Н. и др. Средства измерений параметров магнитного поля. Л.: Энергия, Ленингр. отделение, 1979, 320 с.
- [3] Вашман А.А., Пронин И.С. Ядерная магнитная релаксация и ее применение в химической физике. — М.: Наука, 1979, 236 с.
- [4] Conlon T. and Outhred R. Water diffusion permeability of erythricytes using an NMR technique. — BBA, v. 288, 1972, p. 354-361.
- [5] McConnel H.M. Reaction rates by nuclear magnetic resonance. J. Chem. Phys. v. 28, No. 3, 1958, p. 430-431.
- [6] Woessner D.E. Nuclear transfer effects in nuclear magnetic resonance pulse experiments. J. Chem Phys., v. 53, No. 1, 1961, p. 41-48.
- [7] Conlon T. and Outhred R. The temperature dependence of erythrocyte water diffusion permeability. — BBA, 1978, v. 511, p. 408-418.
- [8] Вагин А.И., Макаров Б.А., Рыжов В.Г. Анализ формы сигнала рабочего вещества магнитометров ядерного магнитного резонанса. — Доклады XV Совещания по ускорителям заряженных частиц (Протвино, 22-24 октября 1996 г.). Протвино, 1996, т. 1, с. 378-381.