

На правах рукописи 2008–19

Колосов Владимир Николаевич

ИЗУЧЕНИЕ $\eta\eta$ -СИСТЕМЫ В $\pi^- p$ - И $K^- p$ -РЕАКЦИЯХ НА МОДЕРНИЗИРОВАННОЙ УСТАНОВКЕ ГАМС- 4π

01.04.23 – физика высоких энергий

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Протвино 2008

УДК 539.121.4

Работа выполнена в Институте физики высоких энергий (г.Протвино).

Научный руководитель – доктор физико-математических наук С.В. Донсков.

Официальные оппоненты: доктор физико-математических наук А.К. Лиходед (ОТФ, ИФВЭ), доктор физико-математических наук В.В. Куликов (ИТЭФ, Москва).

Ведущая организация – Институт ядерных исследований РАН (Москва).

Защита диссертации состоится "____" ____ 2008 г. в ______ часов на заседании диссертационного совета Д 201.004.01 при Институте физики высоких энергий по адресу: 142281, Протвино Московской обл.

С диссертацией можно ознакомиться в библиотеке ИФВЭ.

Автореферат разослан "____" ____ 2008 г.

Ученый секретарь диссертационного совета Д 201.004.01 Ю.Г. Рябов

(с) Государственный научный центр Российской Федерации Институт физики высоких энергий, 2008

Общая характеристика работы

Актуальность темы

В конце 80-х годов была проведена существенная модернизация установки ГАМС. Модернизированная установка получила название ГАМС-4 π . Рекордная статистика, набранная на установке ГАМС-4 π в период с 1991 по 2002 год, вместе с новым качеством данных явилась основанием для обращения к уже исследованным нейтральным системам. В диссертации представлены данные, полученные при изучении системы из двух η -мезонов. Система $\eta\eta$ изучалась в нескольких экспериментах с целью поиска экзотических состояний. Интерес к этой системе был вызван тем, что, согласно теоретическим представлениям, глюонные состояния имеют интенсивную моду распада в $\eta\eta$. Наличие только четных волн в системе $\eta\eta$ заметно упрощает процедуру парциально-волнового анализа (ПВА).

Более 25 лет назад в результате изучения $\eta\eta$ -системы в зарядовообменной $\pi^- p$ -реакции был обнаружен кандидат в скалярные глюболы – $G/f_0(1590)$ -мезон. Наблюдение G-мезона в $\eta\eta$ -системе в реакции центрального образования подтвердило гипотезу о том, что это состояние может иметь существенную глюонную составляющую. Позднее это состояние, обозначенное как $f_0(1500)$ -мезон, было обнаружено и в других реакциях ($p\bar{p}$ -аннигиляция, радиационные распады J/ψ), в которых ожидалось усиленное образование мезонов,

обогащенных глюонами. Все это позволяет считать $f_0(1500)$ серьезным кандидатом в глюболы.

Еще одно состояние в системе $\eta\eta$, которое, вероятно, также имеет экзотическую природу, – $f_0(1710)$ -мезон. Этот резонанс наблюдался во многих экспериментах, но его спин долгое время оставался неопределенным (рассматривалось два возможных значения J = 0 и 2). Наблюдение $f_0(1710)$ как скалярного состояния в радиационных распадах J/ψ , а также данные эксперимента WA102 для $\pi^+\pi^-$ - и K^+K^- -систем однозначно позволили установить скалярную природу $f_J(1710)$ -мезона. Впервые наблюдение $f_J(1710)$ в $\eta\eta$ -системе и определение его спина J = 0 было заявлено экспериментом WA102. Наличие двух узких скалярных состояний, параметры которых согласуются с вычислениями на решетках для массы глюбола в области 1.6 ГэВ, требует дальнейшего изучения $\eta\eta$ -системы.

Тензорный сектор также вызывает интерес. В $\eta\eta$ -системе в центральном рождении был обнаружен $f_2(2175)$ -мезон – кандидат в тензорные глюболы. Согласно вычислениям на "решетках" масса самого легкого тензорного глюбола должна находиться в районе 2200–2300 МэВ. Другое состояние $f_2(1810)$, наблюдаемое в одном из решений ПВА в $\eta\eta$ -системе, можно ассоциировать с сигналом, видимым в $4\pi^0$ -системе в зарядово-обменной реакции и в реакции центрального рождения.

Еще одним важным направлением в мезонной спектроскопии является изучение состояний с высокими спинами. До настоящего времени не существовало экспериментальной информации об $\eta\eta$ системе в области больших масс. Изучение этой области является одной из приоритетных задач.

Рекордная статистика позволила продвинуться в совершенно новую область: изучение системы из двух η -мезонов, образующейся в K-пучке. Ранее эта реакция не изучалась. Оба η -мезона регистрировались в моде распада на два γ -кванта. Как мы уже отмечали, интерес к $\eta\eta$ -системе вызван тем, что экзотические, прежде всего глюонные состояния, могут иметь интенсивную моду распада по этому каналу. Получение данных в реакциях с каонами может оказаться весьма перспективным для изучения природы образующихся резонансов.

Целью диссертационной работы является:

- модернизация центральной части установки ГАМС-4π добавлением электромагнитного детектора под малыми углами SAD (Small Angle Detector), на основе кристаллов вольфрамата свинца (PWO), изучение характеристик кристаллического детектора;
- исследование на модернизированной установке образования $\eta\eta$ -системы в $\pi^- p$ реакции

на качественно более высоком, чем в предыдущих работах, уровне точности;

– пионерское, благодаря рекордной статистике эксперимента, исследование образования $\eta\eta$ - системы в K^- -пучке в реакции

Научная новизна диссертации. Впервые в составе физической установки был использован многоячеистый калориметр из кристаллов PWO. Высокая статистическая обеспеченность эксперимента позволила на новом уровне провести парциально-волновой анализ системы $\eta\eta$, образующейся в зарядовообменной реакции в π^- пучке, измерить сечения резонансов. В S-волне в районе G(1590)мезона удалось разделить два частично перекрывающихся состояния: $f_0(1500)$ и $f_0(1710)$. В *J*-волне обнаружено широкое состояние с массой 3150 ± 150 МэВ и шириной 700 ± 150 МэВ. В K^- -пучке образование $\eta\eta$ -системы было изучено впервые. В спектре эффективных масс $\eta\eta$ -системы наблюдается $f_2(1525)$ -резонанс при низком уровне фона. Определено отношение вероятностей распада $f_2(1525)$ -мезона на $\eta\eta$ и $K\bar{K}$: $R = 0.119 \pm 0.015(stat) \pm 0.036(syst)$, что согласуется с табличным значением этой величины. Эти данные представляются существенным дополнением к уже накопленной информации по распадам $f_2(1525)$ -мезона.

Практическая ценность работы. Создан и исследован кристаллический РWO-калориметр SAD для регистрации фотонов под малыми углами, расширяющий возможности установки ГАМС-4 π . Результаты самых первых спектрометрических испытаний в пучке РWO-спектрометра продемонстрировали высокие качества, которые необходимы для проведения экспериментов в физике высоких энергий в условиях большой светимости, как на выведенных пучках, так и на коллайдерах. Создан комплекс программ для калибровки, физического контроля и анализа данных, полученных в эксперименте. Показана перспективность изучения состояний, образующихся в *K*-пучке с образованием π^0 - и η -мезонов.

На защиту выносятся:

- 1. Результаты по измерению характеристик детектора из кристаллов PWO в условиях реального эксперимента.
- 2. Результаты по изучению системы ηη-мезонов, образующихся в зарядово-обменной π⁻*p*-реакции при импульсе 32.5 ГэВ/*c*.
- 3. Результаты по изучению системы $\eta\eta$ -мезонов, образующихся в зарядово-обменной K^-p -реакции при импульсе 32.5 ГэВ/c.

Основные публикации и апробация работы. По результатам выполненных исследований были опубликованы работы [1,2,3,4], выполненные автором в 1996-2006 гг. Работы опубликованы в виде статей в журналах "Приборы и техника эксперимента", "Ядерная Физика", препринтов ИФВЭ и КЕК, доложены на сессии Академии Наук, научных семинарах ИФВЭ и на международной конференции НАDRON (Протвино 2001).

Апробация диссертации прошла в ГНЦ ИФВЭ 15 мая 2007 г.

Структура диссертации

Диссертация состоит из введения, трех глав и заключения, включает 21 рисунок и 3 таблицы, содержит список цитируемой литературы из 46 наименований.

Содержание работы

Во введении обоснована актуальность темы диссертации, сформулированы цели работы, показаны научная новизна проведенных исследований и их практическая ценность, а также описана структура диссертации.

В первой главе дано описание установки ГАМС-4*π*. Расположение аппаратуры установки схематично представлено на рис. 1.

Рис. 1. Экспериментальная установка ГАМС-4*π*. Рисунок из работы [3].

Основными элементами являются многофотонный спектрометр ГАМС-2000, широкоапертурный детектор фотонов ШАД, охранная система и адронный калориметр ГДА-100. Благодаря наличию ШАД, установка ГАМС-4 π позволяет одновременно сочетать высокую эффективность регистрации низкоэнергетичных γ -квантов, вылетающих под большими углами, с хорошим разделением фотонов и высоким разрешением по эффективной массе двух γ -квантов в прямом направлении. Это достигается благодаря относительно большому (6.8 метров) расстоянию от водородной мишени до спектрометра ГАМС-2000. Центральная часть спектрометра ГАМС дополнена 8×8 матрицей кристаллов РWО с размером ячейки 19×19×200 мм³.

ШАД представляет собой проекционный электромагнитный калориметр типа сандвич свинец-сцинтиллятор. Детектор имеет рабочую площадь 248×248 см² с центральным отверстием 36×36 см² и перекрывает углы от 0.150 до 1 радиана. Суммарная радиационная длина ШАД равна 12.5 X₀. Энергетическое разрешение составляет $13\%/\sqrt{E(\Gamma \Rightarrow B)}$. Расстояние между мишенью и передней плоскостью ШАД незначительно варьировалось для различных сеансов набора статистики и составляло около 1.2 м. Все частицы, прошедшие через центральное отверстие ШАД, регистрировались в спектрометре ГАМС. Жидководородная мишень ЖВМ была окружена сцинтилляционной охранной системой и охранной системой из свинцового стекла, которые регистрировали заряженные частицы и γ -кванты, вылетающие из мишени под большими углами. Спектрометр ГАМС- 4π обладает высокой эффективностью регистрации реакции (1) в области масс *пη*-системы вплоть до 4.5 ГэВ. Центральная часть детектора ГАМС размером 4 × 4 ячеек была заменена вставкой из 60 кристаллов PWO. Поперечный размер кристалла вдвое меньше размера стекла и равен 19 мм. Пространственное разрешение двух близких ливней, попавших в центральную зону, улучшается в два раза. Существенным является также радиационная стойкость кристаллов, расположенных в наиболее загруженной части калориметра.

Модернизации центральной части детектора ГАМС предшествовали испытания прототипов калориметра из кристаллов РШО в реальных условиях эксперимента в составе спектрометра ГАМС-4 π . Первые измерения РШО-калориметра как спектрометра по эффективной массе [1] были проведены в марте 1996 г. на 70 ГэВ ускорителе ИФВЭ в пучках отрицательных пионов с импульсом 32.5 ГэВ/с и электронов с импульсом 9.3 ГэВ/с. SAD-60 представляет собой матрицу (9 × 7) из кристаллов РШО; центральная ячейка матрицы удалена, чтобы пропустить пучок. Ячейки имеют форму шестигранных прямоугольных призм с расстоянием между противолежащими боковыми гранями 24 мм и длиной от $19X_0$ до $26X_0$ (в этих кристаллах $X_0 = 8.8$ мм, они по плотности превосходят железо). При длине поглощения сцинтилляционного света $\lambda = 1$ м указанный интервал длин ячеек РШО-калориметра является оптимальным для

диапазона энергий регистрируемых фотонов.

Значения пьедесталов записывались в течение цикла ускорителя как во время сброса пучка, так и вне его. Это дало возможность при последующей обработке оценить эффекты наложения перекрывающихся во времени сигналов в ячейках калориметра. Приведено подробное описание процедуры калибровки. Особое внимание было уделено изучению временной стабильности калориметра. Исследовалось влияние медленной компоненты высвечивания кристаллов на загрузочные характеристики детектора.

Часть охранных счетчиков ГАМС, окружавших 5-сантиметровую мишень из полистирола, была включена в триггер, выделявший нейтральные мезонные состояния, образованные в зарядовообменной реакции

$$\pi^{-}p \to M^{0}n.$$

$$\downarrow k\gamma.$$
(3)

Для подавления регистрации фотонов, вылетающих из мишени вне угловой апертуры калориметра SAD-60 (15 мрад), использовались счетчики типа сандвич. Пятно пионного пучка (≈ 4 см) существенно превосходило центральное отверстие в SAD-60, и значительная часть пучка попадала в ячейки PWO, расположенные вокруг отверстия. При максимальной интенсивности пучка ($4 * 10^6 \pi^-$ /сек) загрузка этих ячеек превышала $10^6 \pi^-$ /сек. Для дальнейшего анализа были отобраны события, содержащие два или более γ -ливня с суммарной энергией в интервале 3 ГэВ вблизи энергии, соответствующей энергии пучка. С учетом кинематики реакции и значительного эффекта загрузки порог для γ -квантов был выбран равным 2 ГэВ. Отбирались события, в которых величина утечки энергии за пределы калориметра была небольшой. Для этого требовалось, чтобы расстояние от восстановленного γ -кванта до границы калориметра было больше 18 мм.

Разрешение по массе π^0 -мезона получено при этом равным $\sigma_M = 5.0$ МэВ, $\sigma_M/M = 3.7\%$. Такое же разрешение было получено и без отбора событий в той части экспозиции, где интенсивность пучка была снижена до $1.4 * 10^6 \pi^-/$ сек. В этом случае вклад эффекта

наложения событий также мал. При максимальной интенсивности пучка (4 * $10^6 \pi^-$ /сек) и без отбора событий (при этом загрузка пучком нескольких ячеек РWO, расположенных вокруг центрального отверстия, превышала $10^6 \pi^-/c$) π^0 -пик расширяется на 10% из-за эффекта наложения событий: $\sigma_M = 5.5$ МэВ, $\sigma_M/M = 4.1\%$.

Вклад случайного наложения ливней от соседних по времени событий в разрешение по массе мы оцениваем $\approx 1\%$. При высокой интенсивности пучка этот вклад возрастает до $\approx 3\%$. Необходим также учет и других факторов, дающих вклад в разрешение по массе спектрометра: точность калибровки, вариации выхода сцинтилляционного света в кристаллах PWO при изменении температуры, дрейф усиления фотоумножителей, как долговременный, так и во время сброса пучка ускорителя. Измеренное разрешение PWO-калориметра по массе соответствует проведенным ранее измерениям на электронных пучках и результатам моделирования при помощи программы GEANT. Использование для калибровки распада $\pi^0 \rightarrow 2\gamma$ помогало корректировать изменение световыхода кристаллов PWO, дрейф фотоумножителей и электроники во время процесса измерений и позволило с высокой точностью определить в реальном времени калибровочные коэффициенты. Ожидавшиеся высокие эксплуатационные характеристики многоячеистых PWO-калориметров были подтверждены в результате самых первых испытаний в условиях реального физического эксперимента на ускорителе. Одновременно эти измерения выявили некоторые проблемы (медленная компонента) и позволили наметить пути их устранения.

На основе опыта, полученного при испытаниях прототипа SAD-60 на установке, был собран и испытан полномасштабный детектор из кристаллов PWO SAD-150 [2]. В новой технологии интенсивность медленной компоненты кристаллов была уменьшена на порядок величины. На рис. 2а показан спектр эффективных масс γ -пар, измеренный PWO-калориметром при расстоянии от мишени L = 3.8 м и при низкой интенсивности пучка. Разрешение по эффективной массе η -мезона составляет при этом 2.9%. При высокой интенсивности разрешение ухудшается на 7% (рис. 2b). Этот эффект объясняется неоднородной структурой детектора: на периферии, куда

в основном попадают γ -кванты от распада η -мезонов, расположены медленные кристаллы. Проведенные измерения доказали перспективность использования PWO-калориметров как прецизионных масс-спектрометров частиц, распадающихся на фотоны.

Рис. 2. Спектр эффективных масс γ-пар, измеренный PWO-калориметром при расстоянии от мишени *L* =3.8 м. Рисунок из работы [2].

Во второй главе представлено изучение системы $\eta\eta$ -мезонов, образующихся в реакции (1). Процесс изучался при импульсе 32.5 ГэВ/*c*, при этом оба η -мезона регистрировались по моде распада на два фотона. Экспериментальные данные были набраны в течение пяти сеансов работы ускорителя. Суммарный поток π^- -мезонов, про-пущенных через мишень установки, составил ~1.1×10¹² частиц. Чув-

ствительность представленных измерений составила ~ 1.5 пбн⁻¹. Для выделения реакции (1) из реконструированных событий с четырьмя γ -квантами в конечном состоянии были применены следующие критерии отбора:

- суммарная энергия четырех фотонов лежит в интервале 28.5
 35.5 ГэВ;
- энергия фотона в ГАМС превышает 0.6 ГэВ, а в ШАД 0.15 ГэВ;
- два фотона, попавшие в ГАМС, рассматриваются как один, если эффективная масса этой пары менее 25 МэВ, а расстояние между фотонами меньше 35 мм;
- расстояние между осью пучка и точкой попадания любого фотона в детектор превышает 30 мм;
- инвариантная масса γ -пары, идентифицированной как η , лежит в интервале $480 < m_{\gamma\gamma} < 620$ МэВ;
- уровень достоверности 2*C*-фита (фиксировались массы двух η-мезонов) составляет 92%.

Для подавления фона от более интенсивных $\pi^0 \pi^0$ - и $\pi^0 \eta$ -каналов реакции отбрасывались события, если хотя бы в одной из комбинаций:

- инвариантная масса любой ү-пары < 200 МэВ;
- инвариантная масса обеих γ -пар < 260 МэВ;
- инвариантная масса одной γ-пары < 260 МэВ, а другая лежит в интервале 420-680 МэВ.

Эффективность и разрешение установки определялись методом Монте-Карло, при этом учитывались геометрия спектрометра, разрешение детекторов, а также процедуры отбора и кинематического анализа событий. Эффективность была представлена в виде разложения по сферическим функциям $Y_L^M(\Omega_{\rm GJ})$

$$\varepsilon(\Omega_{\rm GJ}, M_{\eta\eta}, t) = \sum_{l,m} \varepsilon_{lm}(M_{\eta\eta}, t) \operatorname{Re} \left\{ Y_l^m(\Omega_{\rm GJ}) \right\}, \tag{4}$$

где $\Omega_{\rm GJ} \equiv [\cos \theta_{\rm GJ}, \phi_{\rm TY}]$ – пространственный угол в системе Готтфрида–Джексона.

Эффективность плавно изменяется в зависимости от эффективной массы $\eta\eta$ -системы вплоть до 4.5 ГэВ. Разрешение установки по массе составляло 17 МэВ при массе $\eta\eta$ 1.5 ГэВ, 35 МэВ – при 2 ГэВ, около 80 МэВ – при 3 ГэВ и около 160 МэВ при 4 ГэВ.

Угловые распределения η -мезонов в системе Готтфрида–Джексона могут быть выражены в виде разложения по сферическим гармоникам $Y_L^M(\Omega_{GJ})$

$$I(\Omega_{\rm GJ}) = \sum_{L=0}^{8} \left[t_L^0 Y_L^0(\Omega_{\rm GJ}) + 2 \sum_{M=1}^{2} t_L^M {\rm Re} \left\{ Y_L^M(\Omega_{\rm GJ}) \right\} \right].$$
(5)

В диссертации показаны наиболее значимые коэффициенты разложения t_L^M ряда (5), далее, для краткости "моменты". Эти моменты в предположении спиновой когерентности могут быть выражены в терминах парциальных амплитуд. Все моменты с M > 2 не имеют значимых отклонений от нуля, это позволяет допустить, что влиянием волн с $|m| \ge 2$ при анализе изучаемой области масс $\eta\eta$ -системы можно пренебречь. Кроме этого, моменты с M = 2 также значимо не отличаются от нуля. Заметим в этой связи, что указанные моменты выражаются через D_{-} , D_{+} , G_{-} , G_{+} -волны в виде линейных комбинаций: $(D_{-}^2 - D_{+}^2)$, $(G_{-}^2 - G_{+}^2)$ и $(D_{-}G_{-} + D_{+}G_{+})$, – это указывает на примерное равенство D_{-} , D_{+} - и G_{-} , G_{+} -амплитуд в изучаемой реакции. Для волн высших порядков эта особенность также имеет место. Такое поведение хорошо согласуется с моделью Окса–Вагнера.

Моменты с M = 0 на порядок величины больше соответствующих моментов с M = 1, что указывает на доминирующую роль волн с m = 0. При этом наблюдение слабых D_{-} - и G_{-} -амплитуд возможно в интерференции с относительно более интенсивными S- и D_0 -волнами. Другая ситуация имеет место с D_{+} - и G_{+} -амплитудами, которые входят в выражения для моментов (5) в виде квадратов или произведений друг с другом и, следовательно, их вклад сильно подавлен. Таким образом, малая величина моментов с M = 2 в случае, если D_{-} , D_{+} -, G_{-} , G_{+} -волны велики, может быть, когда D_{-} , D_{+} и G_{-} , G_{+} -амплитуды равны друг другу. Другая возможность – это просто малые величины амплитуд D_{-} , D_{+} -, G_{-} , G_{+} -волн. Как

будет показано в дальнейшем, предпочтительным является второй сценарий. Отметим, наконец, ненулевые значения момента t_{10}^0 для масс больше 2.5 ГэВ, что указывает на проявление волн со спином 6 и выше в этом интервале масс.

Процедура масс-независимого ПВА в модели спиновой когерентности подробно описана в литературе. Для подгонки угловых распределений в каждом массовом интервале используется метод максимума правдоподобия, который сводится к минимизации функционала в терминах парциальных амплитуд

$$F = -\sum_{i=1}^{N} \ln I(\Omega_{\rm GJ}^{i}) + \sum_{L,M} t_{L}^{M} \varepsilon_{L}^{M}, \qquad (6)$$

где N- число событий в выбранном массовом бине, ε_L^M- моменты в разложении эффективности регистрации, а t_L^M- моменты угловых распределений, выраженные через парциальные волны.

Для анализа данных в диапазоне до 1.7 ГэВ ширина бина была выбрана равной 20 МэВ. В этой области масс существенны только волны с J = 0 и 2. Таким образом, рассматривались волны S, D_0 , D_- и D_+ . Два возможных решения представлены на рис. 3. Мы рассматриваем второе решение как нефизическое из-за большой интенсивности *D*-волны на пороге реакции. В физическом решении вклад волн с m = 0 всюду существенно больше, чем вклад волн с |m| = 1. Другой характерной особенностью данных является фазовая когерентность D₀- и D₋-волн (в наших обозначениях разность фаз для этих волн равна π). Эта особенность уже отмечалась в предыдущих экспериментах по изучению рождения $\eta\eta$ и KK в зарядово-обменных реакциях, она находится в хорошем соответствии с предсказаниями модели Окса-Вагнера. В области масс до 1.7 ГэВ вклад от G-волны пренебрежимо мал, вследствие чего выбранное решение является однозначным. На самой последней стадии анализа амплитуда G₀-волны до 1.7 ГэВ фиксировалась из полученного масс-зависимого решения. Для ПВА в интервале масс $\eta\eta$ -системы от 1.7 до 2.5 ГэВ ширина бина была выбрана равной 40 МэВ. Вклад волн с $J \geq 4$ заметен в моментах t_6^0 и t_8^0 . Анализ показал, что

Рис. 3. Результаты масс-независимого ПВА $\eta\eta$ -системы при $-t < 0.2 \ (\Gamma \Rightarrow B/c)^2$ в массовом интервале $1.1 - 1.7 \ \Gamma \Rightarrow B$ с учетом S-, D_0 -, D_+ -, D_- -волн. Показаны два возможных решения. Второе решение рассматривается как нефизическое. Рисунок из работы [3].

вкладом высших волн в этом интервале можно пренебречь. На начальном этапе ПВА учитывались только S-, D_0 - и G_0 -волны (что соответствует J = 0, 2, 4 с m = 0). В этой упрощенной модели ПВА число нетривиальных решений равно двум. На следующем этапе к полученным решениям были добавлены волны с |m| = 1, а именно D_-, D_+ и G_-, G_+ , и анализ был проведен повторно. В результате были найдены решения с малым вкладом D_- , D_+ - и G_- , G_+ -волн.

И поскольку моменты с M = 0 везде существенно больше моментов с M = 1, только эти решения рассматривались в дальнейшем анализе. Таким образом, в каждом интервале было найдено два различных решения.

Одно из двух возможных решений представлено на рис. 4.

Рис. 4. Первое решение (предпочтительное) масс-независимого ПВА $\eta\eta$ системы при $-t < 0.2 (\Gamma \Im B/c)^2$ в массовом интервале $1.1 - 2.5 \Gamma \Im B$ с учетом всех волн до спина 4 включительно. Волны с проекциями + и – не показаны как несущественные. Сплошные линии – результат масс-зависимого ПВА. Рисунок из работы [3].

В S-волне наблюдаются три относительно широких пика при 1.3, 1.6 и 2.2 ГэВ. В спектре S-волны заметна узкая структура, соответствующая $f_0(1500)$ -мезону. В предыдущих экспериментах со-трудничества ГАМС наблюдался только один пик в районе 1.6 ГэВ

(G(1590)-мезон). Параметры этого резонанса отличались от параметров скалярного резонанса, наблюдаемого в других экспериментах. В настоящем эксперименте была получена на порядок большая статистика, что позволило разделить сигнал в районе G(1590) на два резонанса $f_0(1500)$ и $f_0(1710)$. Этот результат согласуется с данными эксперимента WA102, в котором в $\pi^+\pi^-$ - и K^+K^- -каналах наблюдался сигнал от скалярного $f_0(1710)$ -мезона. Отметим также пик в районе 2.2 ГэВ, который наблюдается только в этом решении. В D_0 -волне видны три пика в районе 1.4, 1.9 и 2.4 ГэВ. Наконец, в G_0 -волне виден сигнал от $f_4(2050)$ -мезона. Все вместе это позволяет предпочтительно интерпретировать данное решение как физическое.

В области масс выше 2.5 ГэВ с помощью аналогичной процедуры были найдены два решения. Ширина массового бина была выбрана равной 80 МэВ. Поскольку момент с L = 10 показывает присутствие соостояний с высшими спинами, в фит были добавлены амплитуды для спина 6. Резкое изменение параметра наклона *t*-зависимости в районе 3 ГэВ указывает на возможный вклад волн с обменом натуральной спин-четностью. Число нетривиальных решений в этом случае только для амплитуд с ненатуральной спин-четностью возрастает до 32. В упрощенном варианте анализа нами были найдены только два решения, соответствующие двум решениям из области до 2.5 ГэВ. В найденных решениях в *J*-волне на рис. 5 виден широкий пик в районе 3 ГэВ.

Для определения параметров резонансов, образующихся в $\eta\eta$ системе, поправленные на эффективность экспериментальные моменты фитировались моментами, вычисленными на основе модели ПВА. Выражение для *lm*-парциальной амплитуды

$$A^{lm}(M_{\eta\eta}) = \sum_{k=1}^{N_{\rm res}} a_k^{lm} e^{i\theta_k} \mathrm{BW}_k(M_{\eta\eta}), \tag{7}$$

где $N_{\rm res}$ -число резонансов в каждой парциальной волне, a_k , θ_k амплитуда и фаза резонанса k, BW_k -релятивистские амплитуды Брейта-Вигнера с барьерными факторами Блатта-Вайскопфа. Ранее для описания относительно узкого пика в *D*-волне в районе 1.4 ГэВ использовались два близких резонанса $f_2(1270)$ и $f_2(1525)$. В нашем

фите параметры этих резонансов были зафиксированы согласно их табличным значениям. Для $f_2(1270)$ мы полагали, что $\pi\pi$ насыщает его полную ширину.

Рис. 5. J_0 -волна, полученная в результате масс-независимого ПВА $\eta\eta$ системы при $-t < 0.2 (\Gamma \ni B/c)^2$ в массовом интервале $2.4 - 3.6 \Gamma \ni B$. Показан результат для двух масс-независимых решений. Сплошные линии – результат масс-зависимого ПВА для двух различных решений. Небольшое расхождение результатов масс-независимого и масс-зависимого ПВА в области масс $3.4 \Gamma \ni B$ и выше связано, вероятно, с влиянием спина 8. Рисунок из работы [3].

Результаты масс-зависимого ПВА представлены в виде таблиц для двух найденных решений. Обсуждаются параметры резонансов и приводятся аргументы в пользу одного из решений. Положение резонанса $M = (1495 \pm 15)$ МэВ хорошо согласуется с табличным значением для $f_0(1500)$ -мезона, однако полученное значение для его ширины $\Gamma = (90 \pm 20)$ МэВ несколько меньше табличного.

Пик в S-волне в районе 1.7 ГэВ мы интерпретируем как $f_0(1710)$ мезон. Для его массы и ширины получены следующие значения:

$$M = (1680 \pm 20)$$
 МэВ и $\Gamma = (260 \pm 50)$ МэВ.

Резонанс $f_0(2200)$ виден только в физическом решении. Следует отметить, что это состояние проявляется лишь при учете в анализе *G*-волны. В обоих решениях ПВА наблюдается также и широкое состояние со спином 6. Для его массы и ширины получены следующие оценки:

$$M = (3150 \pm 150)$$
 МэВ и $\Gamma = (700 \pm 150)$ МэВ.

Наконец, используя измеренное при 38 ГэВ/c сечение образования в зарядово-обменной реакции $f_2(1270)$ -мезона равное (2.6 \pm 0.2) мкбн и после поправки на его зависимость от энергии, для относительной ширины распада $f_2(1270) \rightarrow \eta\eta$ было получено значение

BR
$$(f_2(1270) \to \eta\eta) = (2.7 \pm 0.7) \times 10^{-3},$$

что согласуется с табличным значением для этой величины и свидетельствует в целом о согласованности данных настоящего эксперимента с предыдущими.

В целом, нам удалось достичь приемлемого качества описания данных с помощью ограниченного набора резонансов, проявляющихся в физическом, с нашей точки зрения, решении ПВА. Вместе с тем, очевидны и ограничения данного метода. Во-первых, при анализе не принимались во внимание другие процессы образования и распада резонансов. Во-вторых, хорошо известно, что параметризация амплитуды в форме Брейта–Вигнера хорошо работает вдали от порогов реакций и в отсутствии сильного перекрытия резонансов. Напротив, для $\eta\eta$ -системы в реакции (1) характерно наличие многих перекрывающихся резонансов в каждой парциальной волне, при этом два весьма важных резонанса, $f_0(1370)$ и $f_2(1270)$, образуются вблизи порога. Поэтому мы рассматриваем полученные результаты как неплохую отправную точку для совместного анализа, который должен включать также наши данные по $\pi^0\pi^0$ - и K_sK_s -системам.

В третьей главе представлено исследование реакции (2) при импульсе пучка 32.5 ГэВ/с. Ранее эта реакция не изучалась. Оба

 η -мезона регистрировались в моде распада на два γ -кванта. Интерес к $\eta\eta$ -системе вызван тем, что экзотические, прежде всего глюонные состояния, могут иметь интенсивную моду распада по этому каналу. Получение данных в реакциях с каонами может оказаться весьма полезным для изучения природы образующихся резонансов.

Рис. 6. Спектр инвариантных масс $\eta\eta$ -систем в реакции (2). Рисунок из работы [4].

В спектре масс (рис. 6) хорошо виден узкий пик в районе 1500 МэВ. Фон под пиком незначительный, небольшая статистика не позволяет делать какие-либо выводы о наличии других структур в массовом спектре. Наиболее естественно отождествить наблюдаемый пик с $f_2(1525)$ -мезоном. Образование $f_2(1525)$ в реакции

было детально изучено ранее.

Полученная статистика недостаточна для проведения масснезависимого ПВА. Масс-зависимый ПВА был проведен для событий

из массового интервала от 1.4 до 1.7 ГэВ и переданного импульса от 0 до 1.6 $(\Gamma \Rightarrow B/c)^2$ для трех альтернативных гипотез спина наблюдаемого резонанса: J = 0, 2 и 4. Использовался метод максимума правдоподобия, при этом минимизировался функционал:

$$\mathcal{L}_{J} = -2\sum_{i=1}^{N} \ln I_{J}(\Omega_{GJ}^{i}, M_{\eta\eta}^{i}, t^{i}) + 2\int (I_{J}(\Omega_{GJ}, M_{\eta\eta}, t)\varepsilon(\Omega_{GJ}, M_{\eta\eta}, t))d\Omega_{GJ}dM_{\eta\eta}dt, \qquad (9)$$

где $\Omega_{GJ} \equiv [\cos \theta_{GJ}, \phi_{TY}]$ – пространственный угол в системе Готтфрида-Джексона, N – число событий, попавших в выбранные интервалы по массе и переданному импульсу, i – индекс события, $\varepsilon(\Omega_{GJ}, M_{\eta\eta}, t)$ – четырехмерная функция эффективности установки для регистрации событий реакции (2), $I_J(\Omega_{GJ}, M_{\eta\eta}, t)$ – модельнозависимая интенсивность образования $\eta\eta$ -событий от распада резонанса со спином J. Для резонанса со спином J вычислялась релятивистская амплитуда Брейта-Вигнера с барьерными факторами Блатта-Вайскопфа. При этом t-зависимость для S-, D_0 - и G_0 -амплитуд бралась в виде $a \sim e^{-b_a|t|}$, а для D_{-} -, D_{+} - и G_{-} , G_{+} -амплитуд мы полагали $a \sim \sqrt{|t|}e^{-b_a|t|}$. Значения функции правдоподобия \mathcal{L}_J для трех рассматриваемых гипотез представлены в табл. 1.

<u>Таблица 1.</u> Значения функции правдоподобия \mathcal{L}_J (см. выражение (9)), вычисленные для трех гипотез значения спина наблюдаемого резонанса.

J^{PC}	0^{++}	2^{++}	4^{++}
L	-684.0	-704.3	-687.5

Наиболее вероятное значение спина наблюдаемого резонанса равно, как и ожидалось, 2. Для его массы и ширины, с учетом разрешения спектрометра, получены следующие значения: $M = 1514 \pm 8$ МэВ

и $\Gamma = 92^{+25}_{-16}$ МэВ, что согласуется с табличными значениями этих величин для $f_2(1525)$ -мезона.

В выбраный интервал 1.4 – 1.7 ГэВ попало 61 событие. Эта статистика использовалась для расчета сечения образования $f_2(1525)$. Описана процедура моделирования. Доля полностью восстановленых событий в интервале эффективных масс 1.4 – 1.7 ГэВ составила 0.423 ± 0.007. Триггерная система установки была оптимизирована для регистрации нейтральных $\pi^- p$ -взаимодействий, поэтому регистрировались только события с нейтральными распадами Λ . При расчете сечения был учтен $BR(\Lambda \to n\pi^0) = 0.36 \pm 0.005$. После поправок на конверсию γ -квантов в мишени и вето-счетчиках, учета вероятностей распада η -мезонов, поправок на мертвое время триггерной электроники, а также учета взаимодействий на пустой мишени, было получено сечение $\sigma(K^-p \to f_2(1525)(\Lambda/\Sigma^0)) \times BR(f_2(1525) \to \eta\eta) = 78.3 \pm 9.9 \pm 8.1(syst)$ нб.

Используя компиляцию сечений реакции образования $f_2(1525)$ в K^-p - взаимодействиях по каналу $K\bar{K}$ при различных импульсах пучка, для 32.5 ГэВ/с была сделана оценка $\sigma(K^-p \rightarrow f_2(1525)\Lambda) \times BR(f_2(1525) \rightarrow K\bar{K}) = 0.52 \pm 0.12$ мкб. В нашем эксперименте нет идентификации частиц отдачи Λ/Σ^0 , поэтому для оценки сечения с образованием Λ был учтен поправочный коэффициент. Вычисленное отношение вероятностей распадов

$$\frac{BR(f_2(1525) \to \eta \eta)}{BR(f_2(1525) \to K\bar{K}_{-})} = 0.119 \pm 0.015(stat) \pm 0.036(syst)$$

хорошо согласуется с табличным.

В заключении перечислены основные результаты диссертационной работы:

 Создан и исследован кристаллический PWO-калориметр SAD, являющийся детектором под малыми углами, расширяющий возможности установки ΓАМС-4π. Измеренное разрешение калориметра по массе соответствует проведенным ранее измерениям и результатам моделирования.

- 2. Калориметр SAD показал высокие эксплуатационные характеристики при работе в пучках с высокой загрузкой. Использование сигналов от π⁰- и η-мезонов помогало корректировать изменение световыхода кристаллов PWO, дрейф фотоумножителей и электроники во время процесса измерений и позволило с высокой точностью определить калибровочные коэффициенты. Подтверждена перспективность использования многоячеистых PWO-калориметров при работе в готовящихся экспериментах с высокой светимостью (CMS, ALICE).
- 3. Выполнен ПВА $\eta\eta$ -системы в зарядово-обменной $\pi^- p$ -реакции при 32.5 ГэВ/*c*. Анализ проведен в интервале масс от 1.1 до 3.9 ГэВ при $-t < 0.2 \ (\Gamma$ эВ/с)² с учетом *S*-, *D*-, *G* и *J*-волн. Определено наиболее вероятное физическое решение.
- 4. В области масс до 2 ГэВ ПВА показал наличие нескольких перекрывающихся резонансов с различными спинами. В частности, в S-волне хорошо видны три состояния: $f_0(1370)$, $f_0(1500)$ и $f_0(1710)$. При этом, благодаря высокой статистической обеспеченности эксперимента в районе G(1590)-мезона, разделены два частично перекрывающихся состояния: $f_0(1500)$ и $f_0(1710)$.
- 5. В ПВА при больших массах $\eta\eta$ -системы отдается предпочтение решению, в котором проявляются $f_2(1950)$ и $f_0(2200)$ -резонансы.
- 6. В области масс выше 2.4 Гэ
В доминирует G-волна. В J-волне обнаружено широкое состояние с массой 3150 \pm 150 М
эВ и шириной 700 \pm 150 МэВ.
- 7. Впервые изучена реакция $K^- p \to \eta \eta \ (\Lambda / \Sigma^0)$.
- 8. В спектре эффективных масс $\eta\eta$ -системы наблюдается $f_2(1525)$ резонанс при низком уровне фона. Для его массы и ширины получены следующие значения: $M = 1514 \pm 8$ МэВ и $\Gamma = 92^{+25}_{-16}$ МэВ, что согласуется с табличными значениями этих величин.
- 9. Измерено сечение образования

$$\sigma(K^-p \to f_2(1525)(\Lambda/\Sigma^0)) \times BR(f_2(1525) \to \eta\eta) = 78.3 \pm 9.9 \pm 8.1(syst)$$
 нб.

Определено отношение вероятностей распада $f_2(1525)$ -мезона на $\eta\eta$ и $K\bar{K}$: $R = 0.119 \pm 0.015(stat) \pm 0.036(syst)$, что согласуется с табличным значением этой величины.

Список литературы

- A.M. Blick, V.A. Kachanov, G.V. Khaustov, <u>V.N. Kolosov</u>, M.V. Korzhik, A.A. Lednev, J.P. Peigneux, S.A. Polovnikov, V.A. Polyakov, Yu.D. Prokoshkin, V.D. Samoylenko, P.M. Shagin, A.V. Shtannikov, A.V. Singovsky, V.P. Sugonyaev: FIRST OPERATION OF THE PWO CRYSTAL CALORIMETER AS A MASS SPECTROMETER IN A HEAVY-LOAD HIGH ENERGY PHYSICS EXPERIMENT. Препринт ИФВЭ 96-57, Протвино, 1996; ПТЭ 6, 38-42 (1997).
- [2] F.G. Binon, A.M. Blick, A.V. Dolgopolov, S.V. Donskov, V.A. Kachanov, G.V. Khaustov, <u>V.N. Kolosov</u>, M.V. Korzhik, A.A. Lednev, V.A. Lishin, J.P. Peigneux, Yu.D. Prokoshkin, P.M. Shagin, A.V. Singovsky, J.P. Stroot, V.P. Sugonyaev: **BEAM STUDIES OF SAD-150 HEAVY CRYSTAL PWO CALORIMETER, SMALL ANGLE MULTIPHOTON DETECTOR OF GAMS-4** π **SPECTROMETER.** Препринт ИФВЭ 97-4, Протвино, 1997. Nucl.Instrum. Methods A **428**, 291 (1999).
- [3] Ф. Бинон, А.М. Блик, С.В. Донсков, С. Инаба, <u>В.Н. Колосов</u>, А.А. Леднев, В.А. Лишин, Ю.В. Михайлов, Ж.П. Пенье, В.А. Поляков, В.Д. Самойленко, А.Е. Соболь, Ж.П. Строот, В.П. Сугоняев, К.Такамацу, Т. Тсуру, И. Фуджи, Г.В. Хаустов, Х. Шимицу, И. Ясу: ИЗУЧЕНИЕ ηη -СИСТЕМЫ В π⁻p-ВЗАИМОДЕЙСТВИЯХ ПРИ 32.5 ГэВ/с НА УСТАНОВ-КЕ ГАМС-4π. ЯФ 68№6, 998-1011 (2005).

A.M. Blick, F.G. Binon , A.V. Dolgopolov, S.V. Donskov, S. Inaba, Y. Fujii, G.V. Khaustov, <u>V.N. Kolosov</u>, A.A. Kondashov, A.A. Lednev, V.A. Lishin, J.P. Peigneux, V.A. Polyakov, S.A. Sadovsky, V.D. Samoylenko, P.M. Shagin, H. Shimizu, A.V. Singovsky,

A.E. Sobol, J.P. Stroot, V.P. Sugonyaev, K. Takamatsu, T. Tsuru, Y. Yasu, A.Yu. Zvyagin: STUDY OF THE $\eta\eta$ SYSTEM IN THE π^-p CHARGE EXCHANGE REACTION AT 32 GeV/c WITH THE GAMS- 4π SPECTROMETER. The Ninth International Conference on Hadron Spectoscopy, Protvino, Russia, 27 Aug - 1 Sep., 2001, AIP conference proceedings,V 619, Melville, New York, 2002, page 637, KEK Preprint, 2002-40, June 2002.

[4] Ф. Бинон, А.М. Блик, С.В. Донсков, С. Инаба, <u>В.Н. Колосов</u>, В.М. Кутьин, М.Е. Ладыгин, А.А. Леднев, В.А. Лишин, Ю.В. Михайлов, Ж.П. Пенье, В.А. Поляков, В.Д. Самойленко, А.Е. Соболь, Ж.П. Строот, В.П. Сугоняев, К.Такамацу, Т. Тсуру, И. Фуджи, Г.В. Хаустов: НАБЛЮДЕНИЕ РЕЗОНАНСА f₂(1525) В СИСТЕМЕ ηη В K⁻p-ВЗАИМОДЕЙСТВИЯХ ПРИ 32.5 ГэВ/с. ЯФ 70N10, 1758-1761 (2007).

Рукопись поступила 3 октября 2008 г.

В.Н. Колосов Изучение
 $\eta\eta$ -системы в π^-p -
и K^-p -реакциях на модернизированной установке ГАМС-4
 $\pi.$

Оригинал-макет подготовлен с помощью системы **LAT_EX.** Редактор Л.Ф. Васильева.

Подписано к печати 10.10.2008. Формат 60 × 84/16. Офсетная печать. Печ.л. 1,54. Уч.-изд.л. 1,75. Тираж 100. Заказ 66. Индекс 3649.

ГНЦ РФ Институт физики высоких энергий 142281, Протвино Московской обл.

Индекс 3649

A B T O P E Φ E P A T 2008–19, Π Φ B \Im , 2008