

И Ф государственный научный центр российской федерации В ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

> 2013–3 На правах рукописи

Новоселов Алексей Анатольевич

Рождение очарованных частиц при высоких энергиях

01.04.23 – Физика высоких энергий

Автореферат

диссертации на соискание ученой степени кандидата физико-математических наук

Протвино – 2013

Работа выполнена в Отделе теоретической физики ФГБУ ГНЦ ИФВЭ.

Научный руководитель — доктор физико-математических наук, профессор А.К. Лиходед (ИФВЭ, г. Протвино).

Официальные оппоненты: академик РАН, доктор физико-математических наук, профессор С.П. Денисов (ИФВЭ, г. Протвино), доктор физикоматематических наук, профессор С.П. Баранов (ФИАН, г. Москва).

Ведущая организация — Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына Московского государственного университета им. М.В. Ломоносова, г. Москва.

Защита диссертации состоится «_____» _____ 2013 г. в ______ часов на заседании диссертационного совета Д 201.004.01 при ФГБУ ГНЦ ИФВЭ по адресу: 142281, г. Протвино, пл. Науки, д. 1.

С диссертацией можно ознакомиться в библиотеке ФГБУ ГНЦ ИФВЭ.

Автореферат разослан «_____» _____ 2013 г.

Отзывы и замечания по автореферату в двух экземплярах, заверенные печатью, просьба высылать по вышеуказанному адресу на имя ученого секретаря диссертационного совета.

Ученый секретарь диссертационного совета Д 201.004.01

Ю.Г. Рябов

 (с) Государственный научный центр Российской Федерации
 Институт физики высоких энергий, 2013

Общая характеристика работы

Актуальность темы исследования:

4 июля 2012 года в ЦЕРНе состоялся семинар на котором были представлены результаты поиска хиггсовского бозона на LHC в данных 2011 и 2012 годов при энергиях протон-протонных соударений 7 и 8 ТэВ. В двух подробных докладах коллаборации ATLAS и CMS показали, что намеки на существование новой частицы с массой около 126 ГэВ, имевшиеся в данных 2011 года, подтверждаются и новыми данными. Локальная статистическая значимость достигла 5.9 и 5.0 стандартных отклонений в измерениях ATLAS [1] и CMS [2] соответственно.

Результат LHC заключается не только в том, что найдена новая частица, но и в том, что она проявляется сразу в нескольких каналах распада с примерно той интенсивностью, с которой должен проявляться бозон Хигтса. При этом наибольшую статистическую значимость имеет канал распада на два γ -кванта, имеющий относительную вероятность порядка 0.2% [3]. Также заметное превышение сигнала над фоном обнаружено в каналах распадов на WW^* и ZZ^* , имеющих относительные вероятности порядка 20% и 3%, соответственно. Основной же канал распада на $b\bar{b}$, имеющий относительную вероятность около 60%, не обнаружен в настоящий момент из-за большого фона. Такая же проблема имеет место в поиске канала распада на $c\bar{c}$, имеющего относительную вероятность около 3%.

Ситуация должна быть иной для экспериментов на e^+e^- -коллайдерах будущего. При столкновении бесструктурных лептонов будет отсутствовать значительный КХД фон, свойственный *pp*-взаимодействиям. Это позволит использовать основной канал распада легкого бозона Хиггса на пары тяжелых кварков.

Экспериментально наблюдаемыми в детекторах частицами являются не тяжелые кварки, а тяжелые адроны, образующиеся из них. Процесс рождения тяжелых адронов объединяет эффекты на разных энергетических масштабах. При этом рождение кварк-антикварковой пары, происходящее на большом энергетическом масштабе, таком, как, например, масса бозона Хиггса, может быть вычислено в теории возмущений КХД. Последующий переход тяжелого кварка в тяжелый адрон происходит на масштабе энергий порядка $\Lambda_{\rm QCD}$, на котором константа сильного взаимодействия велика и применение теории возмущений невозможно. Для описания этого непертурбативного процесса применяют феноменологический подход, использующий понятие функции фрагментации — функции, описывающей распределение по доле импульса тяжелого кварка, уносимой образующимся тяжелым адроном. Таким образом, для описания рождения тяжелых адронов в каждом конкретном процессе необходимо знать фрагментационную функцию на соответствующем ему энергетическом масштабе.

Для очарованных адронов существует наибольшее количество экспериментальных данных по их рождению при разных энергиях [4–6]. Именно они будут использоваться в первой главе диссертации, посвященной вопросам расчета функций фрагментации *с*-кварка при различных энергиях.

Другим актуальным вопросом, связанным с образованием очарованных частиц, является рождение адронов со скрытым очарованием — чармониев. Как и в случае фрагментационного рождения мезонов с открытым очарованием, рождение чармониев описывается эффектами на двух энергетических масштабах: жестким процессом образования тяжелой кварк-антикварковой пары и мягким процессом перехода этой пары в конечный кварконий. Последний процесс описывается непертурбативными матричными элементами $\langle O_n^H(^{2s+1}L_J)\rangle$, отвечающими вероятностям перехода кварк-антикварковой пары с определенными квантовыми числами в тяжелый кварконий H. Здесь n = 1 обозначает синглетные, а n = 8 — октетные по цвету конфигурации.

Синглетная по цвету модель, предложенная в [7,8], была использована в попытке описать первые экспериментальные данные по рождению J/ψ -мезонов. Избыток наблюдаемого сечения этого процесса на Tevatron [9], особенно на больших p_T , показал недостаточность такого подхода, по крайней мере, в лидирующем порядке. Предложенная вслед за этим модель с дополнительным вкладом от октетных по цвету состояний [10] на время разрешила противоречие между теорией и экспериментальными наблюдениями. Используемое при этом значение октетного матричного элемента $\langle O_8^H({}^3S_1)\rangle$ не только улучшило описание *p*_T-спектра на больших поперечных импульсах, но и привело к предсказанию доминирующей поперечной поляризации рождающихся чармониев, следующей из октетных вычислений [11]. Такое предсказание, однако, не нашло подтверждения в экспериментальных измерениях [12]. Далее были развиты вычисления в следующем за лидирующем порядке теории возмущений, показавшие, что вклад от синглетных по цвету $c\bar{c}$ пар может существенно увеличить выход продольно поляризованных J/ψ [13,14]. Но на этот раз вычисленная доля продольной поляризации оказалась существенно большей, чем измеренная на Tevatron [15].

В настоящее время не найдено подхода, позволяющего одновременно описать и *p*_T-спектр и поляризацию чармониев, рождающихся в адронных соударениях [16]. Поэтому желательно изучение какого-либо еще процесса, зависящего от использования синглетного или октетного по цвету подхода.

С началом работы LHC стало возможным изучение процесса парного рождения J/ψ -мезонов в адронных соударениях. Несмотря на то, что такой процесс уже наблюдался в 80-е годы коллаборацией NA3 [17, 18], именно высокие энергия и светимость, достигаемые LHC, позволят подробно изучить кинематические распределения частиц в этой реакции. Специализированным детектором LHC для изучения физики тяжелых кварков явля-

ется установка LHCb. Одной из задач, решенных в настоящей диссертации, является предсказание сечений и кинематических распределений рождения J/ψ -частиц в ее условиях. Поскольку LHCb позволяет детектировать J/ψ -мезоны без ограничения снизу по их поперечному импульсу, а сечение рождения пар J/ψ быстро падает с поперечным импульсом, на первое время достаточно получить предсказание в синглетной по цвету модели, дающей доминирующий вклад в этой кинематической области.

Обсуждающиеся выше процессы парного рождения тяжелых кваркониев инициированы взаимодействиями двух партонов, по одному из каждого протона (SPS). В условиях LHC, однако, может проявляться новый феномен, дающий вклад в образование тех же конечных состояний. Он связан с тем, что большие адронные сечения на LHC во многом обусловлены большой плотностью глюонов с малыми долями импульса протона. В таких условиях уже нельзя пренебрегать более чем одиночными глюон-глюонными взаимодействиями. В диссертации будут обсуждаться двойные партонные взаимодействия (DPS), в которых при одном протон-протонном рассеянии происходит два партонных подпроцесса, в каждом из которых образуются очарованные частицы.

При рассмотрении рождения пар кваркониев в синглетной по цвету модели возникают правила отбора [19], которые могут помочь в разделении вкладов от одиночных и двойных партонных взаимодействий. Как и правила отбора, возникающие при рассмотрении распадов кваркониев, они связаны с сохранением зарядовой четности в сильных взаимодействиях. Поскольку в одиночных партонных взаимодействиях бесцветное конечное состояние рождается на двух глюонах, то C-четность пары кваркониев должна быть положительна. Это запрещает рождение пар кваркониев с разной C-четностью в лидирующем порядке и без учета октетных вкладов. При рассмотрении двойных партонных взаимодействий подавления в таких каналах, естественно, не возникает. В диссертации будут рассмотрены как различия в сечениях, предсказываемых обоими подходами, так и разница в распределениях по кинематическим переменным.

Совершенно очевидно, что наличие дополнительного механизма двойных партонных взаимодействий должно проявлять себя и в других каналах четырех-*c*-кваркового сектора: в ассоциированном рождении J/ψ и адрона с открытым очарованием и двойном рождении адронов с открытым очарованием. Интересно выяснить, каковы роли одиночных и двойных партонных взаимодействий в случае этих реакций. В диссертации будут приведены результаты расчета сечений этих процессов в одиночных партонных взаимодействиях и оценки вклада двойных.

Одним из важных для теории свойств тяжелых кваркониев является сравнительно малая скорость движения составляющих их кварков, вызван-

ная их массой. Это позволяет использовать нерелятивистскую квантовую механику для расчета уровней энергий этих частиц [20]. С использованием того же потенциала можно рассчитать и спектр масс связанных состояний четырех тяжелых кварков — тетракварков, еще не обнаруженных экспериментально. При этом в распадах *В*-мезонов наблюдается ряд резонансов, имеющих в своем составе тяжелые кварки, но не вписывающиеся в стандартную кварк-антикварковую модель [21–23]. Предполагается, что они состоят из четырех кварков, два из которых — тяжелые. В диссертации будут рассмотрены тетракварки, состоящие из только тяжелых кварков и могущие быть обнаруженными в каналах распада на пары тяжелых кваркониев.

Цель диссертационной работы состоит в решении ряда задач, связанных с образованием очарованных адронов при фрагментации *c*-кварка, рожденного в процессе e^+e^- -аннигиляции, и при образовании двух $c\bar{c}$ пар в *pp* взаимодействиях:

- 1. Установить, возможно ли использовать универсальную, зависящую только от типа образующегося адрона, непертурбативную функцию фрагментации *c*-кварка при расчете импульсных спектров очарованных адронов в e^+e^- -взаимодействиях при различных энергиях.
- 2. Проверить, выполняются ли для *с*-кварка предположения модели КЛП о различии в фрагментации в мезоны и барионы.
- 3. Исследовать применимость фрагментационного подхода к адронизации *с*-кварка в распадах *В*-мезонов.
- Получить предсказания сечений процессов рождения пар J/ψ-мезонов, ассоциативного рождения J/ψ-мезона и cc̄ пары и рождения двух cc̄ пар в условиях установки LHCb.
- 5. Найти спектр масс третракварков, состоящих из четырех очарованных кварков и изучить возможность наблюдения их распадов на два J/ψ -мезона.

Для решения первых двух задач непертурбативные функции фрагментации *с*-кварка в $D^{(*)}$ -мезоны и $\Lambda_{\rm C}$ -барионы были численно извлечены из данных *B*-фабрик на энергии 10.5 ГэВ используя NLO-эволюцию пертурбативной части функции фрагментации. Далее была проведена NLO-эволюция этих фрагментационных функций на энергию 91.2 ГэВ для сравнения с данными LEP.

Для решения третьей задачи был найден импульсный спектр *с*-кварков в распаде *B*-мезонов и получено распределение по импульсу образующихся очарованных адронов во фрагментационном подходе.

Для решения четвертой задачи были написаны программы, позволяющие генерировать события рождения пар J/ψ -мезонов, ассоциативного рождения J/ψ -мезона и $c\bar{c}$ пары и рождения двух $c\bar{c}$ пар в pp-соударениях при одиночных глюон-глюонных взаимодействиях. С их помощью были найдены сечения и некоторые кинематические распределения для указанных процессов при кинематических ограничениях детектора LHCb. Также на основе простой модели оценен вклад двойных партонных взаимодействий в рождение перечисленных конечных состояний.

Для решения пятой задачи был рассчитан спектр масс тетракварков, состоящих из четырех тяжелых кварков, в потенциальной модели [24]. Также был оценен возможный вклад рождения и распадов 4c-тетракварков в рождение пар J/ψ -мезонов.

Научная новизна:

После появления высокоточных данных *B*-фабрик по измерению фрагментационных функций чарма [4–6] был выпущен ряд работ [25, 26] посвященных изучению фрагментации *с*-кварка в этих условиях. В них рассматривалось рождение только мезонов и, поэтому, не обсуждались различия при фрагментации в мезоны и барионы. Также, при описании дополнительно к данным *B*-фабрик данных, полученных в пике *Z*-бозона [27, 28], использовались иные параметры непертурбативной компоненты.

В отличие от этих работ, данное исследование использует для *D*-мезонов одну и ту же параметризацию непертурбативной компоненты функции фрагментации при обоих значениях энергий e^+e^- -взаимодействий. При энергии *B*-фабрик рассматривается также и рождение Λ_c -барионов. При этом отличие описания рождения барионов от мезонов заключается лишь в иной непертурбативной функции фрагментации. Это различие непертурбативных функций фрагментации находится в согласии с предположениями модели КЛП [29, 30].

В диссертации также получены результаты по парному рождению J/ψ -мезонов в условиях детектора LHCb. Несмотря на то, что вычисление подпроцесса $gg \to J/\psi J/\psi$ опирается на классическую работу [31], получен ряд новых результатов, касающихся специфики наблюдения этого процесса в детекторе LHCb. Среди них — изучение корреляций по быстроте и азимутальному углу вылета рождающихся мезонов. Это наиболее важно для разделения вклада указанного партонного подпроцесса от вклада двойных партонных взаимодействий в образование тех же конечных состояний. Показано, что для парного рождения J/ψ мезонов предсказываемые в одиночных и двойных партонных взаимодействиях сечения практически совпадают, а для других пар кваркониев, $J/\psi + \chi_c$ и $J/\psi + \Upsilon$, одиночные партонные взаимодействия дают доминирующий вклад. Рассмотренные в диссертации процессы ассоциативного рождения J/ψ и открытого чарма, и парного рож-

дения открытого чарма интересны также тем, что для них предсказываются сильно отличающиеся вклады одиночных и двойных партонных взаимодействий в наблюдаемое в LHCb сечение.

Впервые проведен расчет спектра масс связанных состояний четырех тяжелых кварков и изучена возможность их наблюдения на LHC.

Практическая значимость:

Непертурбативные функции фрагментации являются универсальными объектами, которые могут быть использованы для вычислений импульсных распределений в различных процессах на различных масштабах энергий. Представленные в работе выражения для функций фрагментации *с*-кварка в мезоны и барионы могут быть использованы в генераторах событий при *pp*-взаимодействиях на LHC наряду с другими моделями фрагментации.

Результаты по парному рождению J/ψ , ассоциативному рождению J/ψ и открытого чарма и парному рождению открытого чарма использованы LHCb при сравнении с первыми экспериментальными измерениями [A1,A2]. Ряд предсказаний, таких как корреляции в процессах инициированных одиночными партонными взаимодействиями, будет проверен при накоплении большей статистики. Наблюдающееся на данный момент расхождение в спектре инвариантных масс пар J/ψ привело к обсуждению недостаточности δ -приближения при переходе $c\bar{c}$ в J/ψ , включенному в диссертацию.

На защиту выносятся следующие основные результаты и положения:

- 1. Показано, что экспериментальные данные по рождению D^* -мезонов в e^+e^- -аннигиляции на B-фабриках и на LEP могут быть описаны с использованием универсальной функции фрагментации и учетом нарушения скейлинга в следующем за лидирующим порядке.
- 2. Установлено, что непертурбативные функции фрагментации *с*-кварка в $D^{(*)}$ -мезоны и $\Lambda_{\rm C}$ -барионы, извлеченные из данных *B*-фабрик, находятся в согласии с предположениями КЛП о различиях при фрагментации в мезоны и барионы.
- 3. Получено предсказание импульсного спектра $\Lambda_{\rm C}$ -барионов в e^+e^- -аннигиляции при энергии $\sqrt{s} = m_Z$.
- 4. Показано, что при распаде *В*-мезонов адронизация *с*-кварка не сводится к только фрагментационному механизму.
- 5. Найдено сечение рождения пар J/ψ мезонов в лидирующем порядке в синглетной по цвету модели в условиях детектора LHCb. Получены распределения по инвариантной массе, поперечному импульсу и быстроте образующихся мезонов.

- 6. Найдено сечение ассоциативного рождения J/ψ мезонов и частиц с открытым очарованием в подпроцессе gg → J/ψcc̄ в лидирующем порядке в синглетной по цвету модели в условиях LHCb. Получены распределения по поперечному импульсу и быстроте образующихся мезонов.
- 7. Показано, что при образовании пар J/ψ мезонов вклады одиночных и двойных партонных взаимодействий соизмеримы, тогда как при совместном образовании J/ψ мезонов и частиц с открытым очарованием вклад двойных партонных взаимодействий доминирует.
- 8. Показано, что корреляции по быстроте J/ψ мезонов могут быть использованы для обнаружения сигнала от одиночных партонных взаимодействий при образовании пар J/ψ. Корреляции по азимутальному углу зависят от параметров модели, придающей поперечный импульс начальным глюонам, и не могут быть использованы в данном подходе.
- Установлено, что при ассоциированном рождении J/ψ мезонов и частиц с открытым очарованием корреляции по быстроте слишком слабо выражены, чтобы быть обнаружены в интервале быстрот LHCb.
- Рассчитан спектр масс тетракварков, состоящих из четырех *с*-кварков и показано, что самый тяжелый из них — тензорный, имеет кинематическую возможность распадаться на пары *J/ψ*-мезонов.

Апробация работы:

Апробация диссертации прошла в ИФВЭ 29 мая 2012 г. Основные результаты, представленные в диссертации, докладывались на международном семинаре "Кварки-2010", сессиях РАН 2009-2012 годов, нескольких рабочих встречах коллаборации LHCb и семинарах ИФВЭ. Работа автора диссертации поддержана грантами РФФИ, Президента РФ и фонда "Династия".

Публикации:

Материалы диссертации опубликованы в 8 статьях в рецензируемых журналах [A1–A8]: 3 отечественных и 5 зарубежных.

Личный вклад автора:

Содержание диссертации и основные положения, выносимые на защиту, отражают результаты, которые получены при определяющем участии соискателя. Вся работа по написанию программ для выполнения анализа моделируемых процессов и получения результирующих распределений была выполнена лично автором диссертации.

Структура и объем диссертации:

Диссертация состоит из введения, 3 глав, заключения, списка литературы и 2 приложений. Общий объем диссертации 114 страниц, из них 97 страниц текста, включая 38 рисунков. Список литературы включает 130 наименований на 15 страницах.

Содержание работы

Во Введении обоснована актуальность диссертационной работы, сформулирована цель и аргументирована научная новизна исследований, показана практическая значимость полученных результатов, представлены выносимые на защиту научные положения.

В первой главе диссертации рассматривается образование $D^{(*)}$ -мезонов и $\Lambda_{\rm C}$ -барионов в e^+e^- -аннигиляции при различных энергиях.

Во введении к первой главе приводятся основные принципы, заложенные во фрагментационном подходе к описанию рождения тяжелых адронов, и обсуждаются проблемы, возникающие при этом. Они заключаются в невозможности полного разделения эффектов на разных энергетических масштабах.

В разделе 1.2 дан теоретический обзор результатов по расчету функций фрагментации тяжелых кварков в следующем за лидирующим порядке теории возмущений КХД. Также там приведено описание моделей, использующихся для непертурбативных эффектов. Внимание уделено модели КЛП, так как в ней естественным образом возникает зависимость от типа конечной частицы, изучение которой является одной из целей диссертации.

В разделе 1.3 предложен метод извлечения непертурбативной функции фрагментации с-кварка непосредственно из данных. Для этого искомая функция представляется в виде

$$\widetilde{D}^{\mathrm{np}}(x) = \sum_{i=1}^{n} c_i \Theta\left(x - \frac{i-1}{n}\right) \Theta\left(\frac{i}{n} - x\right).$$
(1)

с неизвестными коэффициентами c_i . Проведя аналитически NLO-эволюцию этого выражения до энергии *B*-фабрик можно найти коэффициенты c_i минимизируя отклонение полученных импульсных спектров от экспериментально измеренных. Можно убедиться, что построенные таким образом непертурбативные функции фрагментации *c*-кварков имеют при $x \to 1$ асимптотики, совпадающие с предсказанными в подходе КЛП. В нем различие непертурбативных функций фрагментации в D^* -мезоны и Λ_c -барионы объясняется кварковым счетом.

Вид полученных функций приведен на Рис. 1. Для удобства дальнейшего использования они приближаются аналитическими выражениями:

$$\widehat{D}_{c}^{D^{*}}(x) = 20.1x^{3.7}(1-x) + 2.77 \, 10^{3}x^{13}(1-x)^{7}, \widehat{D}_{c}^{\Lambda_{C}}(x) = 72.9x^{3.7}(1-x)^{5} + 2.93 \, 10^{4}x^{10}(1-x)^{5} + 10^{3}x^{10}(1-x)^{3}.$$
 (2)

В разделе 1.4 извлеченные непертурбативные функции фрагментации используются для построения импульсных распределений адронов с открытым очарованием в различных условиях.

Рис. 1. Непертурбативные функции фрагментации D^* -мезонов (сплошная гистограмма) и $\Lambda_{\rm C}$ -барионов (пунктирная гистограмма), извлеченные из данных *В*-фабрик и графики приближенных выражений (2).

Рис. 2. Спектры D^{*+} -мезонов (слева) и $\Lambda_{\rm C}$ -барионов (справа) от фрагментации с-кварка в e^+e^- -аннигиляции при $\sqrt{s} = 91.18$ ГэВ. Экспериментальные точки соответствуют измерениям ALEPH [28] и OPAL [27].

В подразделе 1.4.1 проверено, что с использованием извлеченных непертурбативных функций можно восстановить импульсные спектры D^* -мезонов и Λ_c -барионов при энергии $\sqrt{s} = 10.5$ ГэВ. Далее проведена NLO-эволюция этих функций на энергию, соответствующую пику Z-бозона. При этом достигнуто согласие полученного импульсного спектра D^* -мезонов с измеренным на LEP [27, 28]. Для импульсного спектра Λ_c -барионов отсутствует экспериментальное измерение при тех же условиях. Импульсные спектры обоих типов частиц приведены на Рис. 2.

В подразделе 1.4.2 рассмотрено рождение заряженных и нейтральных *D*-мезонов, в котором важную роль играют распады $D^* \to D\pi$ и $D^* \to D\gamma$.

Рис. 3. Спектры D^* -мезонов (слева) и $\Lambda_{\rm C}$ -барионов (справа) от фрагментации *b*-кварка в e^+e^- -аннигиляции при $\sqrt{s} = 10.58$ ГэВ. Экспериментальные точки соответствуют измерениям BABAR [6] и Belle [5].

Распределение по импульсу *D*-мезонов, рожденных напрямую, принимается с точностью до нормировки совпадающим с распределением по импульсу *D**-мезонов. Полученные импульсные спектры *D*-мезонов, учитывающие оба вклада, находятся в хорошем согласии с экспериментально измеренными на *B*-фабриках.

В подразделе 1.4.3 исследована возможность применения фрагментационного подхода при низкой энергии — при распаде *B*-мезонов. Для этого импульсный спектр *c*-кварков, образующихся в распаде *B*, был свернут с непертурбативными функциями фрагментации в *D*^{*}-мезоны и Λ_c -барионы (2). Пертурбативной эволюцией на столь низкой энергии пренебрегалось. При этом обнаружено, что спектр Λ_c -барионов находится в разумном согласии с экспериментом, тогда как в экспериментальном спектре *D*^{*}-мезонов присутствует дополнительный вклад на бо́лыших импульсах, не объясняющийся фрагментационным механизмом. Предположительно он связан с рекомбинацией образующегося *c*-кварка с легким валентным кварком из распадающегося *B*-мезона. Эта возможность подробно исследована в приложении A. Распределения по импульсу *D*^{*}-мезонов и Λ_c -барионов от распадов *B*-мезонов, рожденных в *e*⁺*e*⁻-аннигиляции при энергии $\sqrt{s} = m_{\Upsilon(4S)} = 10.58$ ГэВ приведены на Рис. 3.

В разделе 1.5 приведены выводы к первой главе. Результаты, полученные в ней, опубликованы в работе [А3].

Во второй главе диссертации получены теоретические предсказания сечения парного рождения J/ψ -мезонов в протон-протонных взаимодействиях при энергии $\sqrt{s} = 7$ ТэВ для различных кинематических ограничений. Также исследован возможный вклад в этот процесс от распада 4c-тетракварков, состоящих из двух валентных c-кварков и двух валентных \bar{c} -кварков.

Во введении ко второй главе приведены исторические аспекты изучения рождения пар чармониев в адронных реакциях. Обсуждены синглетная и октетная по цвету модели, используемые для вычисления сечения и кинематических распределений в обсуждаемом процессе.

Отмечено, что для парного рождения чармониев, дополнительно к хорошо известным правилам отбора по C-четности, запрещающим связь J/ψ с двумя глюонами, в лидирующем порядке в синглетной по цвету модели существует отбор по квантовым числам образующихся чармониев. Двухглюонное начальное состояние в цветовом синглете обладает положительной зарядовой четностью, поэтому рождение пар J/ψ -мезонов, η_c -мезонов или χ_c -мезонов возможно, а совместное рождение мезонов с различной зарядовой четностью, таких как J/ψ и η_c или J/ψ и χ_c , запрещено.

Раздел 2.2 посвящен партонному подпроцессу рождения двух J/ψ -мезонов в глюонных взаимодействиях, впервые рассчитанному в работе [31]. Обсуждены неопределенности возникающие при таких расчетах, связанные с выбором величин параметров, входящих в выражение для матричного элемента процесса и с выбором энергетических шкал. Далее оценивается вклад в образование пар J/ψ мезонов от рождения и распадов высших состояний. Заключается, что в интересующей кинематической области вклад от рождения *P*-волновых чармониев мал, а от *S*-волновых $\psi(2S)$ -мезонов должен обязательно учитываться.

Раздел 2.3 включает в себя результаты по рождению пар J/ψ -мезонов в протон-протонных соударениях при рассмотрении одиночных и двойных глюон-глюонных взаимодействий.

В подразделе 2.3.1 приведены результаты расчета процесса $pp \rightarrow 2J/\psi + X$ с использованием Монте-Карло моделирования. При моделировании использован известный матричный элемент подпроцесса $gg \rightarrow 2J/\psi$ и партонные функции распределения в лидирующем порядке (CTEQ5L, CTEQ6LL).

При отсутствии кинематических ограничений найденное сечение процесса $pp \rightarrow J/\psi J/\psi$ при энергии в системе центра масс протонов 7 ТэВ составляет

$$\sigma\left(pp \to 2J/\psi + X\right) = 18 \pm 5 \text{ Ho},\tag{3}$$

без учета вклада от распадов высших состояний.

Для кинематических ограничений установки LHC
b(2 < y < 4.5)найденное сечение равно

$$\sigma_{\rm LHCb} \left(pp \to 2J/\psi + X \right) = 3.1$$
 нб. (4)

Сечение в условиях детектора ATLAS заметно меньше из-за ограничения на минимальный регистрируемый поперечный импульс рождающегося

Рис. 4. Распределения по поперечному импульсу (слева) и быстроте (справа) одного J/ψ -мезона из образующейся пары с учётом поперечного движения начальных глюонов (сплошная кривая) и в коллинеарном приближении (пунктирная кривая).

мезона. При обрезаниях $p_T > 5$ ГэВ и |y| < 2.5 предсказывается сечение

$$\sigma_{\text{ATLAS}}\left(pp \to 2J/\psi + X\right) = 0.06$$
 нб. (5)

Для изучения процессов в адронных взаимодействиях важен учет поперечного импульса начальных партонов. При расчете полных сечений обычно используются партонные функции распределения, в которых по этому импульсу произведено интегрирование. Такой подход неприменим для получения сечений и кинематических распределений в условиях конкретных детекторов. Поэтому в генераторе РУТНІА используется модель, предполагающая, что поперечный импульс начальных партонов распределен по Гауссу со средним значением абсолютной величины равным 2 ГэВ и может дополнительно меняться при излучении в начальном состоянии. Значения сечений (4) и (5) получены с использованием этой модели. Для условий LHCb отличие сечения от полученного в коллинеарном приближении незначительно, поскольку обрезание по поперечному импульсу отсутствует. Однако учет этого эффекта существенно меняет распределение по поперечному импульсу образующихся J/ψ -мезонов. Распределения по поперечному импульсу и быстроте одного J/ψ из пары для обоих случаев приведены на Рис. 4. Распределение по быстроте ожидаемо слабо зависит от наличия попереного импульса у начальных глюонов.

На Рис. 5 представлено полученное в РҮТНІА распределение по поперечному импульсу пары J/ψ -мезонов. Для сравнения, в коллинеарном приближении поперечный импульс мезонной пары отсутствует.

Представляет интерес распределение по инвариантной массе пар J/ψ -мезонов. Оно не зависит от наличия у начальных глюонов поперечного импульса и приведено на Рис. 6. Помимо распределения по инва-

Рис. 5. Распределение по поперечному импульсу пары J/ψ -мезонов.

Рис. 6. Распределение по инвариантной массе пары J/ψ -мезонов, рожденных напрямую (пунктирная кривая), в распадах $\psi(2S)$ (точечная кривая) и их сумма (сплошная кривая). Экспериментальные точки соответствуют измерению LHCb [A1].

риантной массе J/ψ -мезонов, рожденных напрямую, на нем представлен вклад от распадов $\psi(2S)$, рожденных в процессах $pp \to J/\psi + \psi(2S) + X$ и $pp \to 2\psi(2S) + X$. Учет распадов $\psi(2S) \to J/\psi + X$ произведен в генераторе РутніА. При построении этих распределений учитывались кинематические ограничения установки LHCb с целью сравнить предсказание с первыми измерениями этого процесса, приведенными в работе [A1].

Видно, что экспериментальный пик находится правее полученного предсказания. Можно показать, что учет относительного движения кварков в образующемся чармонии улучшает согласие с экспериментальным результатом. С другой стороны, экспериментальное распределение основывается пока на достаточно малой статистике: анализ включал всего 116 событий с парным рождением J/ψ , наблюденных в данных 2010 года.

Вместе с вкладом от распадов $\psi(2S)$ предсказываемое сечение рождения пар J/ψ в условиях детектора LHCb составляет

$$\sigma_{\text{LHCb}}^{total} \left(pp \to 2J/\psi + X \right) = 4.1 \pm 1.2 \text{ HG.}$$
(6)

Измеренное на эксперименте сечение равно 5.1 ± 1.1
нб и находится в хорошем согласии с этим предсказанием.

Без наложения кинематических ограничений сечение рождения пар J/ψ с учетом вклада от распадов $\psi(2S)$ при энергии протон-протонных вза-имодействий 7 ТэВ предсказывается равным

$$\sigma^{total} \left(pp \to 2J/\psi + X \right) = 23 \pm 7$$
 нб. (7)

В условиях LHC большая плотность партонов с малыми долями импульса приводит к увеличению вероятности нескольких глюон-глюонных взаимодействий в одном соударении протонов. Этот процесс может также давать вклад в образование пар J/ψ -мезонов. Такая возможность рассмотрена в *подразделе 2.3.2*.

В подходе, предполагающем рождение частиц в 2 независимых подпроцессах, А и В, сечение парных взаимодействий записывается следующим образом:

$$\sigma^{\rm DPS}(A \times B) = \frac{m}{2} \frac{\sigma(A)\sigma(B)}{\sigma_{\rm eff}}.$$
(8)

где величина $\sigma_{\rm eff} = 14.5$ мб была измерена в реакциях образования четырех струй и трех струй и фотона в детекторах CDF и D0 [32,33] и параметр m равен 1 для тождественных подпроцессов и 2 для различных.

Для рождения двух J/ψ мезонов в условиях LHCb выражение (8) приводит к следующему значению сечения:

$$\sigma_{\rm LHCb}^{\rm DPS}(pp \to 2J/\psi + X) = 4$$
 нб. (9)

При этом используется известное сечение инклюзивного образования J/ψ в окне LHCb — 10.5 мкб [16].

Одним из предложенных способов разделения сигналов от DPS и образования пары J/ψ в одном глюон-глюонном взаимодействии является изучение корреляций по азимутальному углу и быстротам J/ψ [34,35]. Однако моделирование в генераторе РҮТНІА, включающее уход от коллинеарного приближения для начальных глюонов, показывает, что корреляции по углу, присутствующие в предположении коллинеарных глюонов, полностью теряются при учете их поперечного движения. Более плодотворным оказывается изучение корреляций по быстроте. Несмотря на узость окна LHCb (2.0 < y < 4.5), оно оказывается достаточным для проверки предсказаний

Рис. 7. Распределения по разности азимутальных углов (слева) и быстрот (справа) J/ψ -мезонов, предсказанные в подходе SPS. Сплошные кривые получены на шкале равной одной поперечной массе J/ψ -мезона, пунктирные — половине и точечные — двум. Для каждой из шкал верхняя кривая соответствует CTEQ5L, а нижняя — CTEQ6LL.

КХД, указывающих, что разность быстрот образующихся J/ψ не превышает 2 единиц быстроты. Распределения по разности азимутальных углов и быстрот приведены на Рис. 7. DPS на данном этапе предсказывает отсутствие корреляций между продуктами двух партонных взаимодействий.

В подразделе 2.4 рассмотрена возможность образования связанного состояния четырех очарованных кварков — тетракварка T_{4c} , распадающегося на два J/ψ -мезона.

Спектр масс 4*c*-тетракварка найден в потенциальной модели [24], представляющей такое состояние состоящим из двух точечных дикварков с массами $m_{[cc]} = 3.13$ ГэВ. С учетом сверхтонкого расщепления массы состояний найдены равными

$$J = 0: \qquad M_{T_{4c}(0^{++})} = 5.97 \ \Gamma \ni B,$$

$$J = 1: \qquad M_{T_{4c}(1^{+-})} = 6.05 \ \Gamma \ni B,$$

$$J = 2: \qquad M_{T_{4c}(2^{++})} = 6.22 \ \Gamma \ni B.$$
(10)

Из этих состояний только самое тяжелое, тензорное, лежит выше порога образования пары J/ψ -мезонов и может наблюдаться в этой моде. Поправки, обусловленные конечными размерами дикварков, могут, в принципе, немного увеличить массы и поднять аксиальный мезон над этим порогом, но его рождение в двухглюонном канале подавлено теоремой Ландау-Янга. Скалярный 4*c*-тетракварк может быть наблюден только когда один из конечных J/ψ -мезонов будет виртуальным. По этой причине интересен поиск резонанса в канале $J/\psi\mu^+\mu^-$.

Сечение рождения 4*с*-тетракварков в глюонных взаимодействии может быть оценено из соображений дуальности:

$$S = \int_{2M_{J/\psi}}^{2M_{\Xi_{cc}}} dm_{gg}\sigma(gg \to T_{4c} \to 2J/\psi) =$$
$$= K \cdot \int_{2M_{J/\psi}}^{2M_{\Xi_{cc}}} dm_{gg}\hat{\sigma}(gg \to [cc]_{\bar{3}} + [\bar{c}\bar{c}]_{3}) \approx K \cdot 6.4 \text{ nfs} \cdot \Gamma \mathfrak{sB}, \quad (11)$$

где K < 1. Входящая в это выражение ширина 4c-тетракварка заведомо меньше энергетического разрешения детектора. Расчеты показывают, что даже при выборе $K \sim 10\%$ сигнал должен быть четко виден в спектре инвариантных масс пар J/ψ .

Используя тот же подход, можно найти спектр масс тетракварков из четырех *b*-кварков. Для них все состояния оказываются лежащими под порогом образования двух Υ -мезонов. Более интересной оказывается ситуация с $T_{2[bc]} = [bc][\overline{bc}]$. Поскольку в этой конфигурации дикварки состоят не из тождественных кварков, систематика таких состояний более богата, причем присутствует состояние лежащее выше порогов распада как на пару B_c так и на $J/\psi + \Upsilon$. Подробно эта ситуация рассмотрена в приложении Б.

В разделе 2.5 приводятся выводы ко второй главе. Результаты полученные в ней опубликованы в работах [A1, A4–A6].

В третьей главе приведены теоретические предсказания сечений ассоциативного рождения J/ψ -мезонов и открытого чарма, а также образования двух очарованных адронов из разных $c\bar{c}$ пар в условиях LHC. Рассмотрены как процессы в одиночных, так и в парных партонных взаимодействиях.

Во введении к третье главе приводится мотивация изучения ассоциативного рождения J/ψ -мезонов и открытого чарма и двойного рождения открытого чарма.

В разделе 3.2 делается экскурс в существующие расчеты процессов, включающих 4 тяжелых кварка в конечном состоянии.

Раздел 3.3 посвящен ассоциативному рождению J/ψ -мезонов и адронов с открытым очарованием. Для выхода $J/\psi + D$ в кинематических условиях LHCb предсказано сечение

$$\sigma_{\rm LHCb}^{\rm SPS}(pp \to J/\psi + D + X) \approx 30 \div 100$$
 нб. (12)

Это значение учитывает процессы $gg \to J/\psi + c\bar{c}$ и $cg \to J/\psi c$. Расчеты проводились в генераторе Рутнія с использованием программ, аналогичных использовавшимся для парного рождения J/ψ . Кинематической областью,

Рис. 8. Распределение по поперечному импульсу J/ψ -мезонов (слева) и *D*-мезонов (справа) при рождении $J/\psi+D$ в сравнении с результатом LHCb (приведены точки для рождения $J/\psi+D^0$ и $J/\psi+D^+$). Сплошная кривая получена на шкале, равной одной поперечной массе J/ψ -мезона, пунктирная — половине, а точечная — двум. Штрих-пунктирная кривая получена без учета поперечного импульса начальных глюонов и адронизации *с*-кварка.

в которой LHCb был проведен анализ данных и в которой выполняется сравнение, является область $2.0 < y_{J/\psi} < 4.0, 2.0 < y_D < 4.0, 3$ ГэВ $< p_T^D < 12$ ГэВ.

Оценки вклада двойных партонных взаимодействий в образование $J/\psi+D$ в конечном состоянии приводят в этой области к значению

$$\sigma_{\rm LHCb}^{\rm DPS}(pp \to J/\psi + D + X) = 240$$
 нб. (13)

При этом экспериментально измеренное LHCb сечение составляет

$$\sigma_{\text{LHCb}}^{\text{exp}}(pp \to J/\psi + D + X) \approx 300$$
 нб, (14)

что заметно выше предсказаний SPS и близко к оценке DPS. В пределах ошибок сумма обоих вкладов находится в хорошем согласии с экспериментальным значением.

Несмотря на то, что предсказывается доминирование парных партонных взаимодействий в этом процессе, p_T -спектр J/ψ -мезонов находится в противоречии с предположением о том, что рождение J/ψ происходит независимо. Его форма существенно отличается от p_T -спектра в инклюзивном образовании J/ψ . Для сравнения были построены распределения по поперечному импульсу J/ψ - и *D*-мезонов в подпроцессе $gg \rightarrow J/\psi c\bar{c}$. Несмотря на то, что вклад этого подпроцесса в адронное сечение предсказывается на уровне 10%, наблюдается хорошее согласие в форме p_T -распределений (см. Рис. 8).

Таким образом остается открытым вопрос, доминируют ли двойные партонные взаимодействия при ассоциативном рождении J/ψ и открытого

Рис. 9. Распределения по разности азимутальных углов (слева) и быстрот (справа) J/ψ и *D*-мезона, предсказываемые для подхода SPS. Для распределений по $\Delta \phi_{J/\psi-D}$ обозначения совпадают с Рис. 8. Для распределений по Δy сплошная кривая соответствует кинематическим ограничениям LHCb, пунктирная — отсутствию кинематических ограничений.

чарма. Что касается корреляций по азимутальному углу и быстроте, первые сильно зависят от шкалы (как и в случае парного J/ψ), а вторые оказываются слишком слабо выраженными для наблюдения в узком окне быстрот $2.0 < y_{J/\psi} < 4.0$. Обсуждаемые распределения приведены на Рис. 9.

Раздел 3.4 посвящен парному рождению адронов с открытым очарованием. Для подпроцессов $gg \to c\bar{c}c\bar{c}$, $cg \to cc\bar{c}$ и $cc \to cc$ в протон-протонных соударениях при 7 ТэВ суммарное сечение предсказывается равным $0.3 \div 1.2$ мкб. При этом требовалось, чтобы по крайней мере два *D*-мезона или два \bar{D} -мезона находились в области 2.0 < y < 4.0, 3 ГэВ $< p_T < 12$ ГэВ, исследуемой коллаборацией LHCb. Как и в случае ассоциативного рождения, предсказываемое сечение оказывается заметно меньше экспериментального, составляющего примерно 3 мкб.

Поскольку анализ LHCb включает измерение различных конечных состояний с D + D или $D + \overline{D}$ в аксептансе детектора, был проведен комбинаторный расчет, предполагающий рождение двух $c\overline{c}$ -пар в двух партонных подпроцессах с последующей адронизацией *с*-кварков. Показано, что измеренные значения находятся в разумном согласии с предположениями DPS. Распределения по поперечному импульсу, однако, не совпадают по форме с измеренными в инклюзивном рождении, что не подтверждает гипотезу независимого рождения в двух партонных взаимодействиях.

В заключительном разделе третьей главы сформулированы выводы к ней. Результаты третьей главы опубликованы в работах [A2, A7, A8].

В Заключении к диссертации сформулированы основные результаты, представленные в ней.

Список публикаций

- [A1] Novoselov A. et al. [LHCb Collaboration (569 authors)]. Observation of J/ψ pair production in pp collisions at $\sqrt{s}=7$ TeV // Phys.Lett. 2012. Vol. B707. P. 52–59. 1109.0963.
- [A2] Novoselov A. et al. [LHCb Collaboration (591 authors)]. Observation of double charm production involving open charm in pp collisions at $\sqrt{s}=7$ TeV // JHEP. 2012. Vol. 1206. P. 141. 1205.0975.
- [A3] Новоселов А.А. Фрагментационное рождение очарованных адронов в e^+e^- -аннигиляции // ЯФ. 2010. Т. 73. С. 1789–1802.
- [A4] Double J/ψ-meson Production at LHC and 4c-tetraquark state / A.V. Berezhnoy, A.K. Likhoded, A.V. Luchinsky, A.A. Novoselov // Phys.Rev. - 2011. - Vol. D84. - P. 094023. - 1101.5881.
- [A5] Berezhnoy A.V., Luchinsky A.V., Novoselov A.A. Heavy tetraquarks production at the LHC // Phys.Rev. - 2012. - Vol. D86. - P. 034004. -1111.1867.
- [A6] Формирование 4*c*-тетракварка в парном рождении *J/ψ*-мезонов на LHC / А. В. Бережной, А. К. Лиходед, А. В. Лучинский, А. А. Новоселов // ЯФ. – 2012. – Т. 75. – С. 1067–1074.
- [A7] Double $c\bar{c}$ production at LHCb / A.V. Berezhnoy, A.K. Likhoded, A.V. Luchinsky, A.A. Novoselov // Phys.Rev. - 2012. - Vol. D86. -P. 034017. - 1204.1058.
- [A8] Множественное рождение чарма при энергии LHC / А. В. Бережной, А. К. Лиходед, А. В. Лучинский, А. А. Новоселов // ЯФ. – 2013. – Т. 76. – С. 104–114.

Цитируемая литература

- Aad Georges et al. [ATLAS Collaboration]. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC // Phys.Lett. - 2012. - Vol. B716. - P. 1-29. - 1207.7214.
- [2] Chatrchyan Serguei et al. [CMS Collaboration]. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC // Phys.Lett. – 2012. – Vol. B716. – P. 30–61. – 1207.7235.
- [3] Dittmaier S. et al. [LHC Higgs Cross Section Working Group]. Handbook of LHC Higgs cross sections: 1. Inclusive observables. – 2011. – 1101.0593.
- [4] Artuso M. et al. [CLEO Collaboration]. Charm meson spectra in e⁺e⁻ annihilation at 10.5 GeV center of mass energy // Phys.Rev. 2004. Vol. D70. P. 112001. hep-ex/0402040.
- [5] Seuster R. et al. [Belle Collaboration]. Charm hadrons from fragmentation and B decays in e^+e^- annihilation at $\sqrt{s} = 10.6 \text{ GeV} // \text{Phys.Rev.} - 2006. - \text{Vol. D73.} - \text{P. 032002.} - \text{hep-ex}/0506068.$
- [6] Aubert Bernard et al. [BABAR Collaboration]. Inclusive Λ_c^+ production in e^+e^- annihilations at $\sqrt{s} = 10.54$ GeV and in $\Upsilon(4S)$ decays // Phys.Rev. 2007. Vol. D75. P. 012003. hep-ex/0609004.
- [7] Картвелишвили В.Г., Лиходед А.К., Слабоспицкий С.Р. Рождение *D*и *J/ψ*- мезонов в адронных столкновениях // ЯФ. — 1978. — Т. 28. — С. 1315–1322.
- [8] Baier R., Ruckl R. Hadronic production of J/ψ and Υ : Transverse momentum distributions // Phys.Lett. 1981. Vol. B102. P. 364.

- [9] Abe F. et al. [CDF Collaboration]. Inclusive J/ψ , $\psi(2S)$ and b quark production in $\bar{p}p$ collisions at $\sqrt{s} = 1.8$ TeV // Phys.Rev.Lett. 1992. Vol. 69. P. 3704-3708.
- [10] Braaten Eric, Fleming Sean. Color octet fragmentation and the ψ' surplus at the Tevatron // Phys.Rev.Lett. 1995. Vol. 74. P. 3327-3330. hep-ph/9411365.
- [11] Braaten Eric, Kniehl Bernd A., Lee Jungil. Polarization of prompt J/ψ at the Tevatron // Phys.Rev. 2000. Vol. D62. P. 094005. hep-ph/9911436.
- [12] Affolder T. et al. [CDF Collaboration]. Measurement of J/ψ and $\psi(2S)$ polarization in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV // Phys.Rev.Lett. 2000. Vol. 85. P. 2886-2891. hep-ex/0004027.
- [13] Campbell John M., Maltoni F., Tramontano F. QCD corrections to J/ψ and Υ production at hadron colliders // Phys.Rev.Lett. - 2007. - Vol. 98. -P. 252002. - hep-ph/0703113.
- [14] Gong Bin, Wang Jian-Xiong. Next-to-leading-order QCD corrections to J/ψ polarization at Tevatron and Large-Hadron-Collider energies // Phys.Rev.Lett. - 2008. - Vol. 100. - P. 232001. - 0802.3727.
- [15] Abulencia A. et al. [CDF Collaboration]. Polarization of J/ψ and ψ_{2S} mesons produced in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ -TeV // Phys.Rev.Lett. 2007. Vol. 99. P. 132001. 0704.0638.
- [16] Aaij R. et al. [LHCb Collaboration]. Measurement of J/ψ production in pp collisions at $\sqrt{s} = 7$ TeV // Eur.Phys.J. 2011. Vol. C71. P. 1645. 1103.0423.
- [17] Badier J. et al. [NA3 Collaboration]. Evidence for $\psi\psi$ production in π^- interactions at 150 and 280 GeV/c // Phys.Lett. 1982. Vol. B114. P. 457.

- [18] Badier J. et al. [NA3 Collaboration]. $\psi\psi$ production and limits on beauty meson production from 400 GeV/c protons // Phys.Lett. - 1985. - Vol. B158. - P. 85.
- [19] Картвелишвили В.Г., Эсакия Ш.М. Об адронном образовании пар J/ψ мезонов // ЯФ. – 1983. – Т. 38. – С. 722–726.
- [20] Charmonium: Comparison with Experiment / E. Eichten, K. Gottfried,
 T. Kinoshita et al. // Phys.Rev. 1980. Vol. D21. P. 203.
- [21] New hadronic spectroscopy / N. Drenska, R. Faccini, F. Piccinini et al. // Riv.Nuovo Cim. - 2010. - Vol. 033. - P. 633-712. - 1006.2741.
- [22] Wick Felix [CDF Collaboration]. Heavy quark meson spectroscopy at CDF (X(3872) mass and evidence for Y(4140)) // PoS. 2009. Vol. EPS-HEP2009. P. 085. 1011.0616.
- [23] Liu Xiang, Luo Zhi-Gang, Zhu Shi-Lin. Novel charmonium-like structures in the $J/\psi\phi$ and $J/\psi\omega$ invariant mass spectra // Phys.Lett. - 2011. - Vol. B699. - P. 341-344. - 1011.1045.
- [24] Mass spectra of doubly heavy Ω_{QQ'} baryons / V.V. Kiselev, A.K. Likhoded,
 O.N. Pakhomova, V.A. Saleev // Phys.Rev. 2002. Vol. D66. P. 034030. hep-ph/0206140.
- [25] Cacciari Matteo, Nason Paolo, Oleari Carlo. A study of heavy flavored meson fragmentation functions in e⁺e⁻ annihilation // JHEP. – 2006. – Vol. 0604. – P. 006. – hep-ph/0510032.
- [26] Corcella Gennaro, Ferrera Giancarlo. Charm-quark fragmentation with an effective coupling constant // JHEP. — 2007. — Vol. 0712. — P. 029. — 0706.2357.

- [27] Ackerstaff K. et al. [OPAL Collaboration]. Measurement of $f(c \rightarrow D^{*+}X)$, $f(b \rightarrow D^{*+}X)$ and $\Gamma_{c\bar{c}}/\Gamma_{had}$ using $D^{*\pm}$ mesons // Eur.Phys.J. – 1998. – Vol. C1. – P. 439–459. – hep-ex/9708021.
- [28] Barate R. et al. [ALEPH Collaboration]. Study of charm production in Z decays // Eur.Phys.J. - 2000. - Vol. C16. - P. 597-611. - hep-ex/9909032.
- [29] Kartvelishvili V.G., Likhoded A.K., Petrov V.A. On the fragmentation functions of heavy quarks into hadrons // Phys.Lett. - 1978. - Vol. B78. -P. 615.
- [30] Картвелишвили В.Г., Лиходед А.К. Фрагментация тяжелых кварков в мезоны и барионы // ЯФ. – 1979. – Т. 29. – С. 757–760.
- [31] Humpert B., Mery P. $\psi\psi$ production at collider energies // Z. Phys. 1983. Vol. C20. P. 83.
- [32] Abe F. et al. [CDF]. Double parton scattering in $\bar{p}p$ collisions at $\sqrt{s} = 1.8$ TeV // Phys. Rev. 1997. Vol. D56. P. 3811-3832.
- [33] Abazov V. M. et al. [D0]. Double parton interactions in $\gamma+3$ jet events in $p\bar{p}$ collisions $\sqrt{s} = 1.96$ TeV // Phys. Rev. -2010. Vol. D81. P. 052012. 0912.5104.
- [34] Kom C.H., Kulesza A., Stirling W.J. Pair production of J/ψ as a probe of double parton scattering at LHCb // Phys.Rev.Lett. 2011. Vol. 107. P. 082002. 1105.4186.
- [35] Novoselov Alexey. Double parton scattering as a source of quarkonia pairs in LHCb. - 2011. - 1106.2184.

Рукопись поступила 29 января 2013 г.

Автореферат отпечатан с оригинала-макета, подготовленного автором.

А.А. Новоселов

Рождение очарованных частиц при высоких энергиях.

Оригинал-макет подготовлен с помощью системы ${\rm IAT}_{\rm E}{\rm X}.$

Подписано к печати 31.01.2013. Формат 60 × 84/16. Цифровая печать. Печ.л. 1,7. Уч.-изд.л. 2,4. Тираж 100. Заказ 6.

ФГБУ ГНЦ ИФВЭ

142281, Протвино Московской обл.

Индекс 3649

A B T O P E Φ E P A T 2013–3, И Φ B Э, 2013