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Abstract

Ammosov V., Korablev V., Zaets V. Electric Field and Currents in Resistive Plate Chamber:
IHEP Preprint 96-52. – Protvino, 1996. – p. 18, figs. 11, refs.: 3.

A method of three–dimensional electric fields calculation that takes into account the presence
of surface currents has been realized. Different versions of the resistive plate chamber (RPC)

design were simulated. Calculations of electric fields, currents and comparison with the measured
values of currents were made. Recommendations relative to an optimal graphite coating in the

basic RPC scheme under consideration are given.
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rEALIZOWAN METOD WYˆISLENIQ TREHMERNYH “LEKTRIˆESKIH POLEJ, UˆITYWA@]IJ PRISUT-
STWIE POWERHNOSTNYH TOKOW. pROIZWEDENO MODELIROWANIE RAZLIˆNYH WARIANTOW REZISTIWNOJ

PLOSKOPARALLELXNOJ KAMERY (rpk). wYPOLNEN RASˆET “LEKTRIˆESKIH POLEJ, TOKOW I SDELA-
NO SRAWNENIE S IZMERENNYMI ZNAˆENIQMI TOKOW. wYRABOTANY REKOMENDACII OTNOSITELXNO

OPTIMALXNOGO GRAFITOWOGO POKRYTIQ DLQ OSNOWNOJ RASSMATRIWAEMOJ SHEMY rpk.
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Introduction

Knowledge of calculated electric fields and currents allows one to understand the
processes that occur in a device under the high voltage supplied and to provide concrete
recomendations relative to the design and materials to be used.

There arise two types of surface charges when the voltage is supplied to a medium
boundary: induced charge due to the dielectric molecules polarization in the external
field and free charge due to the volume current passage through a boundary. Procedures
for electric field calculation in electrostatic and current approaches are available [1]. But
physics publications with recommendations how to take into account the presence of the
surface currents that can be even above the volume currents are lacking.

This paper shows a possibility to involve surface currents in the procedure of electric
field calculation using the law of full current conservation.

Because of the analogy between electric and magnetic field description, ideology and
mathematical formalizm for electric field calculation are taken from [2]. The magnetic field
[2] is presented as superposition of fields from conductor and surface (from magnetized
iron) currents. A surface charges method (SCM) proposed describes the electric field
as superposition of fields from surface charges. Both methods use boundary conditions
for field penetration: conservation of tangential strength and normal magnetic induction
(electric shift). In [2] an absolute field scale and the flux distribution in the iron are
defined by the law of full current conservation (circulation of strength vector around the
conductor). In SCM a field scale and the flux distribution in the medium are also defined
by strengh circulation along unclosed trajectory (potential losses either between electrodes
or electrode and surface with the ground potential).

1. General considerations

Let the electric field penetrate through the small horizontal surface element ds=(dt)2

from the lower (E1) to upper (E2) medium and surface current flows along tangential
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(surface) field component Et from the left (Et�, It�) to the right (Etr, Itr) side of the
element. Let ϕ be the angle between field and its normal component En.

The two first equations for the electric field calculation are the well-known ones for
the tangential and normal strength passage through boundary:

E2t − E1t = 0, (1)

ε2 · E2n − ε1 · E1n = σf (2)

ε is permittivity, σf is surface free charge density.
Here and later on the formulas are written in the system Volt, Ampere, Coulomb,

metre, second and surface charge density is defined as σ=(1/ε0)(dQ/dS). Factor 1/4π is
marked as ”k”.

For the current flow through a small surface element we require the incoming current
to be equal to the outcoming one:

dIt� + dI1v = dItr + dI2v, (3)

here dIt� is the surface current incoming from the left side, dI1v is the volume current
incoming from the lower volume part, dItr is the surface current outcoming in the right
side and dI2v is the volume current outcoming in the upper volume part.

Substitute surface (dIt) and volume (dIv) currents by their equivalent expressions
through strengths and resistivities:

dIt =
Et

R
dt, (4)

dIv =
E · (ds · cosϕ)

ρ
=

En

ρ
ds, (5)

here ρ is the volume resistivity (Ω·cm), R is the surface resistivity (Ω/�).
Then eq.(3) can be rewritten as:

(
E2n

ρ2
− E1n

ρ1
)ds = −Etr − Et�

R
dt. (6)

After dividing both parts of eq.(6) by ds=(dt)2 the final equation for the law of full
current conservation looks like:

E2n

ρ2
− E1n

ρ1
= −dEt

dt

1

R
. (7)

Thus, the surface current is involved in the law of full current conservation as a gradient
of the tangential field dEt/dt along its direction. So, the jump of the volume current at
the boundary is due to the presence of tangential field gradient along the surface.

Other possible expressions for the right part of eq.(7) are:

dEt

dt

1

R
=

dσf

dt
· |v| = |Et||σf |

dσf

dt

1

R
. (8)
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Here dσf/dt is the gradient of surface free charge density along Et direction, |v| is the
absolute value of free charge velocity.

As a rule in electric field tasks eq.(7) is applied with the zero right part, but near
the sharp corners the tangential field gradient is by two or three orders higher, than the
absolute field value, and the correct solution requires that the volume current jump due
to the tangential field gradient be taken into account.

A field scale and the flux distribution in medium are given by the potential losses
equation:

∫

�

(
→
E ·

→
d�) = ∆U, (9)

or by equivalent to it equation for surface potential:

U = k ·
∫

s

σ(r)

r
ds, (9′)

here r is the radius from the surface point to a point of potential definition.
Under the vacuum consideration the electric field on opposite sides of the small surface

element can be expressed as:

E2 = Eex + Eown, (10)

E1 = Eex − Eown (11)

here Eex is the external field created by all surface charges excluding the given element,
Eown is the own field created by surface charge of the given element. Then eqs.(1), (2)
and (7) can be transformed respectively to the following form:

2 · Eownt = 0, (12)

(ε2 + ε1) · Eexn + (ε2 − ε1) · Eownn = σf , (13)

(
1

ρ2
+

1

ρ1
) · Eexn + (

1

ρ2
− 1

ρ1
) · Eownn = −dEt

dt

1

R
. (14)

Eq.(12) is automatically satisfied because its tangential field in the central point of
elementary square is equal to zero (see Appendix).

Thus, if we work in terms of Eex, Eown the system of eqs.(1), (2), (7) is equivalent to
the system of eqs.(13), (14).

Now, if we divide the surface into a large amount of small elements and assume the
surface charge density σ to be a constant value in the internal region of every element,
the electric field in any space point can be expressed as:

→
E= k ·

∑
j

σjAj

∫

sj

→
r

r3
ds, (15)
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here Aj is the transformation (3×3) matrix from ”j” element to space,
→
r is the radius–

vector from ”j” element to a space point in the intrinsic frame of reference of ”j” element.

Let
→
G denote the 3–dimensional vector–integral (see Appendix)

→
Gj= k ·

∫

sj

→
r

r3
ds (16)

and
→
n be the normal vector to the surface element, then eqs.(13) and (14) for every ”i”

surface element can be written as:

(ε2 + ε1) ·
∑
j �=i

σj · ((Aj
→
Gj)·

→
ni) + (ε2 − ε1) · σi · (

→
Gi ·

→
ni) = σf(i) (17)

(
1

ρ2
+

1

ρ1
) ·
∑
j �=i

σj · ((Aj
→
Gj)·

→
ni) + (

1

ρ2
− 1

ρ1
) · σi · (

→
Gi ·

→
ni) = −

dEt(i)

dt

1

R
(18)

and eq.(9) for the potential losses along contour �i that starts from ”i” element and is

divided into ”m” segments ∆
→
�im is now:

∑
m

((
∑
j

σjAjm
→
Gjm) ·∆

→
�im) = ∆Ui. (19)

Eq.(9’) for the potential in the centre of ”i” element from all surface charges:

Ui = k ·
∑
j

σj ·
∫

sj

ds

r
. (19′)

Later on, when we say eq.(19), it means either eq.(19) or eq.(19’).
When volume and surface currents are flowing, for the dielectric surface we use eqs.(17)

and (18). Graphite and strip planes are connected with high–voltage source and the
ground with the known potentials, therefore for them we use eqs.(17) and (19) for sur-
face elements of the direct voltage and ground supplying and eqs.(17) and (18) for all
other elements. But when graphite and strip resistivities are neglegible in comparison
with neighbour plastic resistivities we can suppose that graphite and strip planes are the
surfaces of the constant potential and use for all their elements eqs.(17) and (19).

Thus, for the RPC surface divided into ”N” elements we have the set of ”2N” linear
equations with ”2N” unknowns. Each surface element contains two unknowns: σ is the
total charge density and σf is the free charge density. Induced charge density is defined,
hence, as σind = σ − σf .

When only volume current is allowed to flow, we use the same set of equations as
above, but eq.(18) applies with the zero right part which is equivalent to infinite value of
surface resistivity R (surface current doesn’t flow).

In case of electrostatic approach for the dielectric surface we use only eq.(17) with zero
right part. The current doesn’t flow and this surface has no free charges and σ = σind.
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For surfaces connected with ”infinite” sources of free charges (high–voltage source and the
ground) we use eq.(17) with nonzero right part and eq.(19). High–voltage source initiates
the potential difference with free charges and the ground provides the zero potential with
free charges as well. And in elecrostatic task with ”M” dielectric surface elements and
”N” conductor surface elements we have M + 2N equations and M + 2N unknowns.

In electrostatic and volume current approaches we get a set of unknowns directly from
the solution of the system of linear equations. But when we include surface currents the
procedure of solution is now the iteration procedure.

At the first step we solve the system of linear equations with zero right part of eq.(18).
Then we include iteration fit procedure: define numerical values of tangential strengths
derivatives dEt/dt for each dielectric surface element and repeat calculation with nonzero
right part of eq.(18), redefine new values of derivatives and so on up to fit procedure
convergence. When fluctuations of unknowns from iteration to iteration are neglegible in
comparison with the absolute values of unknowns we stop iteration procedure.

In Appendix it is shown, that strength derivative dEt/dt can be presented as a linear
combination of unknowns σ. In this case we recalculate not derivatives dEt/dt, but

tangential field directions
→
t , that practically don’t change from iteration to iteration and

fit procedure converges more quickly.
Sometimes (nonsymmetry field, complex device configuration and a lot of sharp cor-

ners) we have no possibility (because of the restricted computer memory) to divide the
surface into a sufficient amount of small elements to take into account correctly the field
behaviour near the corners. Experience has shown, that in this case the substitution of
derivative dEt/dt by free charge density with coefficient λ ·σf , where coefficient λ is about
0.05÷0.1, is very effective. This substitution allows one: a) to divide the surface into the
smaller number of big elements and the result is practically the same as for the correct
solution (dEt/dt with the large amount of small surface elements), b) the system of lin-
ear equations is solved directly without iteration procedure. Thus, we gain advantage in
computer memory and time without loss in solution accuracy.

2. Field and currents in RPC

The basic scheme of Resistive Plate Chamber (RPC) is shown in Fig.1. Insulation
film: volume resistivity ρ=5·1015 Ω·cm, surface resistivity R=5·1015 Ω/�, permittiv-
ity ε=3. Bakelite(phenolic polymer): ρ=1012 Ω·cm, R=1012 Ω/�, ε=4. Spacers and
frame(polyvinil chloride — PVC): ρ=5·1015 Ω·cm, R=5·1015 Ω/�, ε=3. Gas: ρ=1018

Ω·cm, ε=1.
The supplied voltage between graphite electrodes is 8 kV. The field has the down

direction. Both strip planes (each strip–line through 50 Ω resistance) and lower graphite
electrode are shunted on the ground. Thus, the voltage between the upper graphite
electrode and strip plane is 8 kV, but the lower graphite electrode and strip plane have
practically the same (ground) potential.
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Fig. 1. RPC scheme and graphite coating.

Graphite surface resistivity R=105 Ω/� is very small in comparison with bakelite resis-
tivity. Strip (copper foil) resistivity is also neglegible relative to insulation film resistivity.
We suppose that graphite and strip planes are the surfaces of constant potential and in
calculations for them we apply eqs.(17) and (19) which don’t contain resistivities.

The questions desirable to be resolved by calculating the electric field in RPC are:

a) qualitative understanding of field behaviour;
b) indicating of regions with high local field strength;
c) estimation of current leakage;
d) field and current dependence on graphite coating.
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For these purposes we simulated 4 variants of graphite coating (see Fig.1c). Variant
A — the whole plane is covered with graphite, variant B — the surface opposite to the
spacers and the frame is not covered with graphite, variant C — variant B plus 3 mm
zone around the spacers and along the frame is not covered with graphite, variant D —
variant B plus 6 mm zone around the spacers and along the frame is not covered.

Electric field calculation depends on the used approach. Average strengths in the
sensitive gas, bakelite, spacers and frame for variant A of graphite coating and for different
approaches are given in Table 1. Strengths are presented as (E/4kV/mm)×100%.

Table 1. Strengths for variant A of graphite coating.

approach Egas Ebak. Espac. Efram.
1 electrostatic 71.43 17.85 47.95 45.40
2 volume currents 100.00 0.00 99.99 98.94
3 volume + surface currents 99.84 0.09 99.54 98.47

These data show, that in electostatic solution only 71.43% of maximum possible
strength is realized in the sensitive gas. When the volume current is allowed to flow,
the supplied voltage is concentrated in high resistivity (relative to bakelite) materials:
gas, spacers, frame. Additional channel for surface currents in variant A of graphite
coating slightly redistributes strengths in materials.

The role of the surface currents is noticeable if we compare strengths in the spacers
and the frame, for example, in variant B of graphite coating (Table 2).

Table 2. Strengths for variant B of graphite coating.

approach Egas Ebak. Espac. Efram.
1 electrostatic 71.43 17.85 10.91 2.62
2 volume currents 100.00 0.00 98.52 77.22
3 volume + surface currents 99.84 0.09 69.37 33.81

In variants C and D of graphite coating the influence of the surface currents on strength
distribution in the spacers and the frame is more pronounced.

Figs.2÷10 show the results for the RPC scheme with strip planes.
The electric field behaviour in the spacer region for different variants of graphite

coating is shown in Fig.2. In variant A the field has mostly the vertical orientation. For
the broken coatings (variants B,C,D) in bakelite significant horizontal components arise
and the field from the graphite end is splitted into two fluxes. One flux is directed to the
upper strip plane, the other through the spacer in the down direction. Qualitatively the
same picture is observed in the frame region (Fig.3). Such field behaviour attests that
there can arise significant tangential field components near the spacer and frame corners.
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Fig. 2. Field behaviour in the spacer region.

Fig. 3. Field behaviour in the frame region.
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Fig.4 shows the vertical Ez dependence on X coordinate when we are moving from
the RPC centre to the peripheral zone and cross the spacers and the frame in the central
(Z=0) plane. The value of the field is normalized on 4 kV/mm. For variant A the field is
practically a plato (99% from 4 kV/mm) in the bulk of the RPC region. Variant B gives
the significant field falling in the spacers and the frame in comparison with variant A
(approximately by a factor of 2) and then (variants C and D) the falling becomes weaker.
From variant B to D in the gas near the spacers and the frame there arises and grows the
region with the field less than the plato.

When we are moving along the bakelite–gas boundary from the gas side (Fig.5) Ez field
behaviour qualitatively repeats Ez behaviour in the central (Z=0) plane, which testifies
to the weak Ez dependence on Z–coordinate in the sensitive gas.

Along the bakelite–gas boundary there arise significant tangential field components
near the corners (Fig.6). For variant A a very large tangential field (of the same order
as vertical) appears near the external frame corner. Variant B shows approximately 50%
(from plato) tangential field near the spacers and internal frame corners. And then —
variants C and D — the tangential field near the corners is falling.

The absolute value of the field along the bakelite–gas boundary at Z=0.099cm is shown
in Fig.7. Variant A gives the field near the external frame corner even above the plato —
about 5 kV/mm (extreme field in the frame corner is 8.4 kV/mm). High strength ∼
24 kV/mm is concentrated at the very end of the graphite coating. These local high
strengths in the region of plastic — atmosphere boundary don’t exclude (in the case of
variant A) a spark arising along the external lateral RPC surface. At a distance of 1mm
in the X–direction from the graphite end and the frame corner the field quickly falls down
to value ∼ 2 kV/mm both near the frame corner and the graphite end.

The integral form of eqs.(4) and (5) was applied for the surface and volume currents
calculation. Tables 3 and 4 give the detailed information about the volume and surface
currents flowing through the spacers, frame, insulation film and gas in the given RPC
scheme for two modifications: left–hand (relative to symbol ”/”) values are the currents
for the scheme with strip planes, right–hand ones — for the scheme without strips. For
the spacers the current is summerized over 16 spacers.

Table 3. Volume currents(nA) in RPC.

A B C D
spacers 0.22 / 0.22 0.15 / 0.20 0.08 / 0.20 0.05 / 0.19
frame 2.29 / 2.29 0.78 / 1.45 0.46 / 1.15 0.31 / 0.95
ins.film 66.63 / - 61.21 / - 59.92 / - 59.35 / -
gas 0.09 / 0.09 0.09 / 0.09 0.09 / 0.09 0.09 / 0.09

Table 4. Surface currents(nA) in RPC.

A B C D
spacers 0.66 / 0.66 0.55 / 0.64 0.34 / 0.63 0.23 / 0.61
frame 2.72 / 2.73 1.26 / 1.85 0.76 / 1.47 0.51 / 1.21
ins.film 3.19 / - 0.62 / - 0.33 / - 0.18 / -
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Fig. 4. Vertical Ez dependence on X coordinate at Y=5 cm, Z=0.

Fig. 5. Vertical Ez field dependence on X coordinate at Y=5 cm, Z=0.099 cm.
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Fig. 6. Tangential Ex field dependence on X coordinate at Y=5 cm, Z=0.099 cm.

Fig. 7. /E/ dependence on X coordinate at Y=5 cm, Z=0.099 cm.
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Graphically for the RPC scheme with strips the dependence of the current leakage
through the spacers and frame on graphite coating is shown in Fig.8. As an argument
we have used the width of zone that is not covered with graphite in the region of frame.
The value of surface current exceeds the volume current by ∼ 1/3 for variant A and by
a factor of ∼ 2 for B, C and D. The total current leakage through the spacers and the
frame falls with the extension of an uncovered region 5 times (from 5.9 nA down to 1.1
nA).

Different situation we have with the current flowing through the insulation film (see
Table 3 and 4). Here the total current has the weaker dependence on the graphite coating
and falls from 70 nA (variant A) down to 60 nA (variant D).

It is necessary to note that the current, flowing through the spacers and the frame in
the scheme without strip planes, falls from 5.9 nA (variant A) down to 3 nA (variant D)
that is by a factor of 2 against factor 5, when strips are present. Increase of the current is
due to the redistribution of electric field in the region of the spacers and the frame. The
flux in bakelite in Fig.2 and 3 (variants B,C,D) that was oriented to strip plane in the
upper direction, now in variant without strips is flowing in the lower direction and the
strength in the spacers and the frame increases.

For the current leakage through the insulation film to be compatible with the current
through spacers and frame (to reduce the total current leakage) it is necessary to increase
the insulation film resistivity and thickness.

Negative circumstance arises (Fig.9) with the variation of graphite coating — nonho-
mogeneous field region in the sensitive gas around the spacers and along the frame grows
from variant A to D. The square of gas region with nonhomogeneous field normalized over
the total RPC square is extending from 0.4% (variant B) up to 5% (variant D) and is
defined mostly by the nonhomogeneous gas region along the frame.

Graphite free charge density distribution for the upper electrode is shown in Fig.10.
Practically, this distribution is the plato excluding graphite ends — narrow strips around
the spacers and along the frame with higher charge concentration. The lower electrode
shunted on the ground has the surface charge density by an order of 4 lower.

The average free and induced surface charge densities (in µC/m2) for different planes
(boundaries) are given in Table 5. Coordinate Z=±3.2 mm is for the upper and lower
strip planes respectively, Z=±2.6 mm — for the graphite planes, Z=±1.0 mm — for the
upper and lower bakelite–gas boundaries.

Table 5. Average surface charge densities.

Z (mm) 3.2 2.6 1.0 –1.0 –2.6 –3.2
σfree (µC/m

2) –354.1 354.1 35.2 –35.2 0.3 –0.4
σind. (µC/m

2) 236.1 –236.1 0.1 –0.1 –0.2 0.3
σtot. (µC/m

2) –118.0 118.0 35.3 –35.3 0.1 –0.1
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Fig. 8. Current leakage through spacers and frame.

Fig. 9. Value of nonhomogeneous field region.
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The strength estimation between two planes with equal but opposite sign charges in
contrast to a purely electrostatic task, when we use formula E = σtot/ε, now that the
current is allowed to flow is somewhat different E = σfree/(ε2 − ε1(ρ1/ρ2)). Here ε2, ρ2
are the internal (relative to planes) medium permittivity and resistivity, ε1, ρ1 are for
the external medium and σfree is the surface free charge density on the boundary of
internal and external mediums. This estimation follows from eqs.(2) and (7) with the
zero right–hand part of eq.(7) — surface current doesn’t flow.

The choice of the optimal graphite coating was based on the following requirements:
maximum homogeneity of the field in the gas region (field not less than 90% of 4 kV/mm),
minimum current leakage through RPC materials, the absence of the zones with high local
strength. From this point of view for the RPC configuration including the strip planes,
when the value of the current has the weak dependence on the graphite coating, variant
A of graphite coating for the spacers and variant C for the frame provide the maximum
homogeneous field (nonhomogeneous region in the gas is no more than 3% from the RPC
square) and exclude the high field strength near the spacers and frame corners. For the
RPC configuration without strip planes variant C for the spacers and the frame allows
one, on the one hand, to have the homogeneous field in the gas (nonhomogeneity is also
about 3%) and, on the other hand, to decrease the current leakage relative to variant A
approximatelly two times.

Fig. 10. Graphite free charge density distribution.
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3. Comparison of measured and calculated currents

The capabilities of the proposed electric fields calculation procedure (SCM) were ver-
ified by the direct comparison between the measured and calculated currents for different
RPC compositions (Fig.11). The measured current is marked by black points, the solid
line represents the calculation by the SCM method and the broken line is the estimation
by the Ohm law I=U/Reff (Reff is the effective RPC scheme resistance). Surface and
volume resistances of RPC elements with the same Z–coordinate are included for the ef-
fective resistance calculation in parallel. The assumption for the Ohm law estimate was
made: each global Z–plane that separates one set of RPC elements from the other is the
equipotential plane.

Fig. 11. Measured and calculated currents in different RPCs.

Some of measurements (Fig.11a,b) were performed by us. The data for the high
resistivity RPC of another group [3] are shown in Fig.11c. The materials for the RPCs
were practically of the same order of resistivity.

In calculations we haven’t changed resistivity and permittivity with the voltage sup-
plied, therefore have the linear current–voltage dependence. In practice the material
characteristics (especially gas resistivity) vary at very high voltage. Thus, it is reasonable
to compare the measured and calculated currents only in the region of not so high voltage
– the region of linear current–voltage behaviour.
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Fig.11a shows the measured and calculated currents for the following RPC composi-
tion: bakelite plates 80×80 mm2, graphite 70×70 mm2, bakelite plates are separated by
the single 12 mm diameter spacer in the centre. The zone of 20 mm in diameter above
and lower the spacer has no graphite coating. Strip planes are absent.

Fig.11b presents the current comparison for the following RPC scheme: bakelite plates
140×140 mm2 are separated only by the frame 5 mm wide, graphite 100×100 mm2, strip
planes are absent.

Both these plots give satisfactory agreement of the measured and calculated currents
by the SCM method. The Ohm law prediction has large deviation from the measured
values in Fig.11b. This deviation points to the fact that in the given variant of the RPC
configuration and graphite coating the potential of noncovered (peripheral) surface is
significantly less than the potential of the surface with graphite coating.

Fig.11c shows the data for the high resistivity RPC with strip planes [3]. The insulation
film thickness here is 0.3 mm. The bakelite plate is 1000×2000×2 mm3. 200 disks of 12
mm in diameter are located at a distance of 100 mm from one another. The graphite
coating and frame width are not given in [3]. For definiteness in calculation we used a
frame 12 mm wide and variant B for graphite coating (the square against the spacers and
the frame is not covered with graphite).

This plot gives satisfactory agreement between the calculated and measured currents
in the region of linear current–voltage behaviour and shows that in the RPC with strip
planes, when the bulk of the current is defined by the volume current flowing through the
insulation film, the Ohm law is capable of the current predicting.

The current leakage through the spacers and the frame relative to the total current
leakage for high resistivity RPC [3] is about 2%.

Conclusion

1. The results given in Sections 2 and 3 show that the realized SCM method is capable
of predicting the electric fields and allows one to get both the qualitative understanding
of the field picture and the quantitative estimations of the strengths and currents. The
calculated currents are in agreement with the measured values in the region of linear
current–voltage behaviour for different RPC compositions.

2. The Ohm law is capable of the current predicting for RPC compositions with
graphite coating that is close to the unbroken one and can be used as the upper limit for
current leakage estimation.

3. In the RPC there exist regions — near spacers and frame corners and graphite
coating ends – with the high local strengths.

4. For the RPC scheme under consideration:
4.1. In configuration with strip planes the current leakage practically doesn’t de-

pend on the considered graphite coating variants and is mostly defined by the current
through the insulation film ∼ 70÷60 nA. The current through the spacers and the frame is
∼ 6÷1 nA.
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4.2. In configuration without strips the current leakage is significantly less and de-
creases by half from 6 nA (variant A) down to 3 nA (variant D).

4.3. In the RPC with strips for the current leakage through insulation film to be
compatible with the current leakage through spacers and frame it is desirable to increase
the resistance of insulation film at least by an order of magnitude.

4.4. The surface current through the spacers and the frame is systematically above
the volume current.

4.5. The requirement of the maximum field homogeneity in the sensitive gas, minimum
current leakage and the absence of the zones with the high local strength can be satisfied:
in case of the RPC configuration with strip planes as variant A of graphite coating for
the spacers and variant C for the frame; for the RPC configuration without strip planes
as variant C. Nonhomogeneous gas region for both the RPC configurations is about 3%
of the total RPC square.
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Appendix

Here we present the analytical expressions of the integrals for electric field calculation
from the surface charge density σ in the intrinsic frame of reference, where z–coordinate
is the normal to surface element.

If we direct radius vector
→
r from the given space point to the surface element ds=dx·dy,

the electric field in this point can be expressed as:

Ex = −σ · k
∫

s

x

r3
ds = σ · k · ln|y + r| = σ ·Gx, (20)

Ey = −σ · k
∫

s

y

r3
ds = σ · k · ln|x+ r| = σ ·Gy , (21)

Ez = −σ · k
∫

s

z

r3
ds = −σ · k · z|z|

x

|x|arctg
y|x|
|z|r = σ ·Gz, (22)
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U = σ · k
∫

s

ds

r
= σ · k · (x · ln|y + r|+ y · ln|x+ r| − |z| · x|x|arctg

y|x|
|z|r ) (23)

here k=1/4π.
If the space point is placed in the centre of the surface element, then the own integrals

(from square of the given element) for tangential field components (20) and (21) are equal
to zero.

Now about the calculation of tangential field derivative dEt/dt.

Let
→
t = {dx/dt, dy/dt, dz/dt} = {α, β, γ} denote the unit vector along Et direction,

then:

dEt

dt
= α(α

∂Ex

∂x
+ β

∂Ex

∂y
+ γ

∂Ex

∂z
) + β(α

∂Ey

∂x
+ β

∂Ey

∂y
+ γ

∂Ey

∂z
) +

+γ(α
∂Ez

∂x
+ β

∂Ez

∂y
+ γ

∂Ez

∂z
) (24)

and, as is easy to check:

∂Ex

∂y
=

∂Ey

∂x
,

∂Ex

∂z
=

∂Ez

∂x
,

∂Ey

∂z
=

∂Ez

∂y
. (25)

The analytical expressions for integrals from partial derivatives:

∫

s

∂Ex

∂x
ds = −σ · k xy

(x2 + z2)r
, (26)

∫

s

∂Ey

∂y
ds = −σ · k xy

(y2 + z2)r
, (27)

∫

s

∂Ez

∂z
ds = σ · k xy(z2 + r2)

(x2y2 + z2r2)r
, (28)

∫

s

∂Ex

∂y
ds = σ · k1

r
, (29)

∫

s

∂Ex

∂z
ds = σ · k z

(y + r)r
, (30)

∫

s

∂Ey
∂z

ds = σ · k z

(x+ r)r
(31)

and tangential field derivative dEt/dt for the given element can be presented as the linear
combination of surface charge densities σ, in which coefficients near unknowns σ are the
numerical values of integrals.
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