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Abstract
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A method of solving Schwinger-Dyson equations for the Green function generating func-
tional of non-Abelian gauge theory is proposed. The method is based on an approximation of
Schwinger-Dyson equations by exactly soluble equations. For the SU(2) model the first step
equations of the iteration scheme are solved which define a gauge field propagator. Except the
usual perturbative solution, a non-perturbative solution is found which corresponds to the spon-
taneous symmetry breaking and obeys non-singular (”constant”) behaviour of the propagator
in the infrared region

aNNOTACIQ

rOˆEW w.e. oB ODNOM METODE RE[ENIQ URAWNENIJ –WINGERA-dAJSONA NEABELEWOJ KALIBRO-
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pREDLOVEN METOD RE[ENIQ URAWNENIJ –WINGERA-dAJSONA DLQ PROIZWODQ]EGO FUNKCIO-
NALA FUNKCIJ gRINA NEABELEWOJ KALIBROWOˆNOJ TEORII. mETOD OSNOWAN NA APPROKSIMACII

URAWNENIJ –WINGERA-dAJSONA SISTEMOJ TOˆNO RE[AEMYH URAWNENIJ. dLQ SU(2)-MODELI
RE[ENY URAWNENIQ PERWOGO [AGA ITERACIONNOJ SHEMY, OPREDELQ@]IE PROPAGATOR KALI-
BROWOˆNOGO POLQ. pOMIMO OBYˆNOJ TEORII WOZMU]ENIJ, KOTORAQ WSEGDA QWLQETSQ ODNIM

IZ RE[ENIJ, NAJDENO NEPERTURBATIWNOE RE[ENIE SO SPONTANNYM NARU[ENIEM SIMMETRII I

NESINGULQRNYM (”KONSTANTNYM”) POWEDENIEM PROPAGATORA KALIBROWOˆNOGO POLQ W INFRA-
KRASNOJ OBLASTI.
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1. The Schwinger-Dyson equations (SDE) method is one of the basic tools for the
investigations of the Green functions of the quantum theory. Hitherto the unique universal
method of the SDE solution is the coupling constant perturbation theory (below named
simply the perturbation theory). A field of applicability of other methods (for example,
1/N-expansion) is limited by a narrow class of models. In particular the 1/N-expansion
method cannot be applied to the investigation of non-Abelian gauge theories due to a
complicated structure of the leading approximation.

On the other hand, the applicability of the perturbation theory to the investigation of
non-Abelian gauge theories is limited by a deep-euclidean region. In the non-perturbative
region of small momenta the physical vacuum of non-Abelian gauge theories obeys the
nontrivial structure that is beyond the framework of perturbation theory. In the SDE
terms this fact can be understood if one takes into account a radical difference in the
properties among the leading approximation equations of the perturbation theory and
the original exact equations. The SDE for the generating functional of Green functions
are equations in functional derivatives. The leading approximation of the perturbation
theory consists in the neglecting of terms with the higher derivatives in this equations
(just such terms correspond to an interaction). The leading approximation equations of
the perturbation theory have a lower order in comparison with the exact ones, therefore
a class of described solutions contracts drastically, and non-perturbative solutions which
correspond to the nontrivial physical vacuum practically fall out of the consideration.
This feature of SDE in non-perturbative region is noted repeatedly for the simple models
(see, for example, [1,2,3]).

In this work a method for the SDE solution of non-Abelian gauge theory which takes
into account the terms with higher derivatives (i.e. self-interaction of the non-Abelian
fields) ab ovo in the leading approximation is proposed. Though we limit ourselves by
the simplest extension of the class of SDE solutions, the results are non-trivial: the non-
perturbative solution which corresponds to the spontaneous symmetry breaking (with
non-Higgs mechanism) is found. It obeys a non-singular behaviour of the propagator in
non-perturbative infrared region of small momenta.

An idea of the method consists in the approximation of SDE for the generating func-
tional by equations with ”constant” (i.e. independent of sources) coefficients. These
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equations have a simple solution as an exponential, which is a foundation for the linear
iteration scheme. The method is universal as the perturbation theory is, i.e. it is appli-
cable practically to any model of quantum field theory. For the scalar φ4 theory it has
been shown in [4] that the method describes such non-perturbative phenomena as the
spontaneous symmetry breaking and the trivialization of scalar theory at d = 4.
2. A system of SDE for the generating functional G(J, η) of Green functions of non-

Abelian gauge theory has the form

Dabν (
δ

iδJ
)F bνµ(

δ

iδJ
)G+

1

α
∂µ∂ν

δG

iδJaν
+ gfabc

δ

δη̄c
∂µ
δG

δηb
+ JaµG = 0, (1)

i∂µDabµ (
δ

iδJ
)
δG

δη̄b
+ ηaG = 0. (2)

Here F aµν(A) = ∂µA
a
ν−∂νAaµ+gfabcAbµAcν is a gauge field tensor, Dabµ (A) = δab∂µ−gfabcAcµ

is a covariant derivative, fabc are structure constants of a gauge group, Jaµ(x) is a source
of the gauge field, ηa(x) is a source of a ghost field, α is a gauge parameter, g is the
coupling constant. We work in the Minkowski space with a metric (1, -1, -1, -1), and
xµyµ ≡ gµνx

µyν by definition.
The iteration scheme is formulated as follows: the leading approximation is a system

of equations with all terms containing the sources J and η omitted. (For the system of
eqs. (1) and (2) there are the last terms.) Such system has a simple exponential solution
G0 = exp i { J ∗ V + η̄ ∗ C + C̄ ∗ η }, where J ∗ V ≡ ∫

d x Jaµ V
a
µ , etc. When

constructing the iteration scheme for the generating functional G = G0+G1+· · ·+Gn+· · ·
the omitted terms JG and ηG should be considered as perturbations, i.e. equations of
the iteration scheme are

{Dν( δ

iδJ
)Fνµ(

δ

iδJ
) +

1

α
∂µ∂ν

δ

iδJν
+ gf

δ

δη̄
∂µ

δ

δη
}Gn = −JµGn−1, (3)

i∂µDµ( δ

iδJ
)
δGn

δη̄
= −ηGn−1. (4)

A solution of eqs. (3)-(4) has the form Gn = PnG0, where Pn is a polynomial over J
and η. Therefore at each step of the iterations we obtain a closed system of equations for
coefficient functions of the polynomial Pn, which defines completely the Green functions
of the given step. There is no manifest small parameter in the usual sense in this scheme:
”smallness” is defined by the circumstance that Green functions are derivatives of the
generating functional at J = η = 0, and it is sufficient for us to know G(J, η) near zero,
i.e. in the region where the terms neglected are small. At each step of the iteration we
approximate the functional G/G0 by a sum of the polynomials Pn, and a degree of the
polynomial arises with each step. As is known, for the ordinary differential equations the
scheme of this type is equivalent to the iterations of Volterra-type integral equations and
gives a well-convergent expansion. That is why we may hope that this scheme obeys good
convergence properties. In any case it is clear that the convergence of this scheme is not
worse in comparison with the perturbation theory. The perturbation theory is singular
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in the sense of the differential equation theory since the higher derivatives are omitted in
the leading approximation. In contrast to the singular perturbation theory the scheme
proposed is regular in the sense above. This circumstance gives us a hope to improve of
the convergence properties.

For the ultraviolet divergences removing there it is necessary to supplement SDE (1)-
(2) and the iteration scheme equations (3)-(4) with the corresponding counterterms. The
counterterms are also defined by the iteration procedure: δz = δz0 + δz1 + · · ·, i.e. it is
necessary at each step to take into account the counterterms of the corresponding order.

Let us consider the leading approximation in more detail. As it has been noted above
the solution of the leading approximation equations is the linear exponential in the sources.
We limit ourselves to the case C = 0 and choose the leading approximation in the form

G0 = exp i{J ∗ V }, (5)

where V aµ is a solution of the ”characteristic equation”

Dabν (V )F bνµ(V ) +
1

α
∂µ∂νV

a
ν = 0. (6)

The simplest class of solutions of eq. (6) is constant (i.e., independent in the space-time
variable) vectors V aµ whicn satisfy the condition

fabcf cdhV bν V
d
ν V

h
µ = 0. (7)

Below we shall consider this class of the leading approximation solutions only. It is
convenient to introduce the matrix quantity

W ab
µ = igfabcV cµ . (8)

Then the iteration scheme equations have the form of equations for the polynomials Pn

{[Dν(V ) + igf
δ

δJν
][Fνµ(

δ

iδJ
) +Wν

δ

δJµ
−Wµ

δ

δJν
] + (9)

i[Wµ,Wν ]
δ

δJν
+

1

α
∂µ∂ν

δ

iδJν
+ gf

δ

δη̄
∂µ

δ

δη
}Pn = −JµPn−1,

∂µ[Dµ(V ) + igf
δ

δJµ
]
δPn
δη̄

= iηPn−1. (10)

The solution of the first step equations is

P1 =
1

2i
J ∗D ∗ J + iη̄ ∗∆ ∗ η. (11)

Eqs. (9) and (10) give us equations for Dabµν(x − y) and ∆ab(x − y). The equation for
Dµν can be simplified essentially by modifying a gauge condition. Instead of the usual
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covariant gauge ∂µAµ = 0 that have been used above it is convenient to use the following
gauge condition (”V -gauge”)

Dµ(V )Aµ = 0. (12)

In the case the gauge fixing term in the effective lagrangian of gauge field has the form
Lgauge = − 1

2α
(Dµ(V )Aµ)2, and ghost terms should be changed correspondingly. For the

transition into the gauge of eq. (12) in formulae (1)-(4), (6) and (9)-(10) it is sufficient
to perform the substitution

∂µ → Dµ(V ). (13)

An essential circumstance is non-changing of the leading approximation condition (7) in
the case.

The equations have particularly simple form in the gauge α = 1 (”diagonal V -gauge”).
Then the equation for Dµν in the momentum space is

{K2gµν + 2[Kµ,Kν]}D̃νλ(k) = −gµλ, (14)

where k is a momentum, and the notation is introduced

Kabµ = kµδ
ab −W ab

µ . (15)

In the region of large k eq. (14) goes in the equation for the free propagator in the diagonal
gauge, i.e. at k →∞

D̃µν(k) ≈ − 1

k2
gµν . (16)

The equation for the ghost propagator ∆ is

K2∆̃(k) = −1. (17)

In the large k region the propagator ∆̃ also goes into the free propagator. Therefore the
ultraviolet behaviour of the solutions with a nontrivial vacuum vector Vµ is the same as
for the usual perturbation theory.

Below we restrict ourselves by the case of SU(2) gauge group. It is not difficult to
prove that for SU(2) group the leading approximation condition (7) is equivalent to the
condition

εabcV bµV
c
ν = 0. (18)

Eq. (18) gives us [Kµ,Kν] = [Wµ,Wν] = 0, and the solution of eq.(14) is reduced to the
inversion of the matrix K2:

D̃abµν(k) = −gµν [
p

p1
δab +

2(kW ab)

p1
+ (

1

k2
− p

p1
)
(V aV b)

V 2
], (19)

where the following notations are introduced

p(k, V ) = k2 + g2V 2, p1 = p2 − 4g2(kV )2. (20)
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A solution of the ghost propagator equation (17) is also given by formula (19) (with-
out gµν).

Except eqs. (14) and (17) the first step equations give one more relation that contains
a quantity Dµν(0), which should be understood as some regularization. In essence this
relation is a condition for the first step counterterms δz1. (There is no need to introduce
the leading approximation counterterms in the case, i.e. δz0 = 0). Since the Green
functions of the first step are finite, this condition for the counterterms is necessary for
ultraviolet divergences removing (renormalization) of the Green functions of the second
step of the scheme. This peculiarity of the given iteration scheme is displayed here by
exactly the same manner as for scalar field theory (see [4]).
3. Let us apply now to a possible physical interpretation of the solutions. At Vµ =

0 Dµν and ∆ are free propagators of gauge and ghost field, and the whole iteration scheme
is a reconstructed series of the perturbation theory. At Vµ �= 0 the situation is more
complicated. It is clear that in this case it is difficult to interpret the function Dµν given
by eq.(19) as a propagator of a particle in the Poincaré invariant theory. Let us remind,
however, that we have a number {G(V )} of solutions of SDE each corresponding some
vector Vµ satisfying leading approximation condition (7). In other words, a ”physical”
vacuum is a superposition of V -vacua. We shall exploit the fact for the construction of
a Poincaré invariant solution which can be interpreted as a particle propagator, i.e. a
function depending on the momentum k and the scalar quantity

v2 = V 2 ≡ V aµ V
a
µ (21)

only. (The quantity v2 plays a part of an order parameter.) The construction is equivalent
in essence to some averaging, i.e. an integration with a measure dµ(V ), since we shall
note it by brackets: < G >=

∑
V G(V ) etc. In foundation of a definition of this operation

we put the following conditions

< V aµ >= 0, < V 2 >= v2. (22)

Its necessity for the Poincaré invariant theory is evident. It is also evident that

< V aµ V
b
ν >=

1

4
v2gµνE

ab (23)

where tr E = 1. For a determination of the form of the matrix Eab consider the leading
approximation condition (18). Geometrically the condition denotes the collinearity of the
vectorsVµ in the isotopic space. Consequently at Vµ �= 0 there exists a selected direction
in the isotopic space. This direction can be chosen as a basic vector, for example n3. In
this basis V aµ = δa3vµ, and Eab = δa3δb3. Therefore at Vµ �= 0 the isotopic symmetry is
spontaneously broken.

Further calculation is reduced to a definition of the function f((kV )2) = p/p1. First of
all note that at k → 0 f → 1/g2v2, and at k → ∞ f → 1/k2. These Poincaré invariant
properties of f should be, of course, conserved for < f > too.
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With eqs.(22)-(24) and its generalizations for an arbitrary monomial inVµ the formula
can be proved

< (kV )2n >= (k2v2)n
Γ(n+ 1/2)

(n+ 1)!Γ(1/2)
, (24)

which is necessary for the calculation of < Dµν >. The result of the calculation in the
basis above is the following:

< D̃33µν(k) >= −gµν
1

k2
, (25)

< D̃11µν(k) >=< D̃22µν(k) >= −gµν
k2 + g2v2

2g2v2k2

(
1−

√√√√1− 4g2v2k2

(k2 + g2v2)2

)
. (26)

(Other isotopic components are equal to zero.) Therefore along the selected isotopic
direction the particle propagates as free one, but along other directions a separation of
the region of momenta exists, the scale of the separation is the quantity g2v2. It is
necessary to stress, that both limiting cases above (k2 → 0 and k2 → ∞) belong to the
region of applicability of the calculations performed which is defined by the condition
| 4g2v2k2/(k2 + g2v2)2 |< 1. Consider the question about an analytical continuation.
Eq.(26) defines two analytical functions depending on a choice of a branch of the function√
z2, but none of them satisfies simultaneously both asymptotical conditions above and,

consequently, is not a solution of the problem. Hence one should choose as a solution
at large k the branch with the behaviour 1/k2, and at small k - another branch which
is a constant 1/g2v2. In the points ±g2v2 the solution goes from one branch to another,
i.e. from the ”perturbative” sheet to the ”non-perturbative” one. At the point k2 = g2v2

the solution is continuous, and at the point k2 = −g2v2 has a disconnection. (Note the
first step calculations of the iteration scheme do not fix a sign of v2.) Such unusual
features of the solution near the points of the separation are likely to be connected with
our limitation of the characteristic equation solutions. Probably an extension of the class
of solutions will lead to smoothing the propagator behaviour near the points of separation
of perturbative and non-perturbative regions.

In conclusion note that the hypothesis of non-singular infrared behaviour has been
recently discussed intensively (see, for example, [5,6,7] and refs. therein).

The author is grateful to A.I. Alekseev, B.A. Arbuzov and P.A. Saponov for useful
discussion. The work is supported by RFBR, grant No.95-02-03704.
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