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By using the methods of the stochastic process theory, the reduction procedure in the Viener
path integrals for a scalar particle motion on a Riemannian compact manifold with a free effective
group action is considered. It is shown that the path integral measure is not invariant under the
reduction. The integral relation between path integrals representing the fundamental solutions
of the parabolic equations on initial and reduced manifolds is derived.
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Introduction

An interest to the problem of path integral quantization of the finite dimensional
systems with a symmetry has lately renewed [1]. One can meet these systems in vari-
ous branches of physics. As an example, we refer to the solid state physics where the
investigation of the electron states results in such systems.

But there is another reason why we are interested in the path integral quantization of
these systems. It is supposed, that new path integral quantization approaches could be
applied to the infinite dynamical systems with gauge symmetries. In this connections, the
finite dimensional system, which describes the motion of a scalar particle on the Rieman-
nian manifold with the given free group action is especially attractive for investigations
[2].

Having such an action of the group on a manifold, we can view the manifold as a
local fiber space. Moreover, there arises a principal bundle structure with the connection
induced in a natural way by a metric of the manifold. In [3] this connection was called
the mechanical connection.

In case of the motion under the group–invariant potential, the initial dynamical system
is reduced to the system given on the orbit space. It is due to this fact that we can view
our system as a model system in studying the interrelation between the quantum motions
of initial and reduced systems. This interrelation is the main point in the problem of the
quantum reduction of the constrained systems.

In this paper we will study the reduction procedure in the path integral for the motion
of a scalar particle on the smooth compact Riemannian manifold on which the action of
the compact semisimple Lie group is given. By the path integral reduction procedure
we mean such a path integral transformation, when the initial space is changed for the
reduced one.

There are a lot of papers devoted to this problem [1,2,4], but most of the papers deal
with the Feynman path integrals defined by discrete approximations. In our paper we
will consider the case of the Wiener path integrals, in which the integration measures are
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generated by the stochastic processes. The stochastic processes will be determined by
solutions of the stochastic differential equations, that are given on manifolds.

To define the stochastic processes (and equation) on a manifold we will use the method
developed by Belopolskaya and Dalecky in [6]. This method is based on a local description
of stochastic processes. In the chart of the manifold the stochastic processes are given by
the definite stochastic differential equation. The equations are the result of the exponential
mapping from the corresponding stochastic differential equation defined on the tangent
bundle over the manifold. On overlapping of the charts the local equations and their
solutions transform into each other.

By using the local stochastic processes obtained after subdividing the time interval it
is possible to get the directed stochastic evolution family of the manifold mappings. In the
case of the compact manifold and when, in addition, some of the analytical restrictions
are imposed on the linear connection (the fulfilment of this requirement will be assumed in
the paper) the directed evolution family has limit [6], which defines the global stochastic
process on a manifold. A similar scheme of the stochastic process definition is valid for a
vector and a principal bundle too [6].

Thus, when in the reduction procedure the effects coming from the nontrivial topology
of the manifold are not important, the investigation of the path integral reduction can be
made in a local chart of the manifold. However, in this it is needed to have in mind that
afterwards the transition to the global picture should be performed in accordance with
the method of [6]. This is the case we will consider in the paper.

The main problem of the path integral reduction is the separation of integration vari-
ables. We should separate the variables associated with the group action on a manifold
from variables that are projected into the base of the principal bundle. In other words, it is
necessary to separate the invariant variables from the variables that are changeable under
the group action. In the paper we get such a separation of variables by using the so-called
”nonlinear filtering equation” from the stochastic process theory. Using this equation,
we will derive the integral relation between path integrals representing the fundamental
solutions of parabolic equations defined on the initial and reduced manifold.

In the case of the ”nonzero momentum level reduction” (in terms of the constrained
dynamical system theory), the path integral induced on the orbit space represents the
fundamental solution of the linear parabolic system of the differential equations. In the
”zero-momentum level reduction” case, which is also considered in the paper, the path
integrals on the initial and reduced manifold serve to describe the motions of the scalar
particles.

The results obtained in the paper verify the assumption that the path integral measure
is not invariant under the reduction procedure.

2



1. Definitions

Our original equation is the backward Kolmogorov equation on Riemannian compact
manifold P : 

(
∂

∂ta
+
1

2
µ2κ�P (Qa) +

1

µ2κm
V (Qa)

)
ψ(Qa, ta) = 0,

ψ(Qb, tb) = ϕ0(Qb), (tb > ta),
(1)

µ2 = h̄
m
, κ is a real positive parameter,

�P (Qa) = G−1/2
∂

∂QA
a

GABG1/2
∂

∂QB
a

is the Laplace–Beltrami operator on P , G = detGAB (the indices denoted by capital
letters run from 1 to nP ). If the coefficients of equation (1) and the function ϕ0 are
satisfy all the necessary smooth requirements, then the solution of equation (1) can be
represented in the form [6]:

ψ(Qa, ta) = E
[
ϕ0(η(tb)) exp{ 1

µ2κm

∫ tb

ta
V (η(u))du}

]
=

∫
Ω−

dµη(ω)ϕ0(η(tb)) exp{. . .}, (2)

where the path integral measure on the path space Ω− = {ω(t) : ω(ta) = 0, η(t) =
Qa+ω(t)} given on the manifold P is defined by the probability distribution of a stochastic
process η(t). In a local chart (U, φ) of the manifold P the process η(t) is given by the
solution of the stochastic differential equation

dηA(t) = µ2κG−1/2
∂

∂QB
(G1/2GAB)dt+ µ

√
κXA

M̄(η(t))dwM̄(t) (3)

(XA
M̄ is defined by a local equality

∑nP
K̄=1
XA

K̄XB
K̄ = GAB , and here and what follows by

barred indices we denote the Euclidean indices).
Notice that eq.(3) is the Stratonovich equation and it transforms in a covariant way

under changing the chart of the manifold. It is this defining property that gives one an
opportunity to construct a global process on the whole manifold P .

We will assume that eq.(1) has a fundamental solution GP (Qb, tb;Qa, ta), which is
defined by semigroup (2):

ψ(Qa, ta) =
∫
GP (Qb, tb;Qa, ta)ϕ0(Qb)dvP (Qb)

(dvP (Q) =
√
G(Q)dQ1...dQnP , nP = dimP ).

If in eq.(2) ϕ0(Q) = G−1/2(Q)δ(Q − Q
′
) is set, we get the probability representation of

GP (Qb, tb;Qa, ta). It can be made by a less formal approach, if we consider the appropriate
limit of the approximating functions.
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2. Transition to fiber coordinates

Let a smooth effective action of a compact group G be given on a compact manifold
P . We assume, in addition, that this action is isometric and the group G is unimodular
and semisimple. Then, the manifold P has a fibered structure and there is a principal
fiber bundle π : P → P/G = M [7], where M is an orbit space of the right action of the
group G on P . On a fiber bundle there is a foliation, which in our case is given by the
Killing vectors. This means that we can introduce, at least locally, special coordinates
(the adapted coordinates) in which the coordinate functions are separated into two sets.
The functions of the first set are variable functions under the group action, and that ones
from the second set are the invariant functions.

As it is usually done, we identify the invariant functions with coordinates on a base
manifoldM of the fiber bundle P (M,G), and the variable functions – with the coordinates
on a group manifold G.

Hence, we change the coordinates QA of the manifold P for the adapted coordinates
(xi, aα) consistent with the structure of the fiber bundle P (M,G).

As a result, the right invariant metric GAB becomes the Kaluza–Klein metric [8]:(
hij(x) +Aµ

i (x)A
ν
j (x)γ̄µν(x) Aµ

i (x)ū
ν
σ(a)γ̄µν(x)

Aµ
i (x)ū

ν
σ(a)γ̄µν(x) ūµρ(a)ū

ν
σ(a)γ̄µν(x)

)
(4)

The orbit space metric hij(x) of (4) is defined as follows [2]: by using the Killing
vectors KA

α (Q)
∂

∂QA
and the metric along the orbits dαβ = KA

αGABK
B
β , we transform GAB

into G⊥AB = ΠC
AGCDΠD

B with the help of the projectors ΠA
B = δAB − KA

α d
αβKβB . After

transition to the adapted coordinates given by QA = fA(xi, aα), we obtain the metric
hij(x) from the following formula:

hij(x) = G⊥AB
∂fA

∂xi
∂fB

∂xj
.

The mechanical connection Aµ
i (x) is a pull-back of the connection one-form by the

preferred section. It is also can be expressed by the initial metric GAB [2,3,8].
Lastly, the expression at the bottom right corner of matrix (4) is the metric on the

orbit over x. The matrix ūαβ(a) is an inverse matrix to v̄αβ (a) = ∂Φα(b,a)
∂bβ

|b=e. Φ is the
composition function of the group: for c = ab, cα = Φα(a, b).

In new coordinates the determinant of the metric GAB is equal to

detGAB = (dethij(x)) (det γ̄αβ(x)) (det ū
µ
ρ(a))

2.

In the path integral of eq.(2) a local transition to the adapted coordinates (xi, aα) is a
homogeneous point transformation. Therefore, when one neglects the effects coming from
the nontrivial topology of the manifold, such a transition can be realized by the stochastic
process methods.

The transformation of the measure in the path integral is derived from the phase-space
transformation of the stochastic process ηA(t), ηA(t) = fA(xi(t), aα(t)). We change the
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stochastic process ηA(t) for a new process ζ(t) with the coordinates (xi(t), aα(t)). Then,
the path integral of eq.(2) transforms into the path integral

ψ(Qa, ta) = E
[
ϕ̃0(x

i(tb), a
α(tb)) exp{ 1

µ2κm

∫ tb

ta
Ṽ (x(u))du}

]
, (5)

where ϕ̃0(x, a) = ϕ0(f(x, a)) and the boundary values of xia ≡ xi(ta) and aαa ≡ aα(ta) in
the right-hand side of eq.(5) should be expressed in terms of Qa with the help of inverse
transformation f−1.

The process ζA(t) that generates the measure in the path integral of eq.(5) is described
by the following stochastic differential equation:

dxi(t) =
1

2
µ2κ

[ 1√
hγ̄

∂

∂xn
(hni

√
hγ̄)

]
dt+ µ

√
κXi

n̄(x(t))dw
n̄(t),

daα(t) = µ2κ
[
−1
2

1√
hγ̄

∂

∂xk

(√
hγ̄hkmAν

m

)
v̄αν (a(t))

+
1

2
(γ̄λε + hijAλ

iA
ε
j)v̄

σ
λ(a(t))

∂

∂aσ
(v̄αε (a(t))

]
dt

+µ
√
κv̄αλ(a(t))Ȳ

λ
ε̄ dw

ε̄(t)− µ
√
κXi

n̄A
ν
i v̄

α
ν (a(t))dw

n̄(t). (6)

Here γ̄ = det γαβ(x), h = dethij(x), Xi
n̄ and Ȳ λ

ε̄ are defined by the local equalities:∑nM
n̄=1X

i
n̄(x)X

j
n̄(x) = hij(x) I

∑nG
ε̄=1 Ȳ

α
ε̄ (a)Ȳ

β
ε̄ (a) = γ̄αβ(a).

Notice that these stochastic differential equations transform in a covariant way under
changing the chart of the manifold. From this it follows that it is possible to construct
the global process ζ(t) on the principal bundle P (M,G), whose local components coincide
with the solutions of the stochastic differential equations (6).

The infinitesimal generator of the process ζ(t) is the Laplace–Beltrami operator for
metric (4):

1

2
µ2κ{�M (x) + hij

1√
γ̄

(∂√γ̄
∂xi

) ∂

∂xj
+ hijAα

i A
β
j L̄αL̄β − 2hinAα

nL̄α

∂

∂xi

−hin∂A
α
n

∂xi
L̄α − hin

∂
√
h

∂xi
Aα

nL̄α − hin
1√
γ̄

∂
√
γ̄

∂xi
Aα

nL̄α − ∂hin

∂xi
Aα

nL̄α + γ̄αβL̄αL̄β},

where�M is the Laplace–Beltrami operator onM , and by L̄α we denote the right invariant
vector field L̄α = v̄εα(a)

∂
∂aε

.

3. Factorization of the measure

Now we should solve the main problem—the problem of the factorization of the mea-
sure in the path integral of eq.(5). First of all, we make use of the properties of conditional
expectations of the Markov process to rewrite the right-hand side of eq.(5) in the form:

ψ(Qa, ta) = E
[
exp{ 1

µ2κm

∫ tb

ta
Ṽ (x(u))du}E

[
ϕ̃0(x

i(tb), a
α(tb)) | (Fx)

tb
ta

]]
,
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where the path integral [...|(Fx)
tb
ta] is the conditional expectation of a function

ϕ̃0(xi(t), aα(t)) given a sub-σ-algebra generated by the process x(t) (t ≤ tb).
Examining the eqs.(6) we find that these equations are the same as the stochastic

differential equations that are used in the nonlinear filtering theory [9,10]. The parallel
with this theory is achieved, if we consider xi(t) as the observation process and aα(t) – as
the signal process.

What is essential is that in this theory there is a nonlinear filtering equation, which
describes the behaviour of the conditional expectation E[ϕ̃0(x

i(t), aα(t)) | (F)x)tta] ≡
ˆ̃ϕ0(x(t)).

It will be convenient for us to take this equation in the form presented in [10]. With
account of eqs.(6), we write it in the following way:

dˆ̃ϕ0(x(t)) =
[
−1
2

1√
hγ̄

∂

∂xk

(√
hγ̄hkmAµ

m

)]
E[L̄µϕ̃0(x

i(t), aα(t)) | (Fx)
t
ta ]dt

+
1

2
(γ̄µν + hijAµ

i A
ν
j )E[L̄µL̄νϕ̃0(x

i(t), aα(t)) | (Fx)
t
ta
]dt

−Aµ
kX

k
m̄ E[L̄µϕ̃0(x

i(t), aα(t)) | (Fx)
t
ta ]dw

m̄(t). (7)

Next, by using the Peter–Weyl theorem, we develop the function ϕ̃0(xi, aα) considered
as a function on group G in series:

ϕ̃0(x
i, aα) =

∑
λ,p,q

cλpq(x
i)Dλ

pq(a
α),

where Dλ
pq(a

α) are the matrix elements of an irreducible representation T λ:∑
q D

λ
pq(a)D

λ
qs(b) = Dλ

ps(ab).
Then

E[ϕ̃0(x
i(t), aα(t)) | (F)x)tta] =

∑
λ,p,q

cλpq(x
i(t)) E[Dλ

pq(a
α(t)) | (Fx)

t
ta ].

In this formula
cλpq(x(t)) = dλ

∫
G
ϕ̃0(x(t), θ)D̄

λ
pq(θ)dµ(θ),

where dλ is a dimension of an irreducible representation and dµ(θ) is a normalized
(
∫
G dµ(θ) = 1) invariant Haar measure on group G.
After such a transformation we get the following stochastic differential equation for

the conditional expectation D̂λ
pq(x

i(t)) ≡ E[Dλ
pq(a

α(t)) | (Fx)tta ]:

dD̂λ
pq(x(t)) = Γµ

1 (Jµ)
λ
pq′D̂

λ
q′q(x(t))dt+ Γµν

2 (Jµ)
λ
pq′(Jν)

λ
q′q′′D̂

λ
q′′q(x(t))dt

−(Jµ)λpq′D̂λ
q′q(x(t))A

µ
k(x(t))X

k
m̄(x(t))dw

m̄(t), (8)

where the summation on all repeated indices except λ is assumed.

In eq.(8) (Jµ)λpq ≡ (
∂Dλpq(a)

∂aµ
)|a=e are infinitesimal generators of the representationDλ(a).

The coefficients Γµ
1 (x(t)) and Γµν

2 (x(t)) are easily derived from eq.(7), but for brevity we
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don’t write them explicitly. Also, in deriving eq.(8) from eq.(7), we have used the fact
that

L̄µD
λ
pq(a) =

∑
q′
(Jµ)

λ
pq′D

λ
q′q(a).

We remark that D̂λ
pq(x(t)) depends also on initial points xia = xi(ta), θαa = aα(ta)

besides the process xi(t).
Thus, due to the symmetry of our model we have obtained the linear matrix equation.

Its solution can be presented as follows [11,12]:

D̂λ
pq(x(t)) = (←−exp)λps(x(t), t, ta) E[Dλ

sq(a
α(ta)) | (Fx)

t
ta
],

where

(←−exp)λps(x(t), t, ta) =←−exp
∫ t

ta

{[1
2
γ̄µν(x(u))(Jµ)

λ
pr(Jν)

λ
rs

−1
2

1√
hγ̄

∂

∂xk

(√
hγ̄hkmAµ

m

)
(Jµ)

λ
ps

]
du− Aµ

k(x(u))(Jµ)
λ
psX

k
m̄(x(u))dw

m̄(u)
}

(9)

(h, γ̄ depend on x(u)).

In eq.(9) the multiplicative stochastic integral←−exp is defined as a limit of the sequence
of time-ordered multipliers that have been obtained as a result of breaking the time
interval (t, ta). The arrow aimed to the multipliers given at greater times denotes the
time-order of these multipliers.

Notice also, that at the boundary we have

E[Dλ
sq(a

α(ta)) | (Fx)
t
ta
] = Dλ

sq(a
α(ta)) = Dλ

sq(θa).

By using the representation of the solution of eq.(8) through the multiplicative stochas-
tic integral we will have

1

2
µ2κ{[�M + hni

1√
γ̄

∂
√
γ̄

∂xn
∂

∂xi
](Iλ)pq − 2hniAα

n(Jα)
λ
pq

∂

∂xi

− 1√
hγ̄

∂

∂xn

(√
hγ̄hnmAα

m

)
(Jα)

λ
pq − (γ̄αν + hijAα

i A
ν
j )(Jα)

λ
pq′(Jν)

λ
q′q}

as the infinitesimal generator of semigroup (5). Here (Iλ)pq is a unity matrix.
As a result of our transformations we get the following relation between the path

integrals:

(GPϕ0)(Qa, ta) =
∑

λ,p,q,q′
E[exp{ 1

µ2κm

∫ tb

ta
Ṽ (x(u))du}cλpq(x(tb))

×(←−exp)λpq′(x(t), tb, ta)Dλ
q′q(θa)], (10)

in which Qa should be written in terms of (xa, θa) and (←−exp)λpq′(...) is as in eq.(9).
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It is possible to inverse the equality (10), that is, the path integral of the right-hand
side of eq.(10) can be expressed through the initial path integral. We will do it for the
path integral representations of the corresponding Green functions. For this purpose we
first of all substitute the delta-function for ϕ0 in eq.(10). Then to perform an inversion
of eq.(10) we will multiply both sides of it by D̄(θa) and D(θb) and integrate over the
boundary group variables with respect to the invariant normalized Haar measure. After
that we get:

Gλ
pq(xb, tb; xa, ta) =

∫
G
G̃P (σ(xb)θ, tb; σ(xa), ta)D

λ
qp(θ)dµ(θ). (11)

In deriving this relation we have used the fact of the right invariance of the Green function
GP and we have presented the coordinates QA in terms of xi and θα, QA = σA(x)θ, with
the help of the local sections σA(x) = fA(x, e).

Thus, from relation (11) it follows, that the matrix Green function Gλ
pq acts in the

space of the section of the associated bundle E = P ×G Vλ with the scalar product

(ψ1, ψ2) =
∫
M〈ψ1, ψ2〉

√
γ̄(x)dvM(x) (dvM(x) =

√
h(x)dx1...dxnM ), provided that we iden-

tify the diffusion in a sub-space of the invariant variables xi with its projection into base
space M . The latter can be done by using the method of proof from [13], where the
Dynkin theorem on a phase-space transformation of stochastic processes was generalized
to be applied to the case of projections of the invariant diffusions.

4. Reduction onto level of zero–momentum

In this section we consider a particular case of formula (11), when λ = 0. The reduction
of this case corresponds to reduction onto a level of the zero-momentum in the constrained
dynamical systems. And as a result of the path integral reduction procedure we will have
the integral relation between the path integrals that represent the scalar Green functions.

Since the multiplicative stochastic integral becomes the unity matrix, then the path
integral measure of the path integral on the manifold M is defined now by the stochastic
process xi(t):

dxi(t) =
1

2
µ2κ

[hni√
γ̄

∂
√
γ̄

∂xn
+

1√
h

∂

∂xn
(hni
√
h)
]
dt+ µ

√
κXi

n̄(x(t))dw
n̄(t).

It follows that the infinitesimal generator of the process xi(t) is a sum of the Laplace–
Beltrami operator and term which is linear in partial derivative of x. The standard
procedure of the path integral transformation, the Girsanov–Cameroon–Martin transfor-
mation, allow us to get rid of this additional term. By this procedure, we change the
stochastic process xi(t) for the process x̃i(t), whose stochastic differential equation is

dx̃i(t) =
1

2
µ2κ

[ 1√
h

∂

∂xn
(hni
√
h)
]
dt+ µ

√
κXi

n̄(x̃(t))dw
n̄(t).
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The transformation of the path integral measure is given by

ln
dµx

dµx̃
(x̃(t)) =

1

2
µ
√
κ
∫ t

ta

1√
γ̄

∂
√
γ̄

∂xn
Xn

m̄dw
m̄(t)− 1

4
µ2κ

∫ t

ta

hni

γ̄

∂
√
γ̄

∂xn
∂
√
γ̄

∂xi
dt.

In this formula the exponential with the stochastic integral can be replaced by the
exponentials with the ordinary integrals. It has been done with the help of Itô’s identity
from [14] :

exp{1
2
µ
√
κ
∫ t

ta

1√
γ̄

∂
√
γ̄

∂xn
Xn

m̄dw
m̄(t)} =

(
γ̄(x̃(t))

γ̄(x̃(ta))

)1/4

× exp
{
−µ

2κ

4

∫ t

ta

[
hni

∂2(ln
√
γ̄)

∂xn∂xi
+

1√
h

∂(hni
√
h)

∂xn
∂(ln
√
γ̄)

∂xi
+
1

2

hni

γ̄

∂
√
γ̄

∂xn
∂
√
γ̄

∂xi

]
dt
}
.

After these transformations we get the following integral relation:

γ̄(xb)
−1/4γ̄(xa)−1/4GM (xb, tb; xa, ta) =

∫
G
G̃P (σ(xb)θ, tb; σ(xa), ta)dµ(θ). (12)

The Green function GM determines a semigroup which acts in the Hilbert space with
a scalar product: (ψ1, ψ2) =

∫
ψ1(x)ψ2(x)dvM (x). The path integral representation of GM

is given by

GM (xb, tb; xa, ta) =
∫
dµx̃(ω) exp{ 1

µ2κm

∫ tb

ta
V (x̃(u))du+

∫ tb

ta
J(x̃(u))du},

where an additional potential term, the Jacobian of the quantum reduction, is

J(x) = −µ
2κ

8

[
�M ln γ̄ +

1

4
hni

∂ ln γ̄

∂xn
∂ ln γ̄

∂xi

]
.

In (xb, tb)–variables, the Green function GM satisfies the forward Kolmogorov equation
with the operator

Ĥκ =
h̄κ

2m
�M − h̄κ

8m
[�M ln γ̄ +

1

4
(∇M ln γ̄)2] +

1

h̄κ
V

At κ = i this forward Kolmogorov equation becomes the Schrödinger equation with
the Hamilton operator Ĥ = − h̄

κ
Ĥκ|κ=i.

Thus, the reduction procedure in the Viener path integrals representing the evolution
of finite-dimensional dynamical systems with a symmetry give rise an additional potential
term – the reduction Jacobian. It is worth remarking that this potential term, which
is usually supposed to come from the ordering procedure in the Hamiltonian operator

9



associated with the reduced classical Hamiltonian, has an interesting representation. It
can be written as some differential expression depending on the mean curvature, which is
normal to the orbit obtained as a result of the group action on manifold [15].

In conclusion we note that the transformation considered in this section can be equally
applied to the path integrals of the previous section. In that case we will have a similar
additional potential term in the diagonal part of the corresponding matrix Hamiltonian
operator.
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