Физический проект бустерного протонного синхротрона для DESY–III

Коллаборация И Φ ВЭ a –DESY b

^a Институт физики высоких энергий, Протвино, Россия ^b DESY, Hamburg, Germany

В рамках соглашения о МНТС между ИФВЭ и DESY в Институте физики высоких энергий разработано физическое обоснование бустерного протонного синхротрона на энергию 800 МэВ для ускорителя DESY–III, находящегося в начальной части каскада протонных инжекторов накопителя HERA. В работе приводится описание технических деталей предлагаемого ускорителя. Участники работы перечислены ниже^{*}.

Введение. В настоящее время протоны ускоряются в DESY–III от кинетической энергии 50 МэВ до импульса 7.5 ГэВ/с. Интенсивность пучка $N \simeq 1.3 \cdot 10^{12}$ протонов в 11 сгустках. Нормализованные поперечные эмиттансы $\varepsilon_{z,x}$ (по уровню 1 σ , без π) составляют примерно 2.5 мкм по вертикали, z и 5.0 мкм по горизонтали, x. Поперечная яркость пучка она пропорциональна $N/\varepsilon_{z,x}$ — ограничена эффектом кулоновского сдвига бетатронной частоты. Получение более ярких протонных пучков рассматривается как один из способов увеличения светимости накопителя HERA.

Для увеличения в 5 раз предела по пространственному заряду в DESY–III предлагается использовать промежуточный бустерный синхротрон. Его спецификация приведена в табл. 1.

Частота циклов	1	Гц
Максимальная энергия (кинетическая)	800	МэВ
Энергия инжекции (кинетическая)	50	ГэВ
Интенсивность пучка	$\geq 2 \cdot 10^{11}$	p.p.p.
Длина орбиты	57.6	м
Частота обращения	1.635 - 4.381	ΜГц
Кратность ускорения	2	
Вертикальный эмиттанс, ε_z	0.8	MKM
Горизонтальный эмиттанс, ε_x	1.2	MKM
Продольная фазовая площадь сгустка	≤ 0.080	эВ∙с

Таблица 1: Основные параметры бустера

Входной пучок формируется за ~6 оборотов из ионов H^- с энергией (50±0.12) МэВ, инжектируемых из линейного ускорителя Linac–III через тонкую обдирочную фольгу. Проводится квазиадиабатический захват пучка в режим ускорения, в результате чего образуются 2 сгустка с фактором группировки (длина сгустка/расстояние между сгустками) B=0.54, полным разбросом по импульсам $\Delta p/p=\pm0.28\%$ и продольной фазовой площадью 0.068 эВ·с. Для выбранной магнитной структуры кулоновские сдвиги бетатронных частот составляют $\Delta Q_z = -0.20$ и $\Delta Q_x = -0.14$ при инжекции.

Пять циклов бустера используются для заполнения 10 из 11 сепаратрис DESY–III за время 4–5 с. Каждый раз инжектируется два сгустка. Одна сепаратриса остается пустой для упрощения процесса инжекции в DESY–III и последующего перевода пучка.

^{*}W. Ebeling, J. Maidment, B. Балбеков, С. Иванов, П. Чирков, О. Курнаев, В. Сычев, А. Василевский, Э. Меркер, О. Лебедев, Ю. Каршев, Е. Ткаченко, В. Маденко, Ю. Калининн, И. Дегтярев и др.

Бустер может быть размещен в уже существующем на территории DESY экспериментальном зале № 1. Его план показан на левом рис. 1 (слева). Прямолинейный промежуток, в котором размещается ВЧ-резонатор, ориентирован антипараллельно направлению выходного канала частиц из Linac-III. Внутри зала оставлено место, достаточное для размещения внешней радиационной защиты, собранной из блоков тяжелого бетона с толщиной 80 см.

Рис. 1: План DESY-III и бустера (слева). Основное оборудование бустера (справа).

Инжекция в и вывод из бустера проводятся в горизонтальной плоскости. Орбита бустера находится в той же плоскости, что и орбита DESY–III. Трасса пучка поднимается от уровня линейного ускорителя в канале ввода частиц. При запуске ускорителя и в течение сеансов по его изучению выведенный пучок направляется в абсорбер. Канал вывода заканчивается в прямолинейном промежутке #6 DESY–III, который используется в настоящее время для инжекции из Linac–III.

Далее приводится техническое описание бустерного синхротрона.

<u>Структура и магниты.</u> Используются 12 диполей (D), 9 фокусирующих (QF) и 9 дефокусирующих (QD) квадруполей, образующих FODO цепочку, показанную на правом рис. 1. Структура имеет порядок симметрии 3, полную длину 57.6 м и состоит из 3 суперпериодов *ab*, *bc*, *ca* длиной 19.2 м каждый. Один суперпериод состоит из 3 периодов длиной 6.4 м. Диполи каждого центрального периода пропущены, чтобы оставить прямолинейные промежутки длиной 2.97 м для размещения ВЧ-резонатора, систем ввода/вывода и т.д.

Критическая энергия $\gamma_{\rm tr}=2.208$ (кинетическая 1.133 ГэВ) находится выше максимальной проектной энергии кольца. Номинальная рабочая точка расположена в центре области устойчивости ($Q_z=2.25$, $Q_x=2.25$), что может быть изменено позже. Естественная линейная хроматичность $\chi = p(\partial Q/\partial p)$ равна -1.854 в z- и -1.277 в x-направлениях. На левом рис. 2 показаны амплитудные и дисперсионная функции суперпериода.

Рис. 2: Динамические функции структуры (слева). Системы ввода/вывода пучка (справа).

Параметры магнитов приведены в табл. 2. Чтобы обеспечить достаточную апертуру для инжектируемого пучка и сохранить 3-кратную симметрию кольца, 3 квадруполя в центре каждого суперпериода имеют увеличенную апертуру с диаметром 84.6 мм.

Дипольный магнит		D	
Длина по полю		2.2	М
Радиус поворота		4.2017	м
Угол поворота		30	deg
Поле, 50/800 МэВ		0.2464/1.1617	Т
Скорость роста поля		2.615	T/c
Зазор		64	MM
Квадруполь	$\rm QF$	QD	
Длина по полю	0.230	0.230	М
Отношение $G/(B ho)$	1.5956	1.8973	${}_{\rm M}^{-2}$
Γ радиент, 50/800 МэВ	1.656/7.810	1.973/9.304	Т/м
Скорость роста градиента	17.58	20.94	Т/м/с
Диаметр апертуры	75	75(84.6)	MM

Таблица 2: Магниты структуры

Для коррекции орбиты вблизи каждой фокусирующей линзы соответствующего направления установлены 9 вертикальных и 9 горизонтальных дипольных корректоров с индивидуальным питанием. Их интегральная сила 0.0042 Т·м. Перед выводом создается импульсный горизонтальный бамп орбиты. Поэтому дополнительные обмотки 4 корректоров, расположенных вблизи участка вывода, увеличивают их силу до 0.014 Т·м.

Три D-, QF- и QD-цепи питаются независимо, что обеспечивает перестройку рабочей точки в пределах ±10%. Для коррекции линейной связи бетатронных колебаний предусмотрены 2 косых квадрупольных корректора с интегральным градиентом 0.06 Т. Хроматичность поддерживается вблизи 0 (отрицательной) в течение всего цикла с помощью 3 вертикальных и 3 горизонтальных секступольных корректоров с интегральной силой 12 Т/м.

Вакуумная система. Вакуумная камера изготовлена из нержавеющей стали и имеет эллиптическое поперечное сечение с внутренними размерами 59×87 мм² (вертикальный×

горизонтальный). Этого достаточно для проведения пучка по уровню $\pm 4\sigma$. Толщина стенок 1.5 мм. Сечение вакуумной камеры постоянно по кольцу за исключением небольшого прямолинейного участка ввода вблизи и внутри QD, где камера увеличена до 59×112 мм².

Давление остаточного газа составляет $\leq 2 \cdot 10^{-7}$ Торр и обеспечивает $\leq 10\%$ рост эмитттанса из-за рассеяния на остаточном газе. Кольцо и каналы ввода/вывода откачиваются магнито-разрядными насосами со скоростями откачки 100 l/c (7 единиц оборудования), 250 l/c (9) и 400 l/c (1). Предварительный вакуум получается с помощью передвижного поста откачки, оборудованного турбо-молекулярным насосом с производительностью 100 l/c.

Ускоряющая система. Используется 1 резонатор с ферритовым заполнением, аналогичный установленному в DESY–III. Диапазон перестройки частоты 3.269-8.763 МГц. Время ускорения 0.4 с (из них 0.3 с приходится на режим с линейным ростом магнитного поля) и соответствует частоте следования циклов 1 Гц. Максимальная скорость набора энергии 0.633 КэВ/оборот. В течение основной части цикла ускорения амплитуда ВЧ-напряжения V поддерживается постоянной на уровне 3.0 кВ. В конце цикла она снижается до 0.9 кВ, что обеспечивает продольное согласование сгустков при переводе. Предусмотрен режим 100% адиабатического захвата, в течение которого происходит медленное включение V от 0 до 3.0 кВ за 3 мс после плавного старта dB/dt от уровня плато инжекции.

Системы ввода и вывода. Схемы систем ввода/вывода показаны в правой части рис. 2. Данные их магнитов приведены в табл. 3.

Пучок инжектируется в горизонтальном направлении за 6 оборотов. Импульсные кикерные магниты KMLA, KMLB, KMLB' и KMLA' возбуждают быстрый симметричный бамп замкнутой орбиты. Пучок H^- проходит через септум SMI в KMLB и сливается с циркулирующим пучком H^+ выше линзы QD. После обдирки в тонкой ($\leq 40 \text{ мr/см}^2$) углеродной фольге инжектируемые частицы оказываются на предписанной орбите.

	KMI_A	KMI_B	SMI	KME	SME
Длина, м	0.500	0.600	0.300	1.800	0.800
Поле, мТ	73.6	74.5	552	33.7	964
Апертура верт.×гориз., мм ²	$38{\times}76$	$52{ imes}106$	$33{\times}46$	52×76	$30{\times}45$
Отклонение, мрад	35.5	43.2	160.0	12.43	158.0
Время спада поля, мкс	2	2			
Время подъема поля, нс				65	

Таблица 3: Магниты систем ввода/вывода.

Пучок выводится в горизонтальном направлении за 1 оборот с помощью кикерного (KME) и септумного (SME) магнитов. Центральная линза QD увеличивает отклонение пучка по направлению к SME. Чтобы облегчить требования к KME, с помощью 4 нормальных корректоров DCH возбуждается бамп замкнутой орбиты, приводящий к дополнительному смещению пучка на входе в SMI на 10.6 мм. Время подъема поля в быстром кикере KME позволяет вывести сгусток с длиной ≲150°(BЧ).

Каналы пучков. План каналов ввода и вывода пучков показан на левом рис. 1.

Длина канала инжекции (от линзы Q04 до QF/2 в бустере) — 21.919 м вдоль трассы пучка. Всего используется 8 квадруполей, 4 горизонтальных и 2 вертикальных поворотных диполя. Пучок отклоняется на 60° вправо и поднимается на +44 см по высоте от уровня Linac-III в плоскость орбиты бустера. Угол подъема 64.5 мрад относительно горизонта.

Длина канала вывода (от линзы QF/2 в бустере до QD6/2 в промежутке SS#6 кольца DESY-III) равна 74.739 м вдоль трассы. Используются 10 квадруполей и 5 горизонтальных

поворотных диполей. Пучок направляется на абсорбер при выключенном переключающем диполе MH1. Поворотные магниты MH2–5 идентичны диполям бустера (MH2–4 обеспечивают стандартный поворот на 30°). Каналы ввода и вывода пересекаются с разведением в 44 см по высоте. Отрезок MH3–MH4 идет параллельно (на расстоянии ~0.8 м) имеющемуся каналу от Linac к DESY–III. После магнита MH4 новый канал имеет ту же самую горизонтальную проекцию, что и существующий канал, подлежащий замене.

Каналы ввода/вывода согласованы по амплитудным и дисперсионным структурным функциям с бустером и DESY–III.