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In the framework of the Friedrichs model the transforming of discrete state into resonance is
considered. The number of resonances depends on the formfactor which describes the interaction
of discrete state and continuum and for its resonable form this number exceeds the usual one to
one correspondense. The physical implication of the phenomenon is discussed.
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Hadron’s spectroscopy is one of the most intricate parts of modern particle physics.
The theoretician and experimentalists are competing with each other in interpretation of
already discovered resonances and invention of the new kinds of it. The pragmatic ap-
proach to the problem of classification of resonances consists in identification of standard,
nonexotic set of the particles which admits conventional quark model interpretation and
after this being done, the superfluous states could be considered as candidates into exotic
ones — glueballs, hybrids, molecules etc. Indeed the direct observation of exotic quantum
numbers forbidden in the usual quark model extremely simplifies the problem of discovery
of these new kinds of matter, but until now very few examples of open exotics exist, but
not confirmed. Also, it is generally believed that the new kinds of mesons should have
specific decay modes and specific creation processes, e.g. the glueballs should easily be
created in decays of J/ψ and have large couplings with ηη, ηη′ and η′η′ channels and
suppressed electromagnetic ones [1]. Unfortunately these statements have only qualita-
tive character because in the case of hidden exotics, its mixing with quark states may
drastically change branching ratios into different channels[2].

So, finally we return to the usual procedure of separating superfluous states with
nonexotic quantum numbers as the main tool for discovery of new kinds of mesons (the
similar problem for baryons also exists and is waiting for its discussion). In this situation
we must have the firm statement that the number of states which we predict in the frame-
work of some model (e.g. potential, bag, string et cet.) is not influenced by interaction.
In the present paper we try to analyze the validity of the hypothesis that there is always
the one to one correspondence between the number of predicted states and the number
of resonances. It is generally believed that the interaction with decay channel provides
the width of resonance, it may shifts the mass, but never changes the number of states.
We show that this common point of view (we also were the believers until recently) is
generally wrong. In the simple but rather universal model we demonstrate that, as a rule,
the number of states, which is defined by interaction is greater, when the expected one
and only weak coupling regime gives the desired one to one correspondence.

We begin our discussion with the motivation of the model, which will be used in this
paper for the description of the unstable particles. Switching on the interaction of one
particle with two (or few) others, whose total mass permits the transition on the mass
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shell, makes this particle unstable. This statement is trivial for any particle physicist. On
the other hand, from the point of view of the field theory the question is not that simple,
as it seems. As an example, let us consider the theory of two scalar fields φ(x) and ψ(x)
with masses M and m, respectively, though

M > 2m. (1)

Now, if we will switch on among others the interaction which is described by the vertex

Sint = λ
∫
d4xφ(x)ψ2(x), (2)

the theory becomes unstable. The latter means that the usual asymptotic conditions fail
in this case. Of course, we can still calculate the Green functions in this theory, investigate
the complex singularity which corresponds to the initially stable φ– particle, but it is only
part of the story. The most important questions from the physical point of view are:

• What are the asymptotic states in this field theory?
• How can we calculate the S–matrix for these asymptotic states?

A general discussion of these questions in the relativistic case is rather complicated
and we do not dwell on them here, addressing the readers to paper [3]. Now we will give a
schematic consideration, sufficient for qualitative description of many physical situations,
where the nonrelativistic approximation is valid.

In terms of the field theory, the direct consequence of instability condition (1) is the
nonvanishing interaction due to (2) for t → ±∞, what could be established, e.g. in
the interaction picture. The nonvanishing part of interaction requires the redefinition
of asymptotic hamiltonian (which is usually taken equal to the free one) and the true
asymptotic states should be defined as eigenstates of this modified hamiltonian. The
correct scattering theory should be considered now for these true asymptotic states due
to residue (well behaved at t → ±∞) interaction. At first sight it seems that the whole
problem becomes technically very difficult (new Feynmann diagrams with new nonlocal
propagators, vertexes, etc.), but it is not really true. To see it the path integral approach
is very useful. In this approach it is obvious that the basic object is the total action and
that the perturbation theory with respect to free hamiltonian makes it (the scattering
theory ) ill-defined. So, if we will use as asymptotic states the true ones, we can use usual
Feynmann diagrams for internal parts of the processes, the modification concerns only
external lines.

Now, after this very short and schematic general introduction we shall start considering
the subject of the present paper — a possible picture of asymptotic states, their properties
and the correspondence with the common point of view on the resonances in particle
physics. The appropriate framework for the description of resonances is provided by well-
known Friedrichs model [4] the touchstone of general theory of perturbation of unbounded
operators, which goes back to the late forties . This model is rather popular even nowadays
but unfortunately not among the particle physicists. To simplify formulas we will not
consider the second-quantized version of the Friedrichs model, which is directly connected
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with asymptotic hamiltonian of the field theory with interaction in the form of (2), limiting
ourselves only with the lowest level of it.

Let us denote |1 >– the discrete state with energy ω1 and |ω > – the state with
continuous spectrum for 0 to ∞. These states span the space of states of our system H.
The scalar products of the basis states are

< 1|1 > = 1

< ω|ω′ > = δ(ω − ω′). (3)

The unperturbed hamiltonian in H could be written as follows:

H0 = ω1|1 >< 1|+
∞∫

0

dωω|ω >< ω| (4)

Now let us add to H0 perturbation which describes the transitions between |1 > and |ω >:

Hint = λ

∞∫

0

dω [f(ω)|ω >< 1|+ f∗(ω)|1 >< ω|] , (5)

where λ is coupling constant and f(ω) is smooth, square integrable function, which sat-
isfies the condition:

ω1 > λ
2

∞∫

0

dω
|f |2(ω)
ω

. (6)

The physical sense of (6) will be clear later. As is seen from (4) and (5) our model describes
exactly the situation which we have discussed in Introduction: the discrete state |1 > is
the state predicted in some model (potential, bag, string, et cet). The hamiltonian

H = H0 +Hint (7)

describes the interaction of this state with continuum.
Apparently ω1 > 0, to make the decay possible on the mass shell. The position of the

threshold in the origin is unessential, we placed it there for simplicity.
The eigenvalue problem for hamiltonian (7)

(H − E)Ψ(E) = 0, (8)

we have to solve in the space H, i.e. we shall seek the eigenvector Ψ(E) in the following
form:

Ψ(E) = ψ(E)|1 > +

∞∫

0

dωψ(E, ω)|ω >, (9)

where ψ(E) and ψ(E, ω) - the unknown amplitudes for which, making use of the (3) and
(8) we obtain the system of equations:

(ω1 − E)ψ(E) + λ
∞∫

0

dωψ(E, ω)f∗(ω) = 0

(ω −E)ψ(E, ω) + λψ(E)f(ω) = 0 (10)

3



To solve this system, let us begin with the second equation and express ψ(E, ω) via ψ(E):

ψ(E, ω) = Aδ(ω −E) − λf(ω)
ω −Eψ(E), (11)

where A is an arbitrary constant. Note that the first term in r.h.s. of (11) arises because
the factor ω − E in the equation, as a function of E has a real zero at E = ω. This
expression for ψ(E, ω) can be used in the first equation (10) and the equation for amplitude
ψ(E) is finally derived:


ω1 − λ2

∞∫

0

dω
|f |2(ω)
ω − E


ψ(E) = −λAf∗(E). (12)

It’s worth saying that in this form equation (12) is only symbolic. The matter is that
initially we have considered system (10) for real values of E. The factor in l.h.s. of (12),
in square brackets could be defined as a boundary value of the analytic function

η−1(E) = ω1 − E − λ2
∞∫

0

dω
|f |2(ω)
ω − E . (13)

This function, as is seen from its representation has a cut [0,∞) and for real energy we
can define its value from above and from below of the cut:

η−1± (E) = ω1 − E − λ2
∞∫

0

dω
|f |2(ω)

ω − (E ± iε). (14)

Apparently these two functions η±(E) correspond to two different solutions of our eigen-
value problem (8) — in-going and out-going waves. So the proper form of equation (12)
for real energy is the following:

η−1± (E)ψ± = −λAf∗(E), (15)

We see that the ψ(E) (as well, as ψ(E, ω)) also acquires subscript ±.
In mathematical literature the function η(E) on the whole complex plane E is called

the partial (or one particle) resolvent of H. For a particle physicist more familiar term is
the Green function or the propagator. The solution of (15) can be written in the following
form:

ψ± = ψ0 − Aη±(E)λf∗(E), (16)

where ψ0(E) is the solution of (15) with vanishing r.h.s. The latter depends upon the
properties of the resolvent η(E): if it has a pole on the first sheet on the real axis, then

ψ0 = Bδ(E − E0), (17)

where E0 is the position of the pole. Close inspection of equation (14) shows that this
pole may exist only below a threshold. From the physical point of view it seems rather
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pathological and to prevent creation of this unwanted pole it is sufficient to impose condi-
tion (6) on the formfactor f(ω). If it had been done, then the first term in (16) would be
absent and gathering together (8), (11) and (16) we obtain the final form of eigenvector
Ψ(E):

Ψ±(E) =


|E > +λf∗(E)η±(E)


|1 > +λ

∞∫

0

dω
f(ω)

ω − (E ± iε)|ω >



 . (18)

This formula is the key point of our present discussion and therefore we must carefully
investigate it and its consequences.

First of all, the most important fact that follows from (18) is that the hamiltonian of
our system (7) has only continuous spectrum — the discrete state |1 > has been dissolved
in the continuum1. The comparison of eigenvectors of H0 and H leads us to the conclusion
that in an unstable case there is no analiticity in coupling constant λ. To understand the
fate of discrete level with E = ω1 we must investigate the resolvent η(E) on the complex
plane E.

The common point of view on this question is the following: the pole at the point
E = ω1 moves to the second sheet acquiring negative imaginary part transforms into
the Breit-Wigner resonance. This point of view is supported by calculations in the limit
λ→ 0. Indeed, the inverse resolvent η−1+ (E) could be represented in the following form:

η−1+ (E) = ω1 − E − λ2
(
r(E) + iπ|f |2(E)

)
, (19)

where r(E) is the real part of integral in r.h.s. of (13). If we assume that r(E) and |f |2(E)
is smooth function in the vicinity of ω1, then from (19) it follows that a new pole of the
resolvent will be at the point

Ec = ω1 − λ2r(ω1)− iπλ2|f |2(ω1) =
= ω̃1 − iΓ. (20)

Note, that representation (19) is valid if we start from the upper rim of the cut and
continue to the second sheet from above. We also can start from the lower rim of the cut
and continue to the second sheet from below. There we of course will find the complex
conjugated partner of (20).

This consideration is valid only for infinitesimal values of coupling constant and can’t
be applied even qualitatively for the case of hadroninc resonances, where typical coupling
with decay products is large. In this case we have to consider the equation for complex
poles of the resolvent without approximation and the whole formfactor f(ω) becomes
important. To illustrate it let us consider several examples which should get us convinced
that the result of switching off the interaction may lead to qualitatively unexpected con-
sequences.

1This phenomenon has to be compared to the case when the ω1 lays below threshold. In this case
equation (15) has nonpathological homogeneous solution (17) and finally we obtain two eigenvectors of
H — the perturbed discrete state and perturbed continuous one.
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Example 1. Let us take the formfactor f(ω) in the following form:

|f |2(ω) = ω1/2

ω + ρ2
, (21)

where ρ is real. The inverse resolvent according to (13) is given by

η−1(E) = ω1 − E − λ2
∞∫

0

dω
ω1/2

ω + ρ2
1

ω − E , (22)

and after integration we arrive at

η−1(E) = ω1 − z2 − iπλ2

z − iρ, (23)

where we have defined the variable z =
√
E in such a way that the first sheet of E-

plane corresponds to the upper half-plane of z and the second sheet of E — to the lower
half-plane of z. Condition (6) means in this case that

ω1 >
πλ2

ρ
, (24)

what in turn implies that equation η−1(E) = 0 has the following roots:

z1,2 = ±
[
ω1 − 2γd− γ2

]1/2 − iγ,
z3 = −id, (25)

where d and γ is given by

ρ = d + 2γ, πλ2 = 2γ(ω1 + d
2). (26)

For new parameters γ and d, inequality (24) reads as

ω1 > 2γd. (27)

Recall, that (27) prevents penetration of zi to the upper half-plane of z (or to the first
sheet of E). As is seen from equations (25) and (27), here may be two different situations:

• Two complex conjugated poles on the second sheet of E–plane and one antibound
state, below the threshold, is also on the second sheet. (ω1 − 2γd > γ2).
• Three antibound states and no resonances. (γ2 > ω1 − 2γd > 0)

The whole resolvent looks like

η(E) =
z + i(d+ 2γ

(z + id) [(z + iγ)2 − (ω1 − 2γd− γ2)] , (28)
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and apparently that for λ→ 0(γ → 0) it has only two complex conjugated poles

Ec = ω1 − 2γd± 2iγω
1/2
1 +O(λ4) (29)

and no antibound states.
Example 2. In this case the formfactor is given by

|f |2(ω) = λ2ω1/2

(ω − ρ2)(ω − ρ∗2) , (30)

now ρ is a complex number. Proceeding as in the previous example we obtain the inverse
resolvent:

η−1(E) = ω1 − z2 + iπλ2

ρ− ρ∗
1

(z + ρ)(z − ρ∗), (31)

where z is the square root of energy, defined as above. The condition on the parameters
now looks like

ω1 − iπλ2

(ρ− ρ∗)|ρ|2 > 0. (32)

In this example the equation η−1(E) = 0 has four solutions which correspond to the
following situations:

• Two pairs of complex conjugated poles (resonances).
• Pair of complex conjugated double poles. (Here a fine tuning of parameters is needed

[5]: Reρ =
√
ω1, Imρ =

[
πλ2

16ω1

]1/3
.

• One pair of complex poles and two antibound states.
• Four antibound states.

All these cases in the limit λ→ 0 fuse together at Ec

Ec = ω1 +
πλ2(ω1 − |ρ|2)

2ρ2 [(ω1 − |ρ|2)2 + 4ρ2ω1]
− iπλ2

√
ω1

[(ω1 − |ρ|2)2 + 4ρ2ω1]
+O(λ4), (33)

where ρ2 = Imρ. We may continue this set of examples, but the general idea in now
clear: as far as the consideration of singularities is fulfilled nonperturbatively, the number
of resonances, created out of stable states exceeds the expected one to one correspondence.

The question, which immediately arises during the discussions with colleagues from
particle physics establishment is: ”How can the number of state be changed? It should
contradict the completeness relation!” To answer these questions and may be prevent it in
more elaborated form we first should prove the completeness of solutions which we have
obtained and after that will be able to treat the problem of discrete states in the case of
resonances.

First of all let us fix the arbitrary constant A = 1 in the final expression for eigenvector
Ψ(E) – eq. (18). Making use of normalization conditions (4) and the Sokhotsti-Plemel
relation one can prove that

(Ψ±(E))
+Ψ±(E′) = δ(E − E′). (34)
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Further the Sokhotski-Plemel relation provides us with the following equation for real E:

η+(E)− η−(E) = 2πiλ2|f |2(E)η+(E)η−(E). (35)

Using (35) one can get convinced that the following remarkable relation is valid:

∞∫

0

dEΨ+(E) (Ψ+(E))
+ = |1 >< 1|+

∞∫

0

dω|ω >< ω|. (36)

The same is true also for out-going solution Ψ−(E). Equation (34) and (36) tell us that
the set of solutions Ψ+(E) (or Ψ−(E)) forms the complete system in our case of unstable
particle.2The other question which is now rather difficult to be formulated precisely con-
cerns the status of resonances as a ”particle” or ”discrete state”. This question has been
intensively discussed in the series of papers of Brussels-Austin group[6] and in the text-
book ”Quantum Mechanics” by A.Bohm [7]. Unfortunately the comprehensive discussion
of this subject will lead us to the functional analysis, very far from particle physics and
therefore we again will schematically present the general ideas.

Let us return to solution (18) of eigenvalue problem (for definiteness we shall speak
about Ψ+(E) solution) and consider it as a function of complex energy. As we already
know the resolvent η+(E) which enters into the r.h.s. of (18) has a pole (poles) on the
second sheet in the point (points) say Ec. The residue in this pole is proportional to the
expression in the square brackets, taken at E = Ec. Let us denote it via ΨG+(Ec):

ΨG+(Ec) = |1 > +λ

∞∫

0

dω
f(ω)

ω − E |ω >
∣∣∣∣∣∣
E→Ec

, (37)

where the continuation to the point Ec should be performed from the above of the real
axis. The superscript G stands for Gamov. It is this state, being properly continued to
the second sheet is the eigenvector of H with complex eigenvalue Ec and there exists the
generalized spectral decomposition of H, where ΨG+(Ec) enter as a discrete state. It goes
without saying that the last sentence is a heresy from the point of view of the Hilbert
space formulation of quantum theory, but we worked not in the Hilbert space from the very
beginning, when we considered the hamiltonians with continuous spectrum. Usually we
do not pay too much attention to the difference between the Hilbert space and the rigged
Hilbert space (it is the space where the operators with continuous spectrum are defined).
The reason for that is probably the Dirac bright invention of bra and cat vectors, which
enter into the formulas in a very symmetric way as far as the real spectrum is concerned.
The general situation is nevertheless the following: if we consider the operators with
continuous spectrum, we may use as states the wave packets, which are good, square
integrable elements of some Hilbert space H. But among these vectors we can’t find
the eigenvectors of our operators and we must extend our space including into it also
nonnormalizable vectors if we want to construct the spectral decomposition of operators.

2It is useful to compare this case with the situation when the discrete level lies below continuum.
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This extended space Φ+ is really the space of the functionals, not the functions (recall the
most popular example of δ –function). The space of functionals Φ+ should be supplied
with the space of test functions Φ, where these functionals may be defined. In such a way
there arises the rigged Hilbert space or Gelfand triplet of spaces (though more appropriate
to say the trinity of spaces)

Φ ⊂ H ⊂ Φ+. (38)

Now we can return to the Gamov vector and explain its place in the present con-
struction. First of all we want to emphasize that the continuation to the complex point
Ec in (37) should be performed starting from the above of real axis (if we simply put
E = Ec in the integrand, the answer will be wrong). The obstacle for direct continuation
is the contour of integration: to move E below real axis we have to deform the path of
integration to the complex plane, what is impossible because the state |ω > is defined for
real ω only. In this point let us recall that the state Ψ+(E) belongs to the space Φ+. If
we will be able to find the appropriate space of test functions Φ, such that the < φ|ω >
(where < φ| belongs to Φ) could be analytically continued to the lower half plane, we
will able to make the analytic continuation of (37). The space Φ, which we need for this
purpose, does exist and its elements have the following form:

Φ ⊃< φ| =
∞∫

0

dω < ω|φ(ω), (39)

where function φ(ω) belongs to the space of Hardy class functions from above i.e. the
functions which could be analytically continued to the lower half plane.

The above discussion shows that in spite of the absence of resonances in unity de-
composition (36) we can construct the corresponding states in the rigged Hilbert space.
Moreover, there exists a generalized spectral of hamiltonian which could be analytically
continued in the rigged space in such a way that the resonances will explicitly enter it.
We will not present here this construction and will devote the end of the paper to the
discussion of physical consequences of our approach.

As is seen from the general expression for eigenstates and our examples, the function
f(ω) plays very important role in the formation of resonances, their masses, widths and
number. Certainly, this important object should be derived in the framework of funda-
mental theory — QCD, but in the present situation it is hardly possible and we have to
introduce it as a phenomenological one. Therefore we must investigate if there are some
general requirements on these functions which follow from quantum theory. One of it we
have already used in our approach forbidding the appearance of the stable state below
the threshold by condition (6). Particle physicists have recognized in the formfactors,
which we had used in our examples, the factor

√
ω — the two particles phase volume,

which defines the vanishing of transition amplitude of one scalar into a pair of scalars.
In the general case the power of relative momentum —

√
ω, will be l + 1, where l is

the relative orbital momentum. Apart from that we imposed the requirement of square
integrability of the formfactor. Actually we can relax this condition — all our arguments
hold true even for formfactors which vanish at infinity. As we see these conditions leave
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too much room for different parameterization of the formfactor and there may arise the
impression that among these different possibilities there also exists the case when the
number of states coincides with the initial one. Unfortunately, this very case does not fit
into aforementioned conditions. Indeed, let us take the following formfactor:

|f |2(ω) = √ω, (40)

which does not vanishe at infinity. To define the inverse resolvent we need to make one
subtraction in the dispersion integral (13) in some point E = −E0, where E0 = ρ2 > 0.
This subtraction of infinite constant from the integral term may be absorbed into the
infinite renormalization of ω1, in (13). After this renormalization we arrive at the following
expression for η−1(E):

η−1(E) = ωr1 − z2 − iπλ2(z − iρ), (41)

where we have used the notations from our first example and superscript r means renor-
malized. Apparently the equation η−1(E) = 0 now is quadratic and have exactly one
pair of complex conjugated solutions. So, principally we may have the desired one to one
correspondence, but the price for it is the infinite renormalization in the model which is
considered as a phenomenological one. Apart from that, this subtraction of integral may
be absorbed into renormalization of physical quantity only in the case of S-wave decay,
for higher waves there is nothing to renormalize, therefore we consider this possibility as
unsatisfactory.

The model which we have considered may be generalized for many channels and several
discrete states to describe more realistic situation in particle physics—mixing of states via
interaction with mutual continuum. The most important features of this generalization
are the following: all discrete states dissolve in continuum, the number of eigenstates of
hamiltonian is equal to the number of different continuums, the equation which defines
the positions of the poles are mutual for all states — it becomes the equation for the poles
of determinant of partial resonlvent, but the intensities of different poles depend on the
specific channel. If again we will consider the meromorphic class of functions, the number
of resonances exceeds one to one correspondence.

Apparently, the model we have considered is rather general and universal and, cer-
tainly, QCD, as the fundamental theory of strong interaction should provide us with some
prescription for the key object of our approach to the formfactor f(ω). As we have already
mentioned the relativistic generalization of the Friedrichs model is also possible [3] and
the role of the square of formfactor in this case is played by spectral density of propaga-
tor of bound discrete state, therefore, in the realistic situation the usage of exponential
functions is hardly possible, sooner it should be the function with the usual threshold
singularity and meromorphic character of the appropriate complex plane and therefore
also should lead to qualitatively the same picture. On the other hand, one can argue, that
among the lowest multiplets we do not observe any doubling of states, all of them are
very nicely described by single Breit-Wigner poles. That is true, but at the same time,
when we consider the exited states, the situation changes rather drastically. Sometimes
the hypothesis about extra states fits better than the single state. The example of most
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advanced analysis of resonance picture in the singlet channel 0++, in the framework of
K– matrix formalism with channels KK̄, ηη, ηη′ and ππ [8] shows that the number of
states exceeds the quark model predictions. The most favorable interpretation of these
extra states, of course, is the glueball one, but appearance of poles splitting cannot be
rejected. Certainly more clear situation is in the isospin 1 states, because here we have
no admixture of glueballs and here we find the region of masses 1450-1700 Gev with
quantum numbers 1−− where different fittings give several states [9]. Also, if the shape
of resonance differs from the usual Breit-Wigner one, it may be the reflection of several
poles which is not separated well and more accurate measurement of phase may clarify
its interpretation. The last point we want to mention in conclusion is the dependence of
shape of resonances on the channel even for the well established ones. This phenomenon
is very well known, but usually it is interpreted as experimental errors or influence of
different interaction of different decay products. Multi-channel generalization of our ap-
proach, which we have not considered here, clearly shows that this dependence is the
other manifestation of formfactors fi(ω), which is different for different channels and can
be used for its investigation.
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