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Abstract

Sokolov S.N. Relativistic Mechanics with Reduced Fields: IHEP Preprint 96-15. – Protvino,

1996. – p. 14, refs.: 24.

A new relativistic classical mechanics of interacting particles using a concept of a reduced
field (RF) is proposed. RF is a mediator of interactions the state of which is described by a

finite number of two-argument functions. Ten of these functions correspond to the generators of
the Poincare group. Equations of motion contain the retardation of interactions required by the

causality principle and have form of a finite system of ordinary hereditary differential equations.
RFs may be considered as generalizations of ordinary classical fields and may enter equations of

motion together with electromagnetic field. Interaction with RF may go without the radiation
of RF, so RF may mediate relativistic elastic interactions of particles.
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1. Introduction

Relativistic classical mechanics with a reduced field (RF) as a mediator of interactions
lies between the relativistic direct interaction theories [1,13] and the classical relativistic
field theories.
In equations of motion, RF appears as a force depending on the space-time positions

of interacting particles and as a set of integral values corresponding to the set of ten
generators of the Poincare’ group and interpreted as the energy-momentum and the spin
of the field. The physical idea leading to the notion of RF is as follows.
The forces acting between particles are transmitted by some mediator and various

methods to describe the interaction correspond to various physical assumptions about
the properties of the mediator. In the non-relativistic case, forces usually depend only
on the positions of particles and are defined in such a way that the sum of the linear
momenta of particles, as well as the sum of their angular momenta, do not change with
time, while the sum of their kinetic energies changes. From the physical viewpoint, it
means that the mediator transmitting the force from one particle to another (a rope,
or a spring, or an electrostatic field, or something else) has small inertia, so its linear
and angular momenta are negligible, retardation in the transmission is unessential, and
excitation of internal degrees of freedom (e.g. of waves in the spring) is small. The state
of such mediator is fully fixed by one function of particle positions (for example, by the
force in the Newtonian picture, or by the interaction potential in the Hamiltonian and
the Lagrangian formulations).
In the relativistic case, the structure of the Poincare group requires more detailed

description of the mediator of interaction but leaves a certain freedom in the choice of the
mediator properties.
The field theories assume that the mediator is continuous and its excitations propagate

according to some wave equation.
The direct interaction theories seek the most concise description compatible with the

structure of the Poincare’ group. In the Hamiltonian formulation, they usually allow
for the mediator either to have zero (Lorentz) angular momentum with nonzero linear
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momentum (such choice is called the point form of dynamics [6,7]), or to have some
zero elements of linear momentum with nonzero angular momentum (the instant form
[2,4,5,11] and other forms of dynamics [13,15-18]). But the direct interaction theories still
exclude causal retardation, assuming that the mediator transmits interaction instantly in
some coordinate system (related with the choice of the foliation of the Minkowski space
and with the form of dynamics). This formal ”instanteneity” leads to difficulties with the
space-time interpretation of motion and with causality. These difficulties look differently
in the quantum and the classical versions of these theories.
In the quantum case, the difficulties appear as a nonlocality of operators and as an

uncertainty of the coupling with the electromagnetic field. Their space-time nature is
obscured by quantum effects.
In the classical case [8,13-18], the difficulties appear as an ambiguity of the relation

between the canonical and spatial coordinates and as various pathologies of trajectories.
However, since the Hamiltonian classical models [1,8,13-18] can be, in principle, obtained
from (more technically developed) quantum ones [2-7,11] by a certain limiting procedure
[12], the source of difficulties is physically the same in both cases and stems from the
inherent ambiguity of the coordinate measurements.
Indeed, whatever definition of physical coordinates is chosen, the results of measure-

ment of the trajectories of interacting particles by means of probing particles or external
fields turn out to be non-unique. Therefore, for the isolated systems of interacting par-
ticles, the direct interaction theories may well predict the properties observable at the
infinity (like energy levels, scattering, rotation frequencies), but cannot predict unique
trajectories of particle and, thus, are utterly unable to treat particles that interact directly
between themselves and, at the same time, interact with an external electromagnetic field.
This excludes their application to many physically interesting cases.
Clearly, to overcome the difficulties with the causality and coordinates, one has to make

more explicit account of retardation than is possible in the usual Lagrangian formalism
with finite number of degrees of freedom. First attempts to generalize the Lagrangian
formalism in that direction were done in [19-21]. But this leads to nonlocal Lagrangians
which are not easy to connect with ordinary differential equations without additional
assumptions of analyticity.
In this paper, we propose an alternative way to built a relativistic classical mechanics

respecting the causality principle and having a natural space-time interpretation. Unlike
preceding attempts, we do not try to generalize the Hamiltonian or Lagrangian formalisms,
or use some kind of ”instanteneity” which would impose complicated consistency condi-
tions on the accelerations, but propose to generalize the equations of motion by the explicit
inclusion into them of some equations for the evolution of the state of the mediator. In
the additional equations for the mediator, we allow to the mediator to transmit forces
with the causal retardation, but limit the ability of the mediator to excite its internal
degrees of freedom, so the motion of particles and of the mediator can be governed by a
finite number of ordinary hereditary differential equations.
It is often thought that retardation always leads to radiation, i.e. to the excitation of

waves carrying to infinity some energy, momentum, and angular momentum, and that only
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quantum effects can prohibit the radiation, if the energy is insufficient for the emission of
mediating quanta (for example, for the emission of pions in a nucleon-nucleon collision).
However, the proposed relativistic classical mechanics with RF gives a counter-example:
there the excitation of the mediator does not obligatory propagates to infinity, so this
theory allows elastic interactions with no radiation.

2. Equations of Motion

Let a particle have position x, (constant) mass m, velocity h, h2 = 1, momentum
p = mh, and acceleration dh/dτ , where τ is the proper time. Let [xa] denote the past
part of the trajectory xa(τ ) of particle a up to the point xa included and [xa) denote the
same part with the end point xa excluded. The expression A ·B, where A,B are tensors or
vectors, will mean A......µB

µ...
... , the metric is (1,−1,−1,−1), and ∧ is the external product.

Let retarded position xr(xb)a of particle a with respect to point xb be defined by condi-

tions (xb − xr(xb)a )2 = 0, xb0 ≥ x
r(xb)
a0 .

We shall define a RF as a mediator of interaction the state of which is described by
a set of functionals of the past parts [xa] of particle trajectories and which produces the
forces depending both on [xa] and on the state of the mediator. We will imply that the
set of functionals fixing the state of the mediator always includes the energy-momentum
Π and the spin S transferred to the mediator from the particles. The quantity Π is a
4-vector (with no limitations on the sign of Π2), and S is an antisymmetric tensor with
6 independent elements describing all the angular momenta corresponding both to the
spatial and the Lorentz rotations. The variables Ψ = (Π, S) will be called, collectively,
the fill of the mediator.
Besides the fill, the description of the state of the mediator may include other func-

tionals of [x] and forces may depend on these functionals. In the simplest case, each pair
of particles interacts via its own mediator and the state of each mediator is described by
its fill only.
We shall impose upon RF the causality condition: the force acting on a given particle

a at point xa may depend only on the causally accessible parts [x
r(xa)
b ] of the trajectories

of other particles b ending by the retarded positions x
r(xa)
b of these particles. Otherwise,

the RF may be quite arbitrary.
The system of equations of motion for two particles a, b interacting via one RF is

dxa = hadτa, dxb = hbdτb,

dha = Fadτa/ma, dhb = Fadτb/mb,

dπa = −Fadτa, dπb = −Fbdτb, (1)

dλa = xa ∧ dπa, dλb = xb ∧ dπb,

where π(τ ), λ(τ ) are auxiliary (vector- and tensor-valued) one-time functions through
which the fill Ψ of the mediator is defined as the set of two-time functions

Π(τa, τb) = πa(τa) + πb(τb),
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S(τa, τb) = λa(τa) + λb(τb)− xa ∧ (Ka · Π(τa, τb))− xb ∧ (Kb · Π(τa, τb)). (2)

Here Ka are any tensors of rank 2 with the property Ka +Kb = 1. The choice of tensors
Ka is related with the choice of a center-of-mass variable and is a matter of convenience.
Tensor S is translationally invariant and can be alternatively written as

S = −
∑
n

∫
dxn ∧ πn + L, L =

∑
n

xn ∧ (πa −Kn ·Π). (3)

If Ka are proportional to unit tensors, Ka = ka1, we obtain

L =
∑
n

(xa − xc) ∧ πa, xc = kaxa + kbxb.

Obviously, if ka = ma/(ma +mb), x
c can be interpreted as a center-of mass coordinate of

two particles and L, as an orbital momentum of the mediating RF with respect to this
coordinate.
Force F , due to condition h2 = 0 implying dh · h = 0, is subject to the transversality

condition
F · h = 0 (4)

and, according to the causality condition, may have form

Fa = Fa([xa], [ha], [x
r
b], [h

r
b],Π(τa, τ

r
b ), S(τa, τ

r
b ), . . .),

where the dots stand for other possible functionals that fix the state of RF or RFs and
depend on the parts of the particle trajectories causally accessible for particle a. For
example, the mediating field may ”remember” the partial fills πa, sa = λa − xa ∧ πa and
force may depend on πa, sa separately. This generalization (leading to the self-interaction
of particles) will not be illustrated in the present paper.
For the system of two particles and one RF, the conservation laws

∑
p+Π = const,

∑
x ∧ p+

∑
λ = const,

are obviously true. Hence, if before and after the collision of particles the fill Ψ is zero
(and, hence, due to the definition (2), λa + λb = 0), the usual relativistic conservation
laws for the scattering processes are true. If the fill Ψ of RF changes after the scattering,
this change is interpreted as an energy-momentum and angular momentum carried away
by radiation.
The case of many particles is similar, except that each RF accumulates its fill from

the forces it transfers, the total force acting upon a particle is a sum of forces from all
other particles, and the summation over all RFs for all pairs of particles is made in the
conservation laws.
The interaction via RF is fixed by the choice of functions F . In contrast to the

Hamiltonian approach, where the interaction potential is a primary object and forces are
secondary objects derivable from the given potential, an RF approach considers forces as
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primary objects, and the potential-like quantities Π are functionals of the forces in the
past.
Since the equations of motion are hereditary, corresponding initial data should contain,

besides the current values of the particle variables and of RF fills, the previous values of
these quantities sufficiently far in the past. Namely, the semi-open subsets [xa) of the
initially given trajectories [xa] should include the retarded points x

r(xb)
a with respect to all

the other particles b in the system. Then the forces Fa(..., [x
r(xa)
b ], ...) can be calculated

and equations of motion for each particle can be integrated independently with forces

Fa(τ ) = Fa([xa(τ )], [x
r(xa(τ ))
b ], ...),

while all the retarded points [x
r(xa(τ ))
b ] belong to the initially given trajectories. The

independent integration extends the known parts of trajectories up to some points xa(τ1).
Then the integration of equations of motion for each particle can be repeated. This
process gives the explicit analytic solution of the equations of motion in the form of
multiple integrals of the initially given forces. The solution is evidently unique and may
be easily calculated numerically. The only case, where the described integration process
fails, is the case of the central collision of particles, where at some moment the coordinates
of two particles exactly coincide. However, other methods (based on the Taylor expansion)
may be used near such points, so uniqueness of solutions is generally true.
We see that the equations of motion are asynchronous and no choice of a specific syn-

chronization relation between times of different particles is needed during the integration.
However, the use of some synchronization may be convenient both in numerical and an-
alytical calculations. The choice of such synchronization, provided it is compatible with
causality, does not influence the results.
The forces F may depend on the arbitrary regular functionals of the trajectories, but

should not depend on the time derivatives of h. If F were dependent on acceleration
dh/dτ , the equations of motion would belong to the hereditary equations of the so-called
neutral type, about the properties of which little is known, except in some particular cases.
The dependence of F on higher derivatives of h would lead to serious nonuniqueness,
unacceptable for a self-consistent physical theory. The objects that are similar to RFs
but produce forces dependent on the accelerations will be called improper RFs.
The presence of retarded arguments in the equations of motion makes the mechanics

with RFs time-asymmetrical (irreversible) even in the absence of radiation and makes
the particle motion more complicated than in the case of ”instantaneous” interaction. In
particular, the qualitative behavior of the solutions crucially depends on the magnitude
of forces.
If the forces are small, retardation has small influence on the solutions and solutions are

smooth and monotonous, if such are the expressions for forces. The possible roughness
of initial data is quickly smoothed out (due to multiple integrations) and the solution
tends to an analytic one. This phenomenon is the basis for the so-called spontaneous
predictivisation [10].
If the forces are so large that the fill of the mediator changes more than by the factor of

e during the retardation time, the solutions become oscillating and growing in amplitude.
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(Physically it can be interpreted as a resonant excitation of the mediating field.) The field
nature of RF may show itself in many other ways, for example, by the threshold effects.
In the present paper, we will consider only the examples of RFs mediating elastic

interactions of particles.

3. Virtual Fields

The dependence of forces on the state of RF, and, first of all, on the fill Ψ, gives the
possibilities of describing such relativistic interactions which are difficult or impossible to
describe otherwise. The important example is the elastic scattering of relativistic particles.
To make the interaction elastic it is sufficient, in the RF approach, to include, into

the expressions of forces, the terms that depend on Ψ and constantly diminish |Ψ|, if it
is greater than zero. Then, after the collision, when distances become large and other
forces become small, these terms will dominate and the fill will tend to zero. This process
can be interpreted as a decay of RF, so the relevant terms will be called decay forces.
The reduced fields that totally decay after a collision of particles are distant analogies of
the virtual fields of the relativistic quantum field theories: they both appear temporally
during the collision of particles and do not show up at infinity. For that reason, we will
call such RFs classical virtual fields (VFs).
The construction of the decay forces needs some efforts. We consider here the simplest

examples of such forces. Let us first reduce the asynchronous two-time equations (1) to a
single-time evolution equation for the fill Ψ only, choosing as a common scalar evolution
parameter the retardation time T and considering the proper times τa, τb as functions of
T , satisfying the relations

T = (xa − xrb) · (ha + hrb), T = (xb − xra) · (hra + hb).

To simplify the analysis of the asymptotic solutions, we make an adiabatic assumption
that forces F are not large, vectors h change little, and their derivatives ḣ = dh/dT and
differences h − hr may be neglected.
It will be convenient to introduce vectors

Ha = (chb − ha)/(c
2 − 1), Hb = (cha − hb)/(c

2 − 1),

where c = ha · hb, with properties

Ha · ha = Hb · hb = 1, Ha · hb = Hb · ha = 0,

and define tensors
Qa = Ha ⊗ ha, Qb ⊗ hb

having properties
Qa ·Qa = Qa, Qa ·Qb = 0.

Operators Q· will be used as projectors, their sum

P = Qa ·+Qb
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is a projector on the (ha, hb)-plane in the tangent space. We will denote P̄ = 1 − P and
mark by bar the parts of vectors orthogonal to the (ha, hb)-plane.
In the definition of S we choose

Ka· = Qb ·+
1

2
P̄.

Then the evolution equations for the fill become

Π̇ = −Faτ̇a − Fbτ̇b,

Ṡ = −1
2
(xa − xb) ∧ (F̄aτ̇a − F̄bτ̇b)−

1

2
(haτ̇a + hbτ̇b) ∧ Π̄− nha ∧ hb v · Π, (5)

where v = haτ̇b − hbτ̇a, n = 1/(c2 − 1), and terms with K̇ are omitted according to the
adiabatic approximation.
Let forces be linear functions of the fill. Then equations (5) become a system of linear

differential equations with retardation. System (5) can be shortly written as

Ψ̇ =MΨ,

where M is 10× 10 matrix of coefficients and operators of retardation. Clearly, if all the
proper values of M have a negative real part, solutions Ψ must decrease with time. The
only problem is that the structure of RHS of (5) restricts the choice ofM in a complicated
fashion: vectors Fa, Fb have (due to the transversality condition (4)) only 6 independent
components, so in the general case only 6 constants in M can be chosen freely, while fill
Ψ has 10 components.
In cases of planar motion and of motion along one line, when fewer dimensions come

into play, the freedom in the choice of M is limited in a similar way. In case of planar
motion, there are 4 independent components of Fa, Fb against 6 independent components
of Ψ. In case of motion along one line, there are 2 independent components of forces
against 3 independent components of the fill. Here we consider the case of motion along
one line and postpone other more cumbersome cases for further publications.
The motion along one line physically means that in a certain coordinate frame the

trajectories of both particles lie on the same straight line, so in this frame the colliding
particles either turn back or pass through each other. To preserve the explicit covariance,
we will not use a special frame, but single out the case of motion along one line by the
condition that all (relative) vectors between particle positions are linear combinations of
ha, hb.
The pass from the proper times τ, τ r to variables T, T r may be done as follows. Define

two constant null-vectors

oa = haC − hb, ob = hbC − ha, o2a = o2b = 0, C = c+
√
c2 − 1,

proportional to xa − xrb, xb − xra and entering equalities

xa − xrb = oaTqa, xb − xra = obTqb, (6)
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where qa, qb are unknown coefficients. Multiplying both parts of (6) by (ha + hb)· and
using the adaiabatic approximation hr = h, we obtain

qa = qb = q ≡ 1/(c + 1)(C − 1).

Differentiating (6) with respect to T and denoting d/dT by the dot, we obtain

haτ̇a − hbτ̇b = oaq,

whence, multiplying both parts by Ha·, Hb·, we get

τ̇a = τ̇b = Cq, τ̇ ra = τ̇ rb = q.

The relation between T and the retarded retardation time T r, defined by the relation

xrb − xrra = T robq,

where xrra is the point retarded with respect to xrb, can be found from the equalities

xa − xrra = ha(τa − τ rra ),

xa − xrra = xa − xrb + xrb − xrra = Toaq + T robq.

Multiplying them by oa·, ob·, we obtain

(τa − τ rra )ha · oa = T rob · oaq,

(τa − τ rra )ha · ob = Tob · oaq,
whence it follows that

T = CT r.

Now we come to the equations of motion. Forces compatible with motion along a line
may be written as

Fa = Hbφb/τ̇a, Fb = Haφa/τ̇b,

where φa, φb are scalar functions. Tensor of spin in this case may be written as

S = nha ∧ hbSba,

where scalar Sba is

Sba = hb · S · ha = const +
∫ τa

φbτdτ −
∫ τb

φaτdτ − (haτb − hbτa) · Π. (7)

Note that Sab = ha · S · hb = −Sba.
The interpretation of the spin element Sab assiciated with the Lorentz rotation deserves

a comment. If the center of mass of the two particles is at rest before the collision, the
value of Sab is proportional to the shift of the center of mass of the two particles due to
the interaction with the mediating field. If Sab vanishes after the collision, the center of
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mass of the two particles returns to its former place. Otherwise it does not. The vanishing
Sab does not follow from the vanishing of the energy-momentum of RF. Generally, the
amount of radiated spin is independent from the amount of radiated energy, so the decay
forces of VFs must take equal care of the decay of all the components of the fill.
Using (7) (or (3)), in the adiabatic approximation we obtain

Ṡba = −v · Π.

The first of the eqs.(5) reduces to two scalar equations Π̇a = −ha · Π, Π̇b = −ha · Π.
Combining the last expressions and the definition of v = haτ̇b − hbτ̇a, we see that the

evolution equations for the fill reduce to the system of three scalar equations

Π̇a = −φa,

Π̇b = −φb, (8)

Ṡab = (Πa −Πb)q,
where Πa = ha · Π, Πb = hb · Π.
The simplest choice of functions φ is a linear combination of scalars Πa, Πb, Sab. To

make coefficients dimensionless, we will use, instead of Π, S, the quantities having the
dimension of force:

Πa/D, Πb/D, Sab/D
2,

where D = T + T 0, and T 0 > 0 is an arbitrary constant introduced in order to avoid
singularity when the particles meet and T = 0.
Let forces be symmetric with respect to particles:

φa = aΠa/D + a1Πb/D + bSab/D
2,

φb = aΠb/D + a1Πa/D + bSba/D
2. (9)

Since function φa enters into the expression of the force acting on particle b and vice versa,
the causality condition requires that the times τ1, . . . , τ4 in the expressions

φa = aΠa(τ1, τ2)/D + . . . , φb = aΠb(τ3, τ4)/D + . . . ,

obey the restrictions τ1,4 ≤ τ r(T ), τ2,3 ≤ τ (T ), . . .. Within these restrictions, different
choices of times are of interest.
We consider first the simplest choice, when all the arguments in forces are equally

retarded
τ1 = τ2 = . . . = τ r(T ).

We choose the coefficient a1 before the mixing term in (9) to be zero. Denoting Π(T ) =
Π(τ (T ), τ (T )), . . ., we obtain from (8) the system

Π̇a(T ) = −aΠa(T r)/D − bSab(T
r)/D2,

Π̇b(T ) = −aΠb(T r)/D − bSba(T
r)/D2,
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Ṡab(T ) = (Πa(T )− Πb(T ))q.
These equations contain variable deviation of argument T − T r = T (1 − 1/C). To

make them closer to equations with a constant deviation of argument studied in [22-24],
we perform the substitution

D = eθ, Sab = Dσ, Ṡab = σ′ + σ, (10)

where prime means d/dθ. It gives

Π′a(θ) = −aΠa(θr)− bσ(θr),

Π′b(θ) = −aΠb(θr) + bσ(θr), (11)

σ′(θ) = (Πa(θ)− Πb(θ))q − σ(θ),

where θr = θ − µ, µ = lnC . The general solution Ψ = (Πa,Πb, σ) of (11) is a (possibly
infinite) superposition of solutions

Ψn(θ) = eλnθΨn(0)

with different proper values λn. Substitution of Ψ = eλθΨ(0) into (11) gives for λ the
characteristic equations with the matrix

Z =




λ+ ae−λµ 0 be−λµ

0 λ+ ae−λµ −be−λµ
−q q λ+ 1


 .

Equation
detZ = (λ+ ae−λµ)[(λ+ 1)(λ + ae−λµ) + 2bqe−λµ] = 0 (12)

determines the spectrum of proper values λn. Since

Sab = eθσ = e(λ+1)θσ(0),

the fulfillment of the condition
Reλn < −1 (13)

is sufficient to make both Π and Sab decrease with time. Consider from this point of view
the roots of eq. (12).
Let us look first at the real roots. The equation

λ+ ae−λµ = 0

for a < 1/eµ has two real roots. If a > 0, they are both negative and the root λ0, closest
to zero, is limited by λ > −1/µ. If µ < 1 condition (13) can be fulfilled.
The closest to zero real root of the second equation

(λ + 1)(λ + ae−λµ) + 2bqe−λµ = 0,
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if it exists, lies between -1 and 0, if b < 0, and is smaller than -1, if b > 0 . So, to fulfill
(13), we should choose b > 0.
Calculating detZ for complex λ and looking at the pattern of the zeros at the complex

plane, one can see that the real parts of the complex roots lie to the left of λ = −1 at
the same conditions on a and b as for the real roots. Therefore, if µ < 1/e, the choice
a = 1/eµ and b > 0 gives the forces that make any state of RF vanish with time, when
particles fly apart and forces (9) dominate.
The limitation λ > −1/µmeans that the RF with considered forces decays and behaves

as a VF, if µ is not large, and cannot decay if µ > 1. Since µ is the function of velocities

µ = ln
(
ha · hb +

√
(ha · hb)2 − 1

)
,

there is the energy threshold (more exact, the relative velocity threshold) below which
the RF is a VF and the scattering of particles is elastic, and above which some energy-
momentum and spin is carried away by the radiated RF. This behaviour reminds the
energy threshold for the emission of real particles in the quantum field theory.
Let the full force contain, besides the slowly decreasing parts fixed by functions φa, φb,

some other forces, fixed by functions fa, fb

Fa = Hb(φb + fb)/τ̇a, Fb = Ha(φa + fa)/τ̇b.

Then the numerical methods may be used for the study of the solutions. The numerical
solutions of the exact equations of motion with different (repulsive and attractive) forces
f have shown that, if functions f become small at large distances, the decay process due
to forces φ takes over as soon as |f | becomes smaller than |φ|.
The existence of the velocity threshold above which a RF does not fully decay, is not

obligatory. Consider the modification of the above example of decay forces with another
choice of time arguments:

φa(T ) = aΠa(τ
r(T ), τ (T ))/D+ bSab(τ

r(T ), τ r(T ))/D2,

φb(T ) = aΠb(τ (T ), τ
r(T ))/D + bSba(τ

r(T ), τ r(T ))/D2. (14)

Since function φa enters the force acting on particle b, this choice also is compatible with
causality. The presence of mixed (retarded, unretarded) arguments generally complicates
the system of equations. However, in the adiabatic approximation Πa does not depend
on the first argument:

Πa(τ
r(T ), τ (T )) = Πa(τ (T ), τ (T )).

One can see this by calculating ∂Πa(τ1, τ2)/∂τ1 = −ha ·F ra and using that in the adiabatic
approximation ha = hra. Therefore, the choice (14) gives

Π̇a(T ) = −Πa(T )/D− bSab(T
r),

Π̇b(T ) = −Πb(T )/D − bSba(T
r),
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Ṡ(ab)(T ) = (Πa(T )− Πb(T ))q.
Making the same substitution (10), we obtain

Π′a(θ) = −aΠa(θ)− bσ(θr),

Π′b(θ) = −aΠb(θ) + bσ(θr),

σ′(θ) = (Πa(θ)− Πb(θ))q − σ(θ),

and come to the matrix

Z1 =




λ+ a 0 be−λµ

0 λ+ a −be−λµ
−q q λ+ 1




and to the equation

detZ1 = (λ + a)[(λ+ 1)(λ + a) + 2bqe−λµ] = 0.

Now, if a > 1 and b > 0, the first equation λ + a = 0 gives λ < −1, and the second
equation

(λ+ 1)(λ+ a) = −2be−λµq
has only roots with Reλ < −1. So, the RF with the decay forces (14) with a > 1 and
b > 0 totally decays, when particles fly apart, no matter what their energies (or velocities)
are. The presence of any short-range forces fa, fb should not change the result. Such RF
is a perfect VF, mediating purely elastic interactions of particles at all energies.

4. Concluding Remarks

The version of RFs outlined in this paper is the basic one, using the simplest description
of the mediator compatible with the causal retardation. It contains large freedom of choice
of particular interactions. However, more detailed descriptions of the mediator may be
advantageous. In particular, the changeable masses of particles may describe the parts
of the mediating field which are concentrated near the particles and move together with
them. The replacement of the transversality condition by the equations for the mass
evolution may simplify the expressions for decay forces.
The RF formulation contains many arbitrary functions and is suitable for the construc-

tion of various internally consistent and fully relativistic models of elastic and inelastic
processes with interacting particles. Addition of external fields is no problem here: the
corresponding terms are simply added to the forces, acting on particles, while forces,
standing in the RHSs of equations for the fill of RFs remain unchanged. In case of the
electromagnetic interaction, the time derivative of the particle acceleration, entering the
standard expression for the radiation friction and spoiling the good properties of the equa-
tions of motion, may be removed by a small-distance modification of the electromagnetic
forces equivalent to some smearing of the particle charge.

12



The numerical solution of the equations of motion for RFs is almost as easy, as the
solution of the Hamiltonian equations of motion. The first numerically solved cases showed
a rather nontrivial behavior of the solutions in the regions, where the forces are large and
the energy-momentum of a RF is comparable with that of particles. The results of the
numerical analysis will be published elsewhere.
Due to the explicit retardation of forces, the interaction via RFs is always time-

asymmetrical and this should have experimentally observable consequences, especially
in the processes like pp→ ppγ, where the gamma emission must be sensitive to the shape
of the trajectory of the protons near the collision point. The relevant models with RFs
may give more specific predictions of the retardation effects, than the dispersion relations
of the quantum field theory based on the causality principle reflecting just on the mere
fact of causal retardation.
There are several theoretical questions, concerning RFs, that are not studied yet.

The first one is the low velocity limit. The other one is the limiting cases when the
time-asymmetry effects become unessential. In such cases, the relativistic VF description
should become approximately equivalent to the relativistic Hamiltonian description. Such
questions, as well as the relationships of the RF theory with the formalism of nonlocal
Lagrangians, need the clarification.
The most intriguing problem of the classical RF theory is the construction of its

quantum counterpart. The problem here is the description of history of motion in terms
of the Hilbert space vectors.

This work was supproted in part by the Russian Fond of Fundamental Research (grant
No 95-01-647).
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