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Abstract
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A new nonperturbative approach is used to investigate the Gross-Neveu model of four fermion
interaction in the space-time dimensions 2, 3 and 4, the number N of inner degrees of freedom
being a fixed integer. The chiral symmetry spontaneous breaking is shown to exist in D = 2, 3
and the running coupling constant is calculated. The four dimensional theory turns out to be
trivial.
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Introduction

In spite of its great and numerous successes the perturbation theory cannot describe a
wide class of important phenomena (like confinement or spontaneous symmetry breaking)
playing the key role in the problem of full and comprehensive description of physical
reality. So it is quite natural that considerable efforts are applied in order to develop
the nonperturbative methods in the quantum field theory. So far, only a few sufficiently
effective methods like the effective potential, the 1/N expansion, the Gauss effective
potential method [1] or the variational perturbation theory [2] are known.

A new nonperturbative approach has been recently proposed in work [3]. The ability
of the method was demonstrated by the example of a self interacting scalar field in various
dimensions. In the present paper we would like to investigate the Gross-Neveu model of
the fermion fields with an arbitrary fixed number N of inner degrees of freedom. The cases
D = 2, 3, 4 were elaborated and the spontaneous chiral symmetry breaking was found to
exist in two and three dimensions. The four dimensional Gross-Neveu model turns out
to be trivial. These results exhibit the efficiency of the method and are the finite N
generalization of the known results obtained in the framework of 1/N expansion [4]–[7].

The paper is organized as follows. Section 1 consists of a short introduction to the
method of [3] to be used throughout the paper. Sections 2, 3 and 4 are devoted to the
Gross-Neveu model in the two, three and four dimensions, respectively. Section 5 contains
another approach to the subject based on the formalism of the bilocal source.

1. The Method

In our approach we will use one of the most suitable tools for the nonperturbative
treatment of a quantum field model — the Schwinger-Dyson equation. As the system
of Schwinger-Dyson equations for the Green functions consists of the infinite number of
mutually connected equations, one should truncate it in some way in order to find an
approximate solution. It is obvious enough that the concrete way of truncation has a
crucial significance for the results. For example, if we solve the Schwinger-Dyson system
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iteratively by expanding the Green functions into the series in the coupling constant, we
obtain the perturbative solution. Being the simplest from the practical point of view
the perturbative approach is the worst in the mathematical sense. The matter is that a
small parameter (the coupling constant) is a multiplier at the highest derivative term of
the functional differential Schwinger-Dyson equation for the Green functions generating
functional. This means that the equation is a singularly perturbed one. So, the pertur-
bative procedure is valid only for the restrictive class of boundary conditions and cannot,
in principle catch all solutions [8].

Taking into account the reasons above, we can conclude that a good approximation
scheme for the nonperturbative solution of the Schwinger-Dyson equation should obey
the following requirements:

• It must take into account the highest derivative term of the Schwinger-Dyson equa-
tion already at the leading approximation.
• It must allow one to make the renormalization procedure.
• It should be simple enough for the practical calculations.

An approximation scheme proposed in [3] obeys the requirements listed above. Below
we give a short introduction to the main ideas of the method for the reader’s convenience.

Consider the theory of a self-interacting scalar field φ(x) with the action

S(φ) =
∫

dx

(
1

2
(∂µφ)

2 − µ2

2
φ2 − λφ4

)
. (1.1)

The generating functional of n-point Green functions can be written as follows

G =
∞∑
n=0

Gnj
n, (1.2)

where j(x) is a field source. The n-th derivative of G at j = 0 is the n-point Green
function Gn.

The Schwinger-Dyson equation for the generating functional of this model reads

(µ2 + ∂ 2)
δG

δj(x)
+ 4λ

δ3G

δj3(x)
− ij(x)G = 0 . (1.3)

The central idea of the iterative scheme is to consider the last term of this equation
as a perturbation to the leading approximation. That is we take the following ”equation
with constant coefficients” as the leading approximation:

(µ2 + ∂ 2)
δG(0)

δj(x)
+ 4λ

δ3G(0)

δj3(x)
= 0 . (1.4)

Presenting the full functional G(j) as the sum

G(j) =
∑
n

G(n)(j) (1.5)
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we then write for the terms of this sum the recursive chain of equations:

(µ2 + ∂ 2)
δG(n)

δj(x)
+ 4λ

δ3G(n)

δj3(x)
= ij(x)G(n−1) . (1.6)

The solution for (1.4) is sought for in the form G(0) = exp (iσj) and from (1.4) one
obtains a characteristic equation for the function σ(x). For the G(n) we put G(n) =
Pn(j)G(0), where Pn(j) is a polynomial in j(x) with unknown coefficients to be defined
from (1.6). It should be noted, that the leading approximation for the connected part
of the n-point Green function can be found at the (n + 1)-th step of the scheme: at
the leading approximation one defines ”the vacuum” of the model, at the first step the
connected part of the propagator enters the game, whereas for the higher Green functions
one can define an approximant for the disconnected part only. At the third step of the
scheme we calculate the first correction to the propagator and the leading approximation
for the two-particle amplitude and so on.

This procedure is model independent and has a regular character. The last property
is due to the generating functional is regular at j = 0 by definition, so as its derivatives
at this point are the Green functions of the model. Therefore the perturbation theory
around the point j = 0 is regular recipe for solving the Schwinger-Dyson equation.

The renormalization procedure can be easily introduced into the scheme (see [3] for
details). Shortly the renormalization can be carried out in the following few steps.
(i) All the necessary counter terms are expanded in a sum, analogous to (1.5):

µ2 → µ2 + δµ2(0) + δµ2(1) + . . . λ→ λ + δλ(0) + δλ(1) + . . . etc., (1.7)

where the subscript of a counter term stands for the number of the approximation scheme
step at which this counter term should be taken into account.
(ii) Equations (1.4) and (1.6) are modified respectively:

(µ2 + δµ2(0) + (1 + δZ
(0)
φ ) ∂2)

δG(0)

δj(x)
+ 4(λ + δλ(0))

δ3G(0)

δj3(x)
= 0 (1.8)

(µ2 + δµ2(0) + (1 + δZ
(0)
φ ) ∂2)

δG(1)

δj(x)
+ 4(λ + δλ(0))

δ3G(1)

δj3(x)

= ij(x)G(0) − δµ2(1)
δG(0)

δj(x)
− δZ

(1)
φ ∂2

δG(0)

δj(x)
(1.9)

and so on.
(iii) The counter terms entering the scheme at the n-th step are fixed only at the

next (n+1)-th step. Before the renormalization of the (n+1)-th step has been done, the
equations of the n-th step are nothing but some relations among the counter terms.

Now we are ready to go to the subject of our paper — the Gross-Neveu model of the
four fermion interaction [4].
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2. The general consideration and D=2 case

In [4] D. Gross and A. Neveu have investigated the model of the N-coloured spinor
fields with scalar-scalar four fermion interaction at large N . Most of the works devoted
to the Gross-Neveu model also deals with the 1/N expansion [5]–[7]. Our goal is to
investigate the Gross-Neveu model when the number of colours N is an arbitrary fixed
integer.

The model is defined in the D-dimensional Minkowski space-time by the action:

S =
∫

dDx

(
ψ̄ (i �∂ −m)ψ +

λ

2
(ψ̄ψ)2

)
, (2.1)

where ψk(x) is a spinor field with N isotopic degrees of freedom. The summation over
the isotopic indices k is implicit in (2.1). The mass dimension of the coupling constant λ
is zero in the two dimensional space-time, therefore model (2.1) is renormalizable.

Let us transform our model to that of the spinor and scalar fields coupled by Yukawa
interaction [4]:

Seff =
∫

dDx

(
ψ̄ (i �∂ −m)ψ − 1

2
φ(µ2 + ∂ 2)φ + β φ(ψ̄ψ)

)
. (2.2)

Model (2.2) is equivalent to (2.1) if one identifies β = µ
√
λ and takes the limit µ → ∞.

Below we will refer to this identification as the Gross-Neveu limit. The simplest way to
verify the mentioned equivalence is to consider the path integral representation for the
generating functional:

Geff(j) =
∫
DφDψ̄Dψ exp

(
iSeff + i

∫
jφ
)

. (2.3)

Now we perform the Gauss integration over the spinor field in (2.3) and then apply
the just described approximation scheme to the resulting functional G(j). However there
is one subtle point about the case N = 1 in two dimensions. As is known, the two-
dimensional Gross-Neveu model at N = 1 is equivalent to the Thirring model. It is known,
that the Thirring model does not reveal the spontaneous chiral symmetry breaking, so the
same should be true for the Gross-Neveu model at N = 1. The matter is that in the case
of two dimensions and N = 1 (and only in this case) the character of the symmetry of
the Gross-Neveu model changes. At the chiral limit m→ 0 this model is invariant under
the discrete transformation ψ → γ5ψ. But in the exclusive case N = 1 the symmetry
becomes continuous: ψ → eiαγ5ψ. Such an effect can be easily seen by passing to the
spinor components: we find that non-invariant terms are equal to zero as a consequence
of the grassmanian nature of the spinor field. So we have the continuous symmetry in the
two dimensions, which cannot be broken spontaneously due to the Mermin-Wagner-Co-
leman theorem.

In order to take into account this fact explicitly one could (following, for example, [5])
integrate over only (N − 1) components of the spinor field in the generating functional
(2.3). The consideration will be slightly more complicated, but no new effect will arise
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except for the multiplier (N − 1) instead of N in front of all the quantities responsible for
the chiral symmetry breaking. We choose the more transparent way of integrating over all
the components of the spinor field but should always keep in mind that our consideration
is valid only for N ≥ 2.

Upon integrating over the spinor field in (2.3) we find the following Schwinger-Dyson
equation for the generating functional G(j):

(µ2+∂ 2)
δG

δj(x)
+Nβ

∫
dDy Tr

[(
1− β 
 · δ

iδj

)−1
(x, y)
 (y − x)

]
G− ij(x)G = 0 , (2.4)

where 
(x) is the free fermion propagator:

(i �∂ −m)
 (x) = − δ(x) , 
(x) =
∫

dDp

(2π)D
�p + m

m2 − p2
,

and D stands for the dimension of the space-time.
Writing the generating functional as the sum G = G(0) + G(1) + . . ., we put for the

leading approximation G(0):

(µ2 + ∂ 2)
δG(0)

δj(x)
+ Nβ

∫
dDy Tr

[(
1− β 
 · δ

iδj

)−1
(x, y)
 (y − x)

]
G(0) = 0 . (2.5)

The solution to this equation is sought for in the form G(0) = exp(iσ ∗ j), where ∗ means
the space-time integration and σ must be constant by virtue of the Poincaré invariance.
Now we have from (2.5):

iµ2σ + Nβ TrR(0) = 0 , (2.6)

where we adopted the convenient notation R(x):

R(x) ≡
∫

dDy
(
1− βσ


)−1
(x− y)
 (y) ≡ (
−1 − βσ)−1(x) .

The Fourier transformation of the function R reads:

R(x) =
∫

dDp

(2π)D
e−ipx

�p + M

M2 − p2
, M ≡ m− βσ .

The first step equation is of the form:

(µ2 + ∂ 2)
δG(1)

δj(x)
+ Nβ

∫
dDy Tr

[(
1− β 
 · δ

iδj

)−1
(x, y)
 (y − x)

]
G(1) = (2.7)

ij(x)G(0) ,

and we substitute into this equation the following expression for the G(1):

G(1) =
(1
2
j ∗ D ∗ j + iτ ∗ j

)
G(0) ,
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where the function D(x) and the constant τ are to be determined from equation (2.7).
Omitting some straightforward calculations we write down the resulting equation:

ij(x) = (µ2 + ∂ 2)
(
(D ∗ j)(x) + iτ

)
− iNβ2

∫
dDy(D ∗ j)(y)Tr

(
R(x− y)R(y − x)

)

+Nβ τ
∂

∂(βσ)
TrR(0) −Nβ3

∫
dDy1d

Dy2D(y1 − y2)Tr
(
R(x− y1)R(y1 − y2)R(y2 − x)

)
.

From the above relation we immediately find the equation for the τ , which defines the
first correction to the σ, and the equation for D(x), which is of the main interest for us:

(µ2 + ∂ 2)D(x)− iNβ2
∫

dDyD(x− y)Tr
(
R(−y)R(y)

)
= iδ(x) . (2.8)

Equations (2.6) and (2.8) are still formal due to the ultraviolet divergencies in TrR(0) and
Tr(R ·R) and we should renormalize our model in order to give them a definite meaning.

Let us consider now the two-dimensional case that is put D = 2. Analysis of the diver-
gencies of theory (2.2) shows that it is sufficient to introduce only one counter term δµ2(0)
to cancel the divergencies in the equations for σ and D. Then the leading approximation
equation (2.6) is modified as follows:

σ = − M

µ2 + δµ2(0)

Nβ

2π
ln

(
1 +

Λ2

M2

)
,

where we substitute the value of the TrR(0) calculated with a momentum cutoff Λ.
To verify the possibility of the spontaneous chiral symmetry breaking we should study

the above equation at the chiral limit m→ 0, M → −βσ:

σ =
Nβ2σ

µ2 + δµ2(0)

1

2π
ln

(
1 +

Λ2

β2σ2

)
. (2.9)

The obvious solution to this equation σ = 0 leads (at least up to the few first steps of the
scheme) to the usual perturbative expansion of the generating functional with massless
fermions. Such a solution is unsatisfactory one from the physical point of view since it
contains the tachion states which means that the perturbation is carried over the unstable
vacuum [4]. That is why we will concentrate on a possible non zero solution, for which
we have:

µ2 + δµ2(0) =
Nβ2

2π
ln

(
1 +

Λ2

β2σ2

)
. (2.10)

Now from equation (2.8) we get the following expression for the Fourier image D(p2):

D(p2) =
i

µ2 + δµ2(0) + Nβ2Σ(p2)− p2
,

where the bare mass operator Σ reads:

Σ(p2) ≡ −i
∫

dDk

(2π)D
TrR(p + k)R(k) . (2.11)
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Let us renormalize D(p2) in the Euclidean momentum region by the condition:

at p2 = −ω2 D(−ω2) =
i

µ2
. (2.12)

With the renormalization prescription (2.12) we can find the sum (µ2 + δµ2(0)) and write
the renormalized function D and the equation for the nonzero value of σ at the chiral
limit as follows:

iD−1(p2) = µ2 − (p2 + ω2) +
Nβ2

2π

(
f
(
− p2

β2σ2

)
− f

(
ω2

β2σ2

))
(2.13)

Nβ2

π
+

Nβ2

2π
f
(

ω2

β2σ2

)
= µ2 − ω2 , (2.14)

where the function f(θ) reads:

f(θ) ≡
∫ 1
0

ln(1 + θx(1− x))dx .

In the region p2 > 0, D(p2) defines the s-channel amplitude of the two-fermion scattering,
therefore, as directly follows from (2.13), the point p2 = 4β2σ2 is a two particle threshold
and a fermion with non zero mass mF = βσ exists in our theory.

Now we take the Gross-Neveu limit: β = µ
√
λ, µ→∞. It can be shown that at this

limit the constant σ is proportional to the fermion condensate :

σ −→
√
λ
<ψ̄ψ>

µ
⇒ βσ −→ λ <ψ̄ψ> , (2.15)

therefore
mF = λ <ψ̄ψ> . (2.16)

On the other hand the product (iβ)2D(p2) in the Euclidean region p2 = −q2 < 0 tends to
the running coupling constant of the Gross-Neveu model:

(iβ)2D(−q2) −→ −iλr
( q2
ω2

;
m2F
ω2

)
.

Calculating the limit explicitly we find the running coupling for the Gross-Neveu model:

λr
( q2
ω2

;
m2F
ω2

)
=

λ

1 + Nλ
2π

(
f(q2/m2F )− f(ω2/m2F )

) . (2.17)

It is obvious from (2.17) that λ = λr(1;
m2F
ω2

). Then, denoting the massless combination
m2F/ω

2 as ξ we find from (2.14):

λ−1r (1; ξ) =
N

π

√
1 + 4ξ arcsinh2

√
ξ , (2.18)
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which gives for the coupling constant:

λr
( q2

m2F

)
=

π

N

√
1 +

4m2F
q2

arcsinh
√
q2

4m2F

. (2.19)

No free parameters are available except for the fermion mass mF . It is in the full agree-
ment with the number of parameters of the initial Gross-Neveu model: one dimensionless
parameter λ is changed for the one mass parameter mF [4].

In the deep Euclidean region q2 → ∞, the running coupling constant asymptotically
vanishes

λr
( q2

m2F

)
∼ π

N ln
√
q2

m2F

, (2.20)

which reflects the known property of the asymptotical freedom of the Gross-Neveu model
in the two dimensions.

3. D=3

The three dimensional case is interesting in the two aspects. Firstly, the four fermion
interaction model (2.1) is not perturbatively renormalizable, since the mass dimension of
the coupling λ is negative. But the effective Yukawa theory (2.2) is still renormalizable
(even super renormalizable) model. Therefore, our approach is a method for handling the
nonrenormalizable theory. And secondly, the dimensional regularization plays a distin-
guished role in the three dimensions, due to a typical singularity of a one-loop term of the
theory (2.2) has the form Γ(1−D/2) or Γ(2 −D/2) and, therefore, the divergencies are
absent in this regularization. The theory is finite and no renormalization is needed. That
is why we make the calculations in two regularizations: the dimensional and momentum
cutoff ones and compare results.

The form of the main equations (2.6) and (2.8) does not depend on the concrete value
of the space-time dimension, so we start our consideration directly with those equations.

Dimensional regularization

On calculating the quantity TrR(0) in the D = 3−2ε dimensions we obtain from (2.6)
the equation

µ2σ + 3
Γ(−1/2)

(4π)3/2
NβM2 = 0 ,

which transforms at the chiral limit m→ 0 to the following result:

σ

(
µ2 − 3Nβ3

4π
σ

)
= 0 . (3.1)

We have two solutions again: the trivial σ = 0 and the nontrivial σ = 4πµ2

3Nβ3
ones. The

nontrivial solution gives the nonzero condensate at the Gross-Neveu limit:

βσ −→ λ <ψ̄ψ>=
4π

3Nλ
. (3.2)
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From equation (2.8) we find

iD−1(p2) = µ2 − p2 +
3Nβ2

2π

∫ 1
0

dx
√
β2σ2 − p2x(1− x) , (3.3)

from which in turn we get the mass of a fermion:

mF = βσ = λ <ψ̄ψ>=
4π

3Nλ
. (3.4)

The running coupling in this case reads:

λ−1r (q2) =
3NmF

4π


1 +

mF√
q2

(
1 +

q2

4m2F

)
arcsin

√√√√ q2

4m2F + q2


 . (3.5)

The asymptotics in the deep Euclidean region q2 →∞ is

λr(q
2) ∼ 32

3N
√
q2

,

i. e., the Gross-Neveu model is asymptotically free in the three dimensions.

The momentum cutoff regularization

The one-fermion loop Tr(R · R) and the fermion tadpole TrR(0) possess the linear
divergence, when calculated at the momentum cutoff Λ, therefore we introduce a counter
term δµ2(0) to cancel the divergence at the leading approximation. For the nonzero value
of σ we have the following equation

µ2 + δµ2(0) =
3Nβ2

2π2

(
Λ +

π

2
βσ

)
. (3.6)

Equation (2.8) gives:

iD−1(p2) = µ2 + δµ2(0) − p2 +
3Nβ2

2π

(∫ 1
0

dx
√
β2σ2 − p2x(1− x)− Λ

π

)
.

For the renormalization of the theory we take the same scheme (2.12) as we did in the
previous section, i. e., we put

D(−ω2) =
i

µ2

at some Euclidean momentum p2 = −ω2. We note, that due to the leading approximation
equation (3.6) the renormalized function D does not depend on the concrete regularization
scheme and as a consequence so does the running coupling.

Using the renormalization prescription we can define the sum µ2 + δµ2(0) and get the
renormalized equation for the nonzero constant σ from (3.6). At the Gross-Neveu limit
the equation can be written in the form :

sin2 z + b(z − sin 2z) = 0 , b ≡ 3N

8π
λω , (3.7)
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where we denote
z = arcsin

ω√
ω2 + 4λ2 <ψ̄ψ>

z ∈ [0, π/2] ,

and substitute βσ → λ <ψ̄ψ>. One can show that equation (3.7) always has a nonzero
solution z ∈ [0, π/2]. Under the condition ω � λ <ψ̄ψ> the solution is of the form

λ <ψ̄ψ>=
4π

3Nλ
.

The analytic structure of the renormalized function D allows us to conclude that
there exists a fermion with the mass mF = βσ in our model and to get a running coupling
constant in the momentum cutoff regularization:

λ−1r (q2) =
3NmF

4π


1 +

mF√
q2

(
1 +

q2

4m2F

)
arcsin

√√√√ q2

4m2F + q2


 ,

which is identical to the result of the dimensional regularization (3.5).
The only parameter of the model is the fermion mass, which defines the strength of

interaction at the classical limit q → 0:

λr(0) =
4π

9NmF
. (3.8)

The similar results were obtained in the framework of 1/N expansion [7].

4. D=4

The case of the four dimensional space-time is more involved because the effective
Yukawa theory contains the divergencies in the four point Green function of the scalar
field. Therefore we have to introduce into the action the corresponding self-interaction of
the scalar field ∼ φ4. Thus we start from the action

Seff =
∫

d4x

(
ψ̄ (i �∂ −m)ψ − 1

2
φ(Zφ∂

2 + Zµµ
2)φ + β φ(ψ̄ψ)− Z4β

4

4!
φ4
)

. (4.1)

Here the constants Za represent the boson field renormalization whereas the fermion
renormalization multipliers are considered as being absorbed into the norm of the fermion
fields and into the constants of the action.

We will use the dimensional regularization in this section. As the leading approxima-
tion to the Schwinger-Dyson equation we have the following:

(Z
(0)
φ ∂2 + Z(0)µ µ2)

δG(0)

δj(x)
+

Z
(0)
4 β4

3!

δ3G(0)

δj3(x)
+

Nβ
∫

d4y Tr

[(
1− β 
 · δ

iδj

)−1
(x, y)
 (y − x)

]
G(0) = 0 (4.2)
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The solution to this equation is sought for in the form G(0) = exp(iσ ∗ j), which gives the
connection of the leading counter terms:

Z(0)µ µ2σ +
Z
(0)
4

3!
β4σ3 = iNβTrR(0) . (4.3)

The principal difference with the previous cases D = 2, 3 is that we have two counter
terms in (4.3) and upon their fixing equation (4.3) turns into an identity and does not
define any specific value of σ. x We will seek for the first step approximant in the same
form as in the previous sections and find the following result for the Fourier image D(p2):

iD−1(p2) = Z(0)µ µ2 + Z
(0)
4

β4σ2

2
+ Nβ2Σ(p2)− Z

(0)
φ p2 , (4.4)

where the mass operator Σ is one-fermion loop (2.11). Choose the renormalization pre-
scription for D at an Euclidean point ω2 :

at p � −ω2 iD−1(p2) = µ2 + O((p2 + ω2)2) .

This prescription fixes the value of the counter terms Z(0)φ and the sum Z(0)µ µ2+Z
(0)
4 β4σ2/2.

Taking into account equation (4.3) allows one to define all the leading approximation
counter terms.

We note now that there exist two different cases which do not contradict our equations:
the first of them is σ = 0 and the second one is σ �= 0. Let us begin with the case of the
nonzero σ and take for simplicity ω = 0. At the chiral limit the renormalized function D
has the form

iD−1(p2) = µ2 − Nβ2

8π2

(
p2 + 6β2σ2Φ

( p2

β2σ2

))
, (4.5)

where the function Φ(θ) stands for the integral:

Φ(θ) =
∫ 1
0
(1 + θx(1− x)) ln(1 + θx(1− x))dx .

On taking the Gross-Neveu limit µ → ∞, β → √λµ, βσ → mF and putting as in the
above sections

(iβ)2D(−q2) −→ −iλr(q2)
we obtain from (4.5) the expression for the running coupling λr(q2)

λr(q
2) =

λr(0)

1 + Nλr(0)
8π2

(
q2 − 6m2FΦ( q

2

m2F
)
) . (4.6)

Since equations (4.3) are fulfilled identically, the parameter λr(0) is as free as the mass
mF is.

Now let us investigate the behaviour of the denominator of expression (4.6) in the
regions of small and large values of q2. It can be easily seen that at q2 → 0 this denom-
inator tends to the unity while in the deep Euclidean region q2 → ∞ its asymptotics is
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−q2 ln q2 → −∞. Due to the denominator being a continuous function there exists a finite
value q20 at which the running coupling constant has a pole. This indicates to the presence
of a tachion state in our model. The only way to save the situation is to put the free
parameter λr(0) be equal to zero, which means the triviality of the theory: λr(q2) ≡ 0.

The same is true for another phase of the model, when σ = 0. The only difference is
that we must keep an arbitrary nonzero value of the renormalization point ω in order to
avoid the infrared singularities at the chiral limit. The running coupling reads:

λr(q
2) =

λr(ω2)

1 + Nω2λr(ω2)
8π2

F (q2/ω2)
, (4.7)

where F (x) = x(1− lnx)− 1. The function F (x) takes its maximum at the point x = 1:
Fmax = 0 and is negative for all other positive x. Therefore we come to the same conclusion
as above:
(i) if ω2λr(ω2) ≥ 8π2

N
, two tachion states are present and the model is contradictory.

(ii) if 0 < ω2λr(ω2) < 8π2

N
, one tachion state is present and the model is contradictory

again.
(iii) if λr(ω2) = 0, the running coupling is an identical zero, the model is not contra-

dictory, but trivial.
As a remark it is worth mentioning that all these conclusions are valid for the effective

Yukawa theory (4.1) as well.

5. The bilocal source

In this section we would like to discuss another approach to the Gross-Neveu model,
which is more natural and informative than that of the preceding sections. We will directly
deal with the fermion degrees of freedom without integrating over them. This allows one
to get the full information on the fermion dynamics. Namely it is possible to calculate
the fermion Green functions like the propagator, the amplitude and so on. Besides, this
method is technically simpler. But as a price for the above advantages the use of the
bilocal source encounters a problem, which makes the results obtained in this formalism
to be not very firm from the position of the mathematical rigour. The problem originates
from the well known fact that keeping the right Bose or Fermi statistical properties of the
Green functions is a rather nontrivial task, when the bilocal source is used. We postpone
the discussion of this difficulty to the end of the section.

Now let us demonstrate how the results of the previous sections can be obtained in the
formalism of the bilocal source. We consider the two dimensional N-component Gross-
Neveu model with the action SGN (2.1) and introduce a bilocal source — the function
ηαβ(x, y) depending on two space-time points and two multi indices α and β including the
color and Lorenz degrees of freedom. The n-th derivative of the generating functional

G(η) =
∫
Dψ̄Dψ exp(iSGN + iψ̄ ∗ η ∗ ψ)
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defines the 2n-th point Green function. This is an advantage of the bilocal source, since
to find a Green function one has to calculate half as many derivatives than when a local
source is used. The Schwinger-Dyson equation for the functional G(η) is of the form:

iλ
δ2G

δηβα(yx)δηγγ(xx)
+ (i �∂x −m)αγ

δG

δηβγ(yx)
+ δαβδ(x−y)G (5.1)

=
∫

d2zηαγ(xz)
δG

δηβγ(yz)
,

where the summation over the repeated indices is assumed. The leading approximation
G(0) obeys (5.1) with zero right site. Substituting G(0) = exp{Tr(η ∗ 
)}, we find the
equation for the leading approximation to the fermion propagator 
:

(M − i �∂)
 (x) = δ(x) , (5.2)

where the mass parameter M denotes the combination:

M = m− iλTr
 (0) . (5.3)

Since Tr
 (0) is a function of M, relation (5.3) is a consistency condition, which is an
analog of the gap equation.

To solve the next step equation

iλ
δ2G(1)

δηδη
+ (i �∂ −m)

δG(1)

δη
+ G(1) = η ∗ δG(0)

δη
, (5.4)

we substitute the expression

G(1) =
(1
2
Tr(12)F12 ∗ η1 ∗ η2 + Tr
(1) ∗η

)
G(0) , (5.5)

where the function F α1α2β1β2
(x1x2|y1y2) is connected with the leading approximant for the

two-fermion amplitude and 
(1) is the first correction to the propagator. The equations
for F and 
(1) can be easily obtained from (5.4) and (5.5), so we directly write down the
answer for the amplitude omitting the explicit form of the mentioned equations:

F α1α2β1β2
(x1x2|y1y2) =∫

dz1dz2
(

 (x1 − z1) · 
 (z1 − y1)

)
α1β1
K(z1 − z2)

(

 (x2 − z2) · 
 (z2 − y2)

)
α2β2

(5.6)

+ . . . ,

where the dots stand for the disconnected part.
The scalar kernel K is a solution of the equation

∫
dy(1− iλΣ)(x− y)K(y) = −iλδ(x) (5.7)
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and the function Σ(x) is a fermion loop (compare with Section 2)

Σ(x) = Tr
 (x)
 (−x) .
Equation (5.7) can be easily solved in the momentum space and the Fourier image of the
bare kernel K turns out to be:

K(p2) = − iλ

1− iλΣ(p2)
. (5.8)

Let us consider the chiral limit m→ 0 of our model. To renormalize the amplitude at this
stage we should introduce only one counter term δλ(0). We require the connected part of
the amplitude at the symmetric point in the Mandelstam variables to be:

F conn(s = t = −ω2) ≡ K(−ω2) = −iλR , (5.9)

where s and t are the Mandelstam variables. This allows us to fix the counter term δλ(0)
and to obtain the renormalized connected amplitude

Kren(p2) = − iλR

1 + iλR(Σ(−ω2)− Σ(p2))
. (5.10)

Now we should go back to the consistency condition (5.3) which takes the following form
at the chiral limit m→ 0

M = −i(λ + δλ(0))Tr
 (0) .

Taking into account the value of δλ(0) fixed by the renormalization scheme (5.9) we find
an equation defining possible values of the fermion mass in our model. Besides the trivial
solution M = 0, there exists the nontrivial one M = mF �= 0 which corresponds to the
spontaneous symmetry breaking and gives a connection among the fermion physical mass
mF , the renormalized coupling λR and the subtraction point ω2:

N

√
1 +

4m2F
ω2

arcsinh

√√√√ ω2

4m2F
=

π

λR
. (5.11)

With the help of (5.11) we can get the running coupling constant from (5.10)

λr
( q2

m2F

)
=

π

N

√
1 +

4m2F
q2

arcsinh
√
q2

4m2
F

, (5.12)

which is identical to (2.19).
Turning to the discussion at the beginning of this section, where is a vulnerable place of

the above consideration? It is contained in the first term of the Schwinger-Dyson equation
(5.1). Indeed it can be easily shown that due to the Fermi statistics of the spinor fields
the generating functional G(η) obeys identically the relation:

δ2G

δηβ1α1(y1x1)δηβ2α2(y2x2)
= − δ2G

δηβ1α2(y1x2)δηβ2α1(y2x1)
. (5.13)
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Therefore we can write the first term of (5.1) as

− δ2G

δηβγ(yx)δηγα(xx)
(5.14)

and the equation thus obtained will be equivalent to (5.1) from the point of view of the full
generating functional which is a strict solution of the Schwinger-Dyson equation. But for
our approximant G(0) such a change has a crucial consequence so as it does not possess
the property (5.13). And the substitution (5.14) leads to the appearance of the term

αγ(x)
γβ (0) instead of 
αβ(x)Tr
 (0) in equation (5.2). But such an equation for

(x) does not possess any solution except for the perturbative one. The possible way to
resolve this contradiction is in the use of properly symmetrized form of the first term in
equation (5.1). Such a new equation will be still equivalent to (5.1) for the full generating
functional and will respect the property (5.13), when the approximate solutions is used.

It can also be shown that the important property (5.13) which is responsible, in par-
ticular, for the crossing symmetry is restored for the Green functions successively step by
step of the approximation scheme. For example, all the Green functions calculated from
the G(0) will consist of disconnected parts only and will not possess the true structure de-
manded by the Fermi statistics. But taking into account the first correction G(1) not only
gives the leading approximation to the connected part of the amplitude but also restores
the true statistical structure for the disconnected part of the four point Green function
approximant. At the next steps we will successively find corrections improving the con-
nected and disconnected parts of the higher Green functions. The use of the symmetrized
form of the Schwinger-Dyson equation allows one to get the properly symmetrized Green
functions directly at the corresponding steps of the scheme.
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