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Abstract
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Gravitational radiation flux from an arbitrary spatially bounded source is positively defined

in the used variant of theory of gravity with nonzero graviton mass. A link between energy losses
by emission and work of sources is established. It is shown that the total work contains a part

resulted from the interaction of a source with radiation field and a part resulted from self-action
of the field. This is just that makes the work positively defined as a whole. A general form of

radiation spectrum-angular distribution is obtained with account of spin and polarization states.
For spherically symmetric sources, states with zero spin as well as zero projection on momentum
of spin two make a contribution to emission.
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1. General Remarks

It is well known that the question about rest mass of particles like neutrino, photon,
graviton is of fundamental significance. Suffice it to mention the role of the neutrino mass
in various physical processes and that of the photon mass in electromagnetic phenomena.
Taken alone, by virtue of its conceptual nature, theory cannot, in principle, provide an
answer to whether or not a specified particle offers the rest mass. One or another agree-
ment is simple to be adopted in it. Depending on an accepted agreement, the theory can
only supply distinct consequences to be experimentally tested. On the other hand, it has
been possible to recognize in the experiment (within the limits of achieved accuracy) only
the upper boundary of a mass of photon and neutrino, that is, the issue always remains
open below it. An incorporation of mass into the theory is not accompanied by fundamen-
tal difficulties or physically unacceptable outcomes for electroweak and electromagnetic
interactions (if nature endows the corresponding particles finite, even though very small
masses). A different situation arises with the theory of gravitation. Here one faces specific
obstacles when introducing graviton mass to the theory. They related to the fact that
the entering of mass term (after referred to as µ-term implying that µ is graviton mass)
to the Lagrangian density L (and to following equations) demands, as shown for the one
in [1], the introduction of supplementary metric along with the Riemannian space metric
gαβ . It is chosen as the Minkowky space metric γαβ for a number of reasons (see [1,2,3]).
This leads to two consequences.

First, the consistency of the Riemannian geometric interpretation of the theory has
been lost [1,3] because space with metric γαβ begins taking on sense as basic space,
wherein gravitational (as with all other) processes occur. Metric tensor gαβ must now be
understood as that induced by the physical gravitational field defined in space with metric
γαβ . The Riemannian space has been assigned a meaning of effective, induced by physical
field, space. This does not necessarily denude it of practical significance in so far as an
observer together with his instruments is exposed to the action of field, i.e. ”immersed”
in this effective space. Hand in hand with this fact, the emergence of basic metric γαβ
allows one to transpose mental operation of field inclusion and exclusion to all physical
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situations. In other words, that makes possible to judge either some phenomenon caused
by the action of gravitational field, or it takes place in the absence of field.

Second, the presence of two metrics involves ambiguity of µ-term entering the scalar
density L, unless further requirements imposed on L are formulated.

Several versions of constructing of L with µ-term were considered in [1]. The key
inference reached by authors of [1] reduces to conclusion about impossibility to develop an
acceptable noncontradictory theory of gravitation with nonzero graviton mass. However,
if this conclusion were true, it would be the unique case in physics, when the exact
equality to zero of graviton rest mass had been proved except in a theoretical manner.
Such theorem cannot be doubted. And what is the listed inference based on? It is mainly
founded on the fact, that the energy of free gravitational field has a negative contribution
owing to the existence of scalar component of the field, corresponding to zero spin, along
with that of spin two. This, in turn must lead the authors of [1] view to the instability of
field sources.

It is necessary to refine here, that the instability is caused not by negative energy
density in itself, but negative investment to energy flux going from the source to infinity.
For one example, the density of gravitational field (either massive or massless) energy is
always negative outside a static source. But it does not tend to instability, so as energy
does not bring from the source to infinity (the energy flux is equal to zero). Whenever
negative contributions appear in a flux, instability should certainly arise. To elucidate its
character and fix whether or not its origin is associated with some incorrectness, let us
carry out proper calculations by commonly adopted methods. Running ahead, it should
be said that it is these methods that the fallacy resides in.

In general case the Lagrangian density of field with µ-term can be written (see [1]) as
follows1:

Lg ≡ L0g + µ2f(g, γ), (1)

where L0g is µ-independent part. Since, according to [1], the conclusion about the appear-
ance of negative contribution to energy density (and also to energy flux density – when
using standard methods of calculations) does not depend on the choise of f , take µ-term
in the form, which was first proposed in [3] (the substitution of this construction will be
presented below in Sec.2):

µ2f(g, γ) ≡ − µ
2

16π

(1
2
g̃αβγαβ −

√
−g −

√
−γ
)
, (2)

where −g̃αβ ≡
√
−g · gαβ. Considering the fundamental character of metric γαβ , density

L0g is obtained by generalization of [3]:

L0g ≡
1

16π
g̃ελ(GαελG

β
αβ −GαεβG

β
λα), (3)

with the third rank tensor

Gαελ ≡
1

2
gαβ(Gεgβλ +Dλgβε −Dβgελ), (4)

1Throughout this paper the units system with c = � = G = 1 is used.
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and Dα is covariant derivative in the Minkowsky space2; in Galileian coordinates Dα = ∂α
and Gαελ = Γαελ. Metric energy-momentum tensor density τ ελ ≡ −2(δLg/δgελ) of massive
gravitational field in such a situation is determined by the expression

τ ελ ≡ − 1

8π
√−g

[√
−gR̃ελ − 1

2
g̃ελR̃ +

1

2
µ2
(√
−gg̃ελ +

+ g̃εαg̃λβγαβ −
1

2
g̃ελg̃αβγαβ

)]
. (5)

Here R̃ελ ≡ √−gRελ, R̃ ≡ √−gR, R ≡ Rαβgαβ , and Rαβ is Ricci tensor. Therewith the
metric energy-momentum tensor of the field in the Minkowsky space tελg ≡ −2(δLg/δγελ)
is equal to

tελg ≡ 2
√
−γ
(
γεαγλβ − 1

2
γελγαβ

) δLg
δg̃αβ

− 1

16π

[
J ελ − µ2(g̃ελ − γ̃ελ)

]
, (6)

where J ελ ≡ DαDβ(γ
αεg̃βλ + γαλg̃βε − γελg̃αβ − γαβ g̃ελ), γ̃ελ ≡ √−γγελ. Density τ ελ

vanishes outside a source or for a free filed, since variational derivative δLg/δgελ dictates
dynamic equations for the field at once (δLg/δgελ = 0). With a source at hand field
equations appear as

τ ελ + T ελ = 0, (7)

where T ελ ≡ −2(δLM/δgελ) is the energy-momentum tensor density of a substance3. It is
up to the point to note that in the absence of µ-term equation (7) comes to the ordinary
Hilbert-Einstein equation for massless field. Define (just as in [1,3]) the gravitational
potentials in the Minkowsky space as deviations

Φ̃ελ ≡
√
−γΦελ ≡ g̃ελ − γ̃ελ. (8)

Then by virtue of dynamic equation of a substance

∇λT ελ = 0, (9)

where ∇λ is the covariant derivative in the Riemannian space, from (7) follows the field
condition:

Dλg̃
ελ = DλΦ̃

ελ = 0. (10)

2Depicted structure of L0g is generally covariant. Authors of [3] did not find that generally covariant
formulation of theory with µ-term, allowing for the choice of coordinates together with the Minkowsky
metric by an arbitrary way, was possible; because of this in [3] the theory was developed on the base of
diagonal metric γαβ (in Galileian coordinates). Moreover, the absence of general covariance of the theory
was outlined by them as a necessity afforded by the introduction (on the strength of µ-term entering) of
the Minkowky metric. About generally covariant approach to the construction of the theory with µ-term
see in Sec.2.
3We will name all the forms of matter except for the gravitational field as ”substance” for the sake of

convenience.

3



When it is considered that for field equations δLg/δg̃
αβ = 0, i.e. outside a source identity

(6) becomes faithful to (7) — without T ελ equation —

J ελ + µ2Φ̃ελ = 16πtελg , (11)

and with account of equality Dλt
ελ
g = 0, thus (10) can be also easily derived, because

DλJ
ελ
g ≡= 0. By reference [4,5] one can verify that field condition (10) excludes the

states corresponding to spin 1 and 0′ from gravitational field and transforms it to scalar-
tensor mixture with spin states 2 and 0.

Now let us make recourse to the universally adopted procedure and expand (5) in
powers of field Φελ correct to the second order inclusive. Then we obtain

τ ελ �
√−γ
16π

{
−γαβDαDβΦελ − µ2Φελ +

+
1

2
(γεαγλβ − 1

2
γελγαβ)(DαΦ

ν
τDβΦ

τ
ν −

1

2
DαΦDβΦ)−

− µ2[ΦεαΦ
λα − 1

4
γελ(ΦαβΦ

β
α −

1

2
ΦΦ)] −

− γεβDαΦ
λνDβΦ

α
ν − γλαDαΦβνDβΦεν + γαβDαΦενDβΦλν +

+
1

2
γελDαΦ

β
νDβΦ

αν +DαΦ
εβDβΦ

λα − ΦαβDαDβΦ
ελ
}
, (12)

where Φ ≡ Φαα ≡ Φαβγαβ, and indexes of Φελ are raised and lowered by metric tensor γαβ.
If one write tensor density tελg in Minkovsky space, so it will turn out to be identical to
quadratic function in (12). This causes us to consider that, in the proper approximation,
the energy-momentum tensor density of massive gravitational field as a whole is deter-
mined in the Minkowsky space by quadratic function from (12), which will be symbolized
as tελ2 ; hence

τ ελ ≡
√−γ
16π

(−γαβDαDβΦελ − µ2Φελ) + tελ2 . (13)

Now one can easily see that, when (10) is allowed for equation (11) is faithful to τ ελ = 0,
that is, further analysis may start from any of them.

We shall use this fact when covering commonly employed method for obtaining energy-
momentum tensor density of radiation field. The first and the basic step on the road to

its construction is the representation of potentials Φελ as the sum Φελ =
(0)

Φελ +
(1)

Φελ in
which the major term is governed by zeroth-order equation

�
(0)

Φελ +µ2
(0)

Φελ= 16π
(0)

T ελ, (14)

and the correction one
(1)

(Φελ) — by the next order equation, whose right side contains

quadratic in field terms replacing Φελ by
(0)

Φελ in them. Thus, outside a source linear part
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of τ ελ connected with radiation field becomes zero and the density tελrad identify with the
density tελ2 , constructed from solutions on null approximation equation.

The source will be considered to be quasistationary. Then instead of tελrad one can
treat its time-average value t̄ελrad (in practically such a manner it was always done). When
doing so, terms from tελrad, which can be reduced (with the taken accuracy) to the form
of 4-divergence with the help of field condition (10) or by some other way (for instance,

Dα

(0)

Φεβ Dβ
(0)

Φλα� Dα(
(0)

Φεβ Dβ
(0)

Φλα) and the like), do not contribute to t̄ελrad. Therefore
they can be dropped out in tελrad. Besides, one can remove from tελrad a number of other
terms applying (14). Cite an example

γαβDα
(0)

Φεν Dβ

(0)

Φλν −µ2
(0)

Φεν

(0)

Φλν= Dα(γ
αβ
(0)

Φεν Dβ

(0)

Φλν)−
(0)

Φεν (γ
αβDαDβ

(0)

Φλν +µ2
(0)

Φλν).

In the end we have arrived at

tελrad =

√−γ
32π

γεαγλβ
(
Dα

(0)

Φντ Dβ
(0)

Φτν −
1

2
Dα

(0)

Φ Dβ
(0)

Φ
)
. (15)

By this means standard methods tend to the next expression for radiation energy flux (in
Galileian coordinates)

(0)

I = −
1

32π

∮
s→∞

[
∂o
(0)

Φαβ ∂k

(0)

Φβα −
1

2
∂o
(0)

Φ ∂k
(0)

Φ
]
dσk, (16)

which is identical in form to that of massless gravitational field4.

Represent solution
(0)

Φελ away from source as Fourier series

(0)

Φελ� 1

r

∑
ω

aελω (−iωt+ i�k�r) ≡
∑
ω

(0)

Φελω , (17)

in which �k ≡ �nηω, η ≡ [1− (µ/ω)2]1/2, �n ≡ �r/r, ω ≡ νωo and ωo � µ. Then we can turn
our attention to the spectral-angular distibution of radiation

d
(0)

I

dΩ
=

1

16π

∞∑
ν=1

ω2η
{ ∗
aελ (

�k)aλε (
�k)− 1

2

∗
a (�k)a(�k)

}
. (18)

Taking into consideration (with a proper accuracy) equalities

a00 = −η2a33, a0k = −ak0 = ηa3k, (19)

resulting from (10), with index 3 is associated to momentum �k direction, we come to the
expression:

4Formula (15) and thus (16) may be derived from time-averaged expression for pseudotensor of radi-
ation field appearing in [6].
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d
(0)

I

dΩ
=

1

8π

∞∑
ν=1

ω2η
{
|a12|2 +

1

4
|a11 − a22|2 +

µ2

ω2
(|a13|2 + |a23|2) +

+
µ4

4ω4
|a33|2 −

µ2

4ω2

[
(
∗
a11 +

∗
a22)a

3
3 + (a11 + a

2
2)
∗
a33

]}
. (20)

Negative contribution to the energy flux obtained by generally accepted methods is
thus seen truly to appear and it is to graviton mass (spectral-angular distribution rear-
ranges to the familiar form when µ = 0 (see [6], for instance) and becames positively
defined). Specifically, for spherically symmetric source only a11 = a

2
2 = a

3
3 differs from zero

and

d
(0)

I

dΩ
= −µ

2

8π

∞∑
ν=1

η

(
1− µ2

4ω2

)
|a33|2.

To clear up what contribution to d
(0)

I /dΩ various spin states of the field make, let us fall
back on the results of [4,5] and expand aελ in irreducible representation corresponsing to
spin 2 and 0. Having regard the form of projection operators in momentum space

(P2)
ελ
αβ ≡

3

2
(QεαQ

λ
β +Q

ε
βQ
λ
α)−QαβQελ,

(Po)
ελ
αβ ≡ QαβQελ,

Qελ ≡ 1√
3

(
γελ − k

εkλ

k2

)
,

we arrive at

cελ ≡ 1

3

(
γελ − k

εkλ

k2

)
a, c ≡ a, bελ ≡ aελ − cελ, (21)

wherein bελ refers to spin 2 states, and cελ — to zero spin states. Independent amplitudes
b12 = a12, (b

1
1 − b22) = (a11 − a22), b13 = a13, b

2
3 = a23 and b33 = a33 − (ω2/3k2)a accord

with two transverse-transverse (related to projection s3 = ±2 of spin 2), two transverse-
longitudinal (related to s3 = ±1) and one longitudinal-longitudinal (related to s3 = 0)
states, and amplitude c = a is due to a scalar component (s = 0). Thus we deduce instead
of (20)

d
0

I

dΩ
=

1

8π

∞∑
ν=1

ω2η

{
|b12|2 +

1

4
|b11 − b22|2 +

µ2

ω2
(|b13|2 + |b23|2) +

3µ4

4ω4
|b33|2 −

1

12
|c|2
}
. (22)

One can see that the negative contribution to radiation energy flux is given (as it was
intimated in [1]) by the scalar component only.

Now that we gave a full picture of commonly used calculations, we focus upon some
incorrectness of ones together with the introduction of the concept of energy-momentum
tensor density of gravitational radiation field. Obviously it can appear at the outset
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only, when developing (16), since all other things are merely outcomes of result (16).
In turn this result is by itself a consequence of the successive approximations method
application. It is just what contains incorrectness. Actually, the obedience of potentials
Φελ in zeroth approximation to linear equation (14) implies from the physical viewpoint
that space, in which associated with nonstatic field gtavitons move, is identified with the
Minkowsky space. This is clearly demonstrated by the fact that by virtue of (16) each
Fourier component of the field outside the source must obey linear equation

�
(0)

Φελ +µ2
(0)

Φελ= 0, (23)

leads to connection γαβk
αkβ = µ2. However, this is completely unacceptable, because

in reality gravitons move in the Riemann space induced by both field
(1)

Φελ and their own
field, i.e. momentum kα must be actually governed by connection gαβk

αkβ = µ2. The
method applied above ignores this fact and so tend to incorrect results. In Sec.3 the
other approach, taking into account that gravitons propagate in space with the Riemann
metric, will be developed. This will turn out to eliminate the negative investment to
flux and will make it positively defined. Thereby objections [1] against a possibility to of
construct a consistent theory of gravitation with nonzero graviton mass will be removed.
The fundamental tenet of it are present below.

2. Basic Equations of Theory of Gravitation with Nonzero

Graviton Mass

As it was already noted above, the introduction of graviton mass, if it exists in nature,
into the theory of gravitation implies (see [1,3]) the necessity of entering some supple-
mentary metric along with the Riemannian one. For a number of reasons (a high degree
of agreement of experimental data with theoretical predictions in electrodynamics, based
on the concept of Minkowsky space; numerous observations testifying to the Euclidean
character of three-dimensional space, etc) it is best seemed to identify this metric with
Minkowsky space metric. It that case it is taken to be of fundamental significance, and
metric gαβ was turned out to be secondary, induced by physical gravitational field. Postu-
lating that the Minkowsky metric is basic, one assures an existence of independent laws of
conservation for energy, momentum, and angular momentum of isolated system, because
the Minkowsky space admits the 10-parametrical Poincare group.

Although, dynamical processes are now more naturally viewed as the ones proceeding
in the Minkowsky space under the influence of gravitational fields, motion of a substance
(see remark3) by the action of the field can be considered as its free motion in the Rieman-
nian space induced by this field. This means that if the Lagrangian density of substance
LM taking in Minkowsky space (when gravitational fields are ignored) contains metric
γαβ , then LM must contain a metric coefficient of the Riemannian space gαβ instead of
γαβ when gravitational field is accounted for, i.e. [7-10]

LM(γ̃
αβ(x), A

(α)
(β)(x), DλA

(α)
(β)(x))→ LM(g̃

αβ(x), A
(α)
(β)(x), ∇λA

(α)
(β)(x)). (24)
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Here A
(α)
(β) is tensor (type of

(
p
q

)
) of substantial fields with (α) ≡ α1, α2, ..., αp, (β) ≡

β1, β2, ..., βq, and density Φ̃αβ(x) of gravitational field in the Minkowsky space equates (by
analogy with [1,3]) to difference g̃αβ − γ̃αβ — see (8). LM is seen to be fully geometrized
(in the space with metric gαβ) density, in that it does not explicity incorporate metric
γαβ . In [7-10] accordance (24) has been called geometrization principle.

As was done in [7-10], insert the group of infinitesimal gauge fields transformations

δεg̃
αβ ≡ δεΦ̃αβ ≡ g̃αλDλεβ + g̃βλDλεα −Dλ(ελg̃αβ),

δεA
(α)
(β) ≡ F

(α)(σ)ν
(β)(τ )µA

(τ )
(σ)Dνε

µ − ελDλA(α)(β),
where εα(x) is group parameter, structural constants

F
(α)(σ)ν
(β)(τ )µ ≡

p∑
m=1

δσ1β1 · · · · · δ
σq
βq
· δα1τ1 · · · · · δ

αm=ν
τm

· · · · · δαpτp · δ
αm
µ −

−
q∑
m=1

δα1τ1 · · · · · δ
αp
τp · δ

σ1
β1
· · · · · δσmβm=µ · · · · · δ

σq
βq · δ

ν
βm,

and operators δε form the Lie algebra and satisfy Jacobi identities. Then one can ascertain
that scalar density LM varies over a divergent term only under this transformation. It
would be reasonable to demand that the Lagrangian density of gravitational field must
also change over nothing but divergence. This requirement has been formulated in [7-10]
and called a gauge principle. The only (the prove of uniqueness see in [7]) scalar under
general mapping transormation density L0g complying with the minimality principle and
the gauge principle is found in structure (3). Hence, the form of L0g suggested in [3] got
not only covariant extension, but the justification for the solely possible structure as well.
Both of them are of principal importance in theory. If physical gravitational field identify
with mixture5 corresponding to spin states 2 and 0, then the solely possible structure of
mass term (also scalar under general mapping transformation) having entered L0g will be
(2), since only it will permit field condition (10), excluding states with spin 1 and 0′, to
arise. Besides, it also assures the identical vanishing of full density Lg in the absence of
field, which is physically essential. In this way form (2) suggested for the first time in [3]
also gets a justification.

The introduction of mass term into Lg breaks the gauge symmetry: as (10) is obeyed
mass term over divergence on but subset of parameters ελ(x) determined by the equation

gαβDαDβε
λ = 0.

Analogous breaking of gauge symmetry takes place in electrodynamics with nonzero pho-
ton mass.

5Incorporation of spin states 1 and 0′ as well as one of them tend to physically unacceptable conse-
quences, like the absence of passage to the limit in solutions of equations for field potentials, when µ→ 0.
In particular, one can see it in [1].
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In sum we arrive to unambiguosly defined expression for Lagrangian density of both
substance and gravitational field [7-10]:

L ≡ LM +
1

16π
g̃ελ(GαελG

β
αβ −GαεβG

β
λα)−

− µ2

16π

(1
2
g̃αβγαβ −

√
−g −

√
−γ
)
. (25)

Thus equations system for substance and gravitational field assumes the form

δL

δA
(ε)
(λ)

= 0,
δL

δg̃ελ
= 0. (26)

Along with the equations for substance relation (9) must hold true. If the number of
independent equations for substance in (26) is found to be equal to four, they can be
totally substitued for (9) or field condition (10), as (9) and (10) are interchangeable. Such
a situation is realized when a substance can be described by velocities of its elements uk,
density ρ and pressure p in full. Exclusively in such an event, system of equation (26) can
be recast into the form (see also [3,7-10])

Rελ − 1

2
gελR +

1

2
µ2
[
gελ + (gεαgλβ − 1

2
gελgαβ)γαβ

]
=

8π√−gT
ελ,

(27)

Dλg̃
ελ = 0.

Being supplemented by the state equation of substance p = p(ρ), (27) gives us the com-
plete system of equations enabling the determination of all fifteenth matter characteristics
(uk, ρ, p and g̃ελ).

Notice that dynamic (upper in (27)) equations of field become degenerate in the
Minkowsky space metric γαβ as µ → 0. It is common knowledge, that the removal of
degeneration can lead to qualitatively new physical effects, which are latent in degenerate
equations. Because of this, even if graviton mass is exactly equal to zero, it would be well
to amplify equations by µ-term, lifting their degeneration in γαβ, and to make calculation
just after that with µ being direct to zero at the last stage only (see [11]). In particular
in [12] it has been shown that such degeneration removal separates singularities in metric
coefficients g−100 and g11 (at dt

2 and dr2) in static spherically symmetric problem, resulting
in impossibility of falling particles to penetrate under the Schwarzschild sphere.

Now let us make sure that the obtained system of equations does not bring to contra-
diction, i.e. that flux density of massive graviton radiation is positively defined.

3. Flux Density of Massive Graviton Radiation
and its Positive Definiteness

By way of identical rearrangement dynamic equations (27) can be put in the form

9



γ̃αβDαDβΦ̃
ελ + µ2

√
−γΦ̃ελ = 16π

√
−g(T ελ + tελ), (28)

with

16π
√
−gtελ ≡ 1

2

(
g̃εαg̃λβ − 1

2
g̃ελg̃αβ

)(
g̃νσ g̃τk −

1

2
g̃τσg̃νk

)
DαΦ̃

τσDβΦ̃
νk−

−µ2
[√
−gg̃ελ −

√
−γΦ̃ελ +

(
g̃εαg̃λβ − 1

2
g̃ελg̃αβ

)
γαβ
]
− g̃εβ g̃τσDαΦ̃λσDβΦ̃ατ−

−g̃λαg̃τσDαΦ̃βσDβΦ̃ετ + g̃αβ g̃τσDαΦ̃ετDβΦ̃λσ +
1

2
g̃ελg̃τσDαΦ̃

σβDβΦ̃
ατ+

+DαΦ̃
εβDβΦ̃

λα − Φ̃αβDαDβΦ̃
ελ,

and g̃ελ ≡ gελ/
√−g. If source T ελ in (28) loses energy by graviton emission, then fields

Φελ in this equations are the sum of radiation potentials ψελ and potentials χελ of rest
part of fields, not contributing to radiation flux, but making up some background with
a ”ripple”. To the second order in field, which is quite sufficient here,

√−gtελ in (28)
reduces to

√−γtελ2 determined by quadratic function from (12), and equations for χελ

(see also [13,14]) become

γ̃αβDαDβχ̃
ελ + µ2

√
−γχ̃ελ = 16π

[√
−gT ελ +

√
−γ(τ ελ1 + τ ελ2 )

]
. (29)

Here

τ ελ1 ≡
√−γ
16π

{
−γαβDαDβψελ − µ2ψελ +

1

2

(
γεαγλβ − 1

2
γελγαβ

)
×

×
(
Dαψ

ν
τDβψ

τ
ν −

1

2
DαψDβψ

)
− µ2

[
ψεαψ

λα − 1

4
γελ(ψαβψ

β
α −

− 1

2
ψψ)

]
− γεβDαψλνDβψαν − γλαDαψβνDβψεν + γαβDαψενDβψλν +

+
1

2
γελDαψ

β
νDβψ

αν +Dαψ
εβDβψ

λα − ψαβDαDβψελ
}
, (30)

and all the terms of τ ελ2 are certain to include χαβ.
To find way of account for the fact that gravitons move in space with the Riemannian

metric rather than the Minkowsky one, we consider initially asymptotics of radiation
potentials away from a source. With the existence of basic metric γαβ all gravitational
fields are treated as ones defined in space with this metric. Hence asymptotics of ψελ

must be written as follows:

ψελas �
1

r

∑
ω

aελω exp
{
−iω(t− r

v
)
}
≡ 1

r

∑
ω

aελω exp(−iγαβkαxβ) ≡
∑
ω

ψελω , (31)

where aελω are amplitudes of partial waves ψελω and kα are 4-momentums of gravitons.
Considering (31) and keeping only major terms when taking derivatives Dα we result
from linear part of (30):

− γαβDαDβψελas − µ2ψελas �
∑
ω

(γαβk
αkβ − µ2)ψελω . (32)
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Since gravitons momenta kα obey the equation

gαβk
αkβ = µ2, (33)

(32) must be equal to

∑
ω

(γαβk
αkβ − µ2)ψελω =

∑
ω

(γαβ − gαβ)kαkβψελω �

�
∑
ω

(Φαβ −
1

2
Φγαβ)k

αkβψελω � −
µ2

2
(ψas + χ)ψ

ελ
as − (ψαβas + χ

αβ)DαDβψ
ελ
as .

All these facts indicate that the equation for radiation potentials ψελ, taken in Minkowsky
space and determined by nonstatic part T ελ1 of source T ελ, must be nonlinear and have
the following form

√
−γ(gαβDαDβψ̃ελ + µ2ψ̃ελ) = 16π

√
−gT ελ1 , (34)

where indexes of Dα and Dε are raised and lowered with the help of metric γαβ . One
can easily make sure that asymptotics (31) satisfies corresponding to (34) homogeneous
equation, which do accord with the law (33) of graviton motion in Riemannian space.
Taking into consideration (34) in (29), we arrive at equation

γ̃αβDαDβχ̃
ελ + µ2

√
−γχ̃ελ = 16π[

√
−gT ελo +

√
−γ(τ ελrad + τ ελ3 )], (35)

wherein T ελo is static part of T ελ, τ ελ3 is certain to contain potentials χαβ, and

τ ελrad ≡
√−γ
16π

{1
2

[
(γεαγλβ − 1

2
γελγαβ)(Dαψ

ν
τDβψ

τ
ν −

− 1

2
DαψDβψ) + γ

αβψDαDβψ
ελ
]
− µ2

[
ψεαψ

λα − 1

4
γελ
(
ψαβψ

β
α −

− 1

2
ψψ
)]
− γεβDαψλνDβψαν − γλαDαψβνDβψεν +

+ γαβDαψ
ε
νDβψ

λν +
1

2
γελDαψ

β
νDβψ

αν +Dαψ
εβDβψ

λα −

− 2ψαβDαDβψ
ελ
}
. (36)

Expression (36) is just what must be recognized as energy-momentum tensor density of
radiation field with nonzero graviton mass. A correction for space distortion is seen to
lead to the fact that energy-momentum tensor density of one part of field does not depend
on full field tensor, but contains the contribution, conditioned by distortion (or self-action
of gravitons) from linear (in the Minkowsky space) combination of this part.

Show that radiation flux density given by (36) (it is precisely what is associated with
energy losses of a source) is positively defined. To do this, the case where energy losses by
radiation are small and source might be considered as quasistationary will be looked at.
In this approximation one can take instead of τ ελrad its time-averaged value, which is further
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represented just by τ ελrad. Taking into account that, within the used accuracy, potentials
ψελ must obey field condition (10), some terms in (36) can be reduced to 4-divergences.
Such terms do not contribute to averaged τ ελrad and thus may be left out. It is necessary
to use linear (with gαβ → γαβ and

√−g → √−γ) approximation of equation (34) in a
quadratic in ψελ expressions, lest a conventional accuracy in field be exceeded. Outside
the one source it allows to reject some other terms from (36). In the end beyond a source,
τ ελrad takes (see in addition [13,14]) the form:

τ ελrad =

√−γ
32π

[
γεαγλβ

(
Dαψ

ν
τDβψ

τ
ν −

1

2
DαψDβψ

)
− µ2ψψελ

]
. (37)

Hence the intensity of massive graviton emission is described (in Galileian coordinates)
by the formula

I = − 1

32π

∮
s→∞

[
∂0ψ

α
β∂kψ

β
α −

1

2
∂0ψ∂kψ − µ2ψψ0k

]
dσk, (38)

in which ψελ are governed by equation (34) linearized in field. As r → ∞, its retarded
solution is

ψελ � 4

r

∑
ω

T ελ1 (�k)exp(−iωt+ i�k�r), (39)

with �k ≡ �nηω, η ≡ [1− (µ/ω)2]1/2, �n ≡ �r/r, ω ≡ νω0, ω0 ≡ ωmin � µ, and

T ελ1 (�k) =
∫
dωot

2π
d3xT ελ1 (�r, t)exp(iωt− i�k�r).

We mention in passing that for free gravitational field (without sources) expression (37)
characterizes energy-momentum tensor density of traveling waves, which must be accom-
panied by background χελ determined by equation (29) with T ελ = 0. By using (39) we
obtain from (37) (compare with (18))

dI

dΩ
=

1

16π

∞∑
ν=1

ω2η
{ ∗
aελ (

�k)aλε (
�k)− 1

2

∗
a (�k)a(�k)−

− µ2

2ηω2
[
∗
a (�k)a30(

�k)+
∗
a30 (
�k)a(�k)]

}
, (40)

where in accordance with (39) aελ(�k) = 4T ελ1 (�k), and index 3, as in Sec.1, is related to

the momentum �k direction. By further applying connections (11), we recast (40) in the
form [13,14]

dI

dΩ
=

1

8π

∞∑
ν=1

ω2η
{
|a12|2 +

1

4
|a11 − a22|2 +

µ2

ω2
(|a13|2 + |a23|2) +

+
3µ4

4ω4
|a33|3

}
=

2

π

∞∑
ν=1

ω2η
{
|T 121 |2 +

1

4
|T 111 − T 221 |2 +

+
µ2

ω2
(|T 131 |2 + |T 231 |2) +

3µ4

4ω4
|T 331 |2

}
. (41)

12



Contrary to (20), this relation is strictly positively defined. Above discussion demonstrates
that it is due to the proper account of gravitons self-action, pertaining, in its turn, to the
presence of scalar component, which provides ψ 
= 0, in a field.

Attention is drawn to the fact that although scalar admixture connected with trace
ψ (and thus a) takes part in flux creation, trace a and consequently that of the Fourier
transform of nonstatic part in energy-momentum tensor density of a substance T1 ≡
T αβ1 γαβ does not appear in the expression for full flux in an explicit form. However, if it
is subdivided into independent spin states, partial investment of a scalar component will
be found6. In fact, considering decomposition (21) in (41), we obtain

dI

dΩ
=

1

8π

∞∑
ν=1

ω2η
{
|b12|2 +

1

4
|b11 − b22|2 +

µ2

ω2
(|b13|2 + |b23|2) +

+
3µ4

4ω4
|b33|2 +

1

12
|c|2 + µ2

4ω2

( ∗
b33 c + b

3
3

∗
c
)}
. (42)

It shows that proportional to |a33|2 term in (41) is combined from contributions of spin
states with s3 = 0 and s = 0. If phase difference between Fourier amplitudes of radiation
potentials associated with them, is chaotic, the last term in (42) can be dropped.

As the definition of radiation potentials ψελ is not restricted to the exterior of a source
when deducing (36), one can use it to link intensity of emission and work of sources.
For this purpose let us calculate 4-divergence of τ ελrad applying equation (34) in linear
approximation. As a result we give

∂λτ
0λ
rad = (

√
−γ/2)

{
T αβ1 ∂0ψαβ −

1

2
T1∂0ψ +

1

16π
∂λ(ψ�ψ0λ)−

−2T αβ1 ∂αψ0β − ∂λ∂α∂β(ψαβψ0λ)
}
.

Upon integrating it over a space area we obtain a balance equation

∂W

∂t
+ I =

1

2

∫
V
d3x
{
T αβ1 ∂0ψαβ −

1

2
T1∂0ψ +

1

16π
∂λ(ψ�ψ0λ)−

−2T αβ1 ∂αψ0β − ∂λ∂α∂β(ψαβψ0λ)
}
,

in which
W ≡

∫
V
d3xτ 00rad, I ≡

∮
s
τ 0kdσk.

In a case of quasistationary source, time variation of the integrals taken over a volume
might be neglected. After time-averaging we arrive to

I =
1

2

∫
V
d3x(T αβ1 ∂0ψαβ −

1

2
T1∂0ψ) +

µ2

32π

∮
S
ψψokdσ

k.

Here the first integral is the work of sources, and the second one accounts for the result of
gravitons self-action. One can easily reduce this formula for I to (41) by the substitution
of half-difference of retarded and advanced potentials for ψελ and ψ in the solid integral.

6In (41) it is hidden in amplitudes a33 related to that of the Fourier transform of potentials pertaining
to spin states with zero projection on momentum of spin two and zero spin.
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Conclusion

The main inference, which can be made from the foregoing is that, contrary to au-
thors of [1] contention, energy losses of a sources through massive graviton emission are
positively defined (see (41), (42)). What this means is theory of gravitation with nonzero
graviton mass, if gravitons are endowed by nature with it, hold validity no less than theory
of massless field. Basic equations of this theory are presented in Sec.2 (see (26), (27)).
The previously obtained negative contributions to intensity of emission (see (20), (21))
arose from identification of space, wherein born gravitons move, with the Minkowsky
space (see Sec.1). This mistake still remains uncorrected for more than 50 years. In
commonly applied methods it was overlooked that, actually gravitons move in space with
the Riemannian metric induced by the fields, among which is the own field of gravitons.
Account of space distortion (or self-action of field and hence gravitons) is shown in Sec.3
to lead to positive definiteness of energy losses (see (41), (42)). As it follows from (42),
all five states with spin two and zero spin state contribute to radiation. For a spherically
symmetric source emission of massive gravitons persists, but only gravitons with zero
projection on momentum of spin two as well as with zero spin are emitted. Connection
between energy flux of radiation and sources work have been established (see (43)).

Difference of graviton mass from zero gives rise to some other important consequences
as well. For one example, in a case of static spherically symmetric problem the presence of
mass term in dynamic field equation brings about noncoincidence of metric coefficient g00
(at dt2) with inverse of metric coefficient g11 (at dr

2) and therefore about impossibility of
penetrating of falling to a center particles under the Schwarzschild sphere. Another one is
that, on the strength of completeness equations system (27) together with state equation
of a substance, a picture of the homogeneous isotropic Universe evolution appears to
be uniquely defined (see [15]) in such theory. In doing this graviton mass is related to
magnitudes of deceleration parameter and Habble function. It is estimated at 10−67 g.
An existence of the mass tend to (see [15]) regular pulsations (with a period of the
order of 7.5 · 1010 years) of the Universe between states with minimal (∼ 10−30 g/cm3)
and maximal (∼ 1067 g/cm3) substance density. Three-dimensional space always remains
Euclidean in the process. The presence of latent mass, being about 25 times as large as the
visible one, is predicted. In summary rehabilitation of theory of gravitation with nonzero
graviton mass has nontrivial results. True enough, owing to its extremely small value
it does not practically show up in numerous occasions. Among other things, all results
of [16] connected with hypotheses for the existence of C- and P -violating gravitational
interactions still stand, since areas investigated there are far apart from the ones, wherein
the mass term can manifest itself.
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