
����
STATE RESEARCH CENTER OF RUSSIA

INSTITUTE FOR HIGH ENERGY PHYSICS

IHEP 96-61

V.E. Rochev

LOOKING FOR REGULAR PERTURBATIONS

Talk given at the Workshop ”Quantum Chro-
modynamics: Collisions, Confinement, Chaos”,
American University of Paris, June 1996

Protvino 1996



UDK 539.1.01 m–24

Abstract

Rochev V.E. Looking for regular perturbations: IHEP Preprint 96-61. – Protvino, 1996. – p. 8,

refs.: 1.

A method of the solution of Schwinger-Dyson equation for the generating functional, pro-

posed recently in [1], is discussed for φ4d-theory and the Gross-Neveu model.
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Introduction

An approximate solution of differential equations is one of the basic methods for the
studies of mathematical physics problems.

The differential equation of the quantum field theory is the functional-differential
Schwinger-Dyson equation for the generating functional of Green functions (vacuum ex-
pectation values of T –product of quantized fields). The most closely explored method for
the approximate solution of the Schwinger-Dyson equation is an expansion over degrees
of the renormalized coupling constant, for which the leading approximation is a free field
solution and an interaction is considered as a perturbation.

Hitherto the coupling constant perturbation theory (CCPT) is the only universal com-
putational method of the quantum field theory. From the point of view of differential
equation theory the CCPT is attributed to the type of so-called singular perturbations.
This fact defines, to a considerable extent, both the poor convergence properties (the
CCPT series is an asymptotic expansion at best) and the limited nature of the field of
its applicability. A perturbation is named to be singular if it contains a higher derivative
term. Since interaction terms correspond to the higher functional derivative terms of the
Schwinger-Dyson equations, the CCPT is singular in this sense for any quantum field
model with an interaction.

It is well-known that the sum of any finite number of the CCPT series cannot describe
many important physical phenomena such as bound states, dynamical symmetry breaking
etc. Moreover, the perturbative solution (the sum of all expansion terms) for the singularly
perturbed system can have nothing in common with the true solution of a given problem.
(A classical example of such situation is the problem of the flowing of viscous liquid near
a boundary.)

These circumstances motivate a search for other schemes of approximate solution of
quantum field equations. In this report a method for the solution of Schwinger-Dyson
equations proposed recently in [1] is represented. In contrast to the CCPT this method
is based on regular perturbations of the Schwinger-Dyson equation for the generating
functional, since the term neglected in the leading approximation does not include higher

1



functional derivatives. This fact allows one to hope for better convergence properties of the
expansion in comparison with the CCPT. Still more essential feature is that even the first
terms of the expansion describe nonperturbative effects such as trivialization of φ44-theory
and spontaneous breaking of chiral invariance in the Gross-Neveu model. A systematic
character of the proposed expansion allows one to carry out the renormalization program
for ultraviolet divergences removing. (This problem often becomes a stumbling-block for
nonperturbative approaches based on the truncation of Schwinger-Dyson equations.)

1. General consideration

To elucidate the general idea of the method let us consider an elementary example,
namely, the problem of an approximate calculation of a solution y(x) of the ordinary
differential equation

λy′′ + (a2 − 2x)y′ − y = 0 (1)

near the point x = 0 with the initial condition (normalization condition) y(0) = 1.
This problem is really the problem of calculation of Green functions for a zero-

dimensional theory with the quadric interaction (see below). In this equation (1) plays
part of the Schwinger-Dyson equation for the ”generating functional” y of this toy model.
The perturbation theory over λ is singular in the above sense, since the leading approxi-
mation consists in the neglecting of the higher derivative term. The leading approximation
equation is

(a2 − 2x)y′0 − y0 = 0, (2)

and the iteration scheme of the perturbation theory over λ consists in step-to-step solu-
tions of the equations

(a2 − 2x)y′n − yn = −λy′′n−1. (3)

The series of the perturbation theory over λ is the divergent asymptotic expansion. An
important effect of the singularity of the perturbation theory over λ is a drastic contrac-
tion of the number of solutions under consideration. Really, eq. (1) is the second order
equation, and in addition to the normalization condition y(0) = 1 a subsidiary initial
condition is necessary for the definition of the solution (for example, the condition of
y′(0) = ∆ type). But leading approximation equation (2) is the first order equation, and
its solution is fixed uniquely by the normalization condition. The subsidiary condition is
fulfilled for the only partial value ∆ = ∆pert = y′0(0) + y

′
1(0) + · · ·.

An alternative for the perturbation theory over λ can be other iterative scheme that is
based on an approximation of eq. (1) near the point x = 0 by an equation with constant
coefficients. Take as a leading approximation the equation

λy′′0 + a
2y′0 − y0 = 0. (4)

The term −2xy′ will be considered as a perturbation. The iteration scheme will consist
in step-to step solutions of inhomogeneous equations with constant coefficients

λy′′n + a
2y′n − yn = 2xy′n−1. (5)
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As basic equation (1) the leading approximation equation (4) is the second order equation

and obeys two linearly independent solutions y
(1)
0 = eα1x and y

(2)
0 = eα2x, where α1,2 are

the roots of characteristic equation for eq. (4). Thus the problem to fulfil the second
initial condition is absent for any y′(0). The question about a small parameter for the
expansion defined by eqs. (4)-(5) arises. There is no manifest small parameter for this
expansion , but it is clear intuitively, that the expansion approximates well the exact
solution not only for small values of λ. To be more exact, the question about the small
parameter should be replaced by the question about a convergence of the expansion. But
the convergence of this iteration scheme can be easily proved. Notice, the iteration scheme
defined by eqs. (4)-(5) is equivalent to iterations of the second kind Volterra equation with
the continuous kernel

v(x) = y′0 +
∫ x
0
K(x, u)v(u)du,

where

v(x) = y′(x), K(x, u) =
2u

λ(α1 − α2)
(α1e

α1(x−u) − α2eα2(x−u)).

The convergence of the iteration of this equation is fulfilled by the textbook theorem.
So, this regular-perturbation expansion possesses two important advantages in com-

parison with the CCPT: a number of permitted solutions arises, and the expansion is
convergent in contrast to the asymptotic expansion over λ.

Let us go to the field theory. Consider the theory of a scalar field φ(x) in the Euclidean
space Ed with the action

S(φ) =
∫
dx{1

2
(∂µφ)

2 +
m2

2
φ2 + λφ4} (6)

and with the generating functional of Green functions (vacuum expectation values)

G(η) = c
∫
Dφ exp{−S + φηφ}. (7)

Here η(x, y) is a bilocal source. The nth derivative of G over η with the source being
switched off is the 2n-point Green function. The constant c is defined by the condition of
the normalization of the generating functional G(0) = 1.

The Schwinger-Dyson equation for the generating functional G(η) is a corollary from
the translational invariance of the functional integration measure: from the identity

0 =
∫
Dφ

δ

δφ(x)
(φ(y) exp{−S + φηφ}) (8)

it is easy to get taking into account the above definitions the Schwinger-Dyson equation
in functional derivatives over the source η

4λ
δ2G

δη(y, x)δη(x, x)
+ (m2 − ∂ 2) δG

δη(y, x)
− 2
∫
η(x, u)

δG

δη(y, u)
du− δ(x− y)G = 0. (9)
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At d = 0 (zero-dimensional theory, or ”single-mode approximation”) the functional deriva-
tives transform into usual ones, and eq. (9), after obvious redesignations, reduces to the
ordinary differential eq. (1). At d = 1 the model corresponds to the quantum-mechanical
anharmonic oscillator. At d ≥ 2 (field theory) for the cancellation of ultraviolet diver-
gences the appropriate counterterms should be included in the action. The Schwinger-
Dyson equation for the theory with counterterms has the form of eq. (9) with the substi-
tution

λ→ λ+ δλ, m2 → m2 + δm2, ∂2 → (1 + δz)∂2,

where δλ, δm2 and δz are correspondingly counterterms of coupling, mass and wave func-
tion renormalizations. Let apply to Schwinger-Dyson equation (9) the same idea about
the approximation by an equation with ”constant” (i.e., independent from η) coefficients.
As the leading approximation equation we will consider the equation

4λ
δ2G0

δηδη
+ (m2 − ∂ 2)δG0

δη
−G0 = 0, (10)

and the term 2η δG
δη

(that contains the source η manifestly) should be treated as a pertur-

bation. Since Green functions are the derivatives of G(η) in zero and only the behaviour
of G near η = 0 is essential. Such an approximation seems to be acceptable. The iteration
procedure for the generating functional

G = G0 +G1 + · · ·+Gn + · · ·

consists in the step-to-step solution of the equations

4λ
δ2Gn

δηδη
+ (m2 − ∂ 2)δGn

δη
−Gn = 2η

δGn−1

δη
. (11)

The solution of the leading approximation equation (10) is the functional

G0 = exp{
∫
dxdyη(y, x)�0 (x− y)}, (12)

where �0 is a solution of the ”characteristic” equation

4λ�0 (0)�0 (x− y) + (m2 − ∂ 2)�0 (x− y) = δ(x− y). (13)

At d ≥ 2 the quantity �0(0) must be considered as some regularization.
Equation (13) looks as self-consistency equation, but differs in the coefficient at λ:

in the self-consistency equation the coefficient is three times greater. In this sense equa-
tion (13) is more similar to the equation for the propagator in the leading approximation of
the 1/N -expansion. Certainly, the similarity is completely superficial, since the principle
of the construction of the approximation scheme is different.
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The solution of equation (13) is the free propagator �0 = (µ2 − ∂ 2)−1 with the
renormalized mass µ2 = m2 + 4λ �0 (0). The quantity �0(0) is defined from the self-
consistency condition. The propagator is the first derivative of G(η) over the source
η : � = δG

δη
|η=0. As can be easily seen, it is simply �0 for the leading approximation.

Notice, that all the higher Green functions of the leading approximation starting with
the four-point function G4 = δ2G

δη2
|η=0 do not possess the correct connected structure and,

correspondingly, the complete bose-symmetry. The correct connected structure and other
consequences of bose-symmetry (e.g., crossing etc.) will be restored in consecutive order
at following steps of the iteration scheme. Such a peculiarity of the iteration scheme is
originated by the bilocal source and is not something exceptional : as is well-known, the
similar phenomenon appears also in constructing the 1/N -expansion in the bilocal source
formalism.

In the general case, the solution of equation for the n-th step of the iteration scheme
is the functional Gn = Pn(η)G0, where Pn is a polynomial in η of a degree 2n. Therefore
at the n-th step the computation of Green functions reduces to solving a system of 2n
linear integral equations.

A solution of the first step equation is G1 = P1(η)G0 where P1 =
1
2
Fη2+�1η. Eq.(11)

at n = 1 gives us a system of equations for F and �1. Equations for F and �1 are simple
linear integral equations. The exact form of solutions of these equations see in [1]. At
λ→ 0 the first step propagator reproduces correctly the first term of the usual CCPT.

2. φ4
d-theory and Gross–Neveu model

At d = 1 the model with action (6) describes the quantum-mechanical anharmonic
oscillator. Ultraviolet divergences are absent, quantities of �0(0) type are finite and the
above formulae are applied directly for the computation of Green functions.

To calculate a ground state energy E one can use the well-known formula

dE

dλ
= G4(0, 0, 0, 0),

where G4 is the four-point (or two-particle) function. Integrating the formula with a
boundary condition E(λ = 0) = m/2 taken into account, one can calculate the ground
state energy for all values of the coupling (see [1]).

At λ → 0 the first step calculation reproduces the perturbation theory up to the
second order. At λ → ∞ : E = ε0λ

1/3 + O(λ−1/3), and ε0 = 0.756. The coefficient ε0
differs by 13% from the exact numerical one εexact0 = 0.668. At λ/m3 = 0.1 the result of
the calculation differs from the exact numerical one by 0.8% and at λ/m3 = 1 differs by
6.3%. Therefore, the first step calculations approximate the ground state energy for all
values of λ with the accuracy that varies smoothly from 0 (at λ→ 0) to 13% (at λ→∞).

At d ≥ 2 action (6) should be added by counterterms for the elimination of ultraviolet
divergences. There is no need to add a counterterm of wave function renormalization for
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the leading approximation, and the equation of the leading approximation will be

4(λ + δλ0)
δ2G0

δηδη
+ (δm20 +m

2 − ∂ 2)δG0
δη
−G0 = 0. (14)

At n ≥ 1 the counterterms δλn, δm
2
n and δzn should be considered as perturbations.

Therefore, the corresponding terms should be added to the r.h.s. of equation (11). So,
the first step equation will be

4(λ + δλ0)
δ2G1

δηδη
+ (δm20 +m

2 − ∂ 2)δG1
δη
−G1 =

= 2η
δG0

δη
− δm21

δG0

δη
+ δz1∂

2δG0

δη
− 4δλ1

δ2G0

δηδη
. (15)

For the super-renormalizable theory (d = 2 and d = 3) it is sufficient to add coun-
terterms of mass renormalization and wave function renormalization, i.e. δλn = 0 for all
n. The normalization condition on the physical renormalized mass µ2 gives us a coun-
terterm of the mass renormalization in the leading approximation. This counterterm
diverges logarithmically at d = 2 and linearly at d = 3. The counterterm δz1 is finite
at d = 2, 3. The counterterm δm21 diverges as that of the leading approximation does,
namely, logarithmically at d = 2 and linearly at d = 3.

At d = 4 besides the renormalizations of the mass and the wave function a coupling
renormalization is necessary. Due to the presence of the counterterm δλ the normalization
condition on the renormalized mass µ2 for the leading approximation becomes the con-
nection between counterterms δm20 and δλ0. Counterterm δλ0 (and, consequently, δm

2
0)

will be fixed at the following step of the iteration scheme.
A solution of the equation for the four-point function F at d = 4 diverges logarith-

mically, and a renormalization of the coupling is necessary. The equation for F contains
the counterterm δλ0 only. Therefore by defining a renormalized coupling λr as a value
of the amplitude in a normalization point we obtain the counterterm of the coupling
renormalization δλ0 and the renormalized amplitude. Taking the renormalization of the
two-particle amplitude in such a manner, one can solve the equation for �1 and renor-
malize the mass operator in correspondence with the general principle of normalization
on the physical mass. But in four-dimensional case one gets an essential obstacle. At the
regularization removing, δλ0 → −λ, and the coefficient λ + δλ0 in the leading approxi-
mation equation (14) vanishes. The same is true for all the subsequent iterations. The
theory is trivialized. One can object that an expression

(λ + δλ0) ·
δ2G

δη(y, x)δη(x, x)
(16)

is really an indefinite quantity of 0 · ∞ type, and the renormalization is, in the essence,
a definition of the quantity. But it does not save a situation in this case since the renor-
malized amplitude possesses a nonphysical singularity in a deep-euclidean region (it is a
well-known Landau pole). The unique noncontradictory possibility is a choice λr → 0 at
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the regularization removed. This is the trivialization of the theory again. This trivial-
ization appears almost inevitably in an investigation of φ44-theory beyond the CCPT and
is a practically rigorous result. Notice, that contrary to the CCPT which is absolutely
nonsensitive to the triviality of the theory, the method proposed leads to the trivialization
already at the first step.

As is well-known the best remedy for the triviality is an asymptotic freedom. In the
asymptotically free theory these nonphysical singularities do not appear. As an example
let us consider the Gross–Neveu (GN) model with the proposed method. The GN model
is the model of spinor field ψ(x) in the two-dimensional Minkovski space M2 with the
action

S(ψ) =
∫
d2x(ψ̄ji∂̂ψj +

λ

2N
(ψ̄jψj)

2). (17)

Here j = 1, . . . , N is a flavor index.
GN model (17) is asymptotically free and possesses a self-consistent ultraviolet be-

haviour. In addition, the model obeys the discrete chiral symmetry and is an excellent
theoretical laboratory for the study of the phenomenon of spontaneous symmetry break-
ing.

The scheme considered above is based essentially on the bilocality of the source. Since
the bilocal source is connected with 2n-point functions only, the method cannot be applied
in its present form to a scalar theory with spontaneous symmetry breaking, when
< 0 | φ | 0 > �= 0. For a description of the spontaneous symmetry breaking in the
scalar theory it is necessary to modify the scheme by switching on a single source (see
[1]). However, to investigate the spontaneous breaking of the chiral symmetry in a spinor
theory with four-fermion interaction this scheme is quite applicable since the bilocal source
corresponds to a necessary type of fluctuations in the case.

The Schwinger-Dyson equation for the generating functional G of the GN model has
the form 1

(λ+ δλ)

N

δ

δη
tr
δG

δη
+ (1 + δz)i∂̂

δG

δη
− η δG

δη
+G = 0. (18)

Here η ≡ ηjj′αβ(x, y) is a bilocal fermion source with two spinor indices α, β and two flavor
indices j, j′; δλ and δz are counterterms of the renormalization of the coupling and wave
function. As above, let us approximate equation (18) by an equation with ”constant”
coefficients, i.e. by the equation without next-to-last term η δG

δη
, which will be considered

as a perturbation.
The leading approximation equation has the solution

G0 = exp tr(ηS0), (19)

where the leading approximation propagator S0 is the free propagator S
jj′

0 = δjj
′
(µ− p̂)−1

with the renormalized mass

µ = (λ+ δλ0)
1

iN
trS0(0). (20)

1The results below have been obtained in collaboration with P.A. Saponov.
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The expression in r.h.s. of eq. (20) as that of eq. (16) is an indefinite quantity of
0 · ∞ type. To definite this quantity the renormalization of the two-particle amplitude is
necessary. The two-particle amplitude is defined at the solution of the first step equations.
These equations as those of the scalar theory are simple linear integral equations. The
renormalization of the first step amplitude defines a behaviour of the counterterm δλ0.
At the regularization removing δλ0 → −λ as in the scalar case, nevertheless nonphysical
singularities do not appear. As a result, the r.h.s. of eq. (20) has a finite limit at the
regularization removed, and eq. (20) becomes an equation for the dynamical fermion
mass. This equation has the trivial solution µ = 0 corresponding to the infrared-unstable
symmetrical phase, and a nontrivial solution corresponding to the dynamical breaking of
the chiral symmetry of the GN model. The nontrivial solution at small λ is

µ ∼ exp(−π
λ
), (21)

which exactly corresponds to the result of 1/N -expansion.
Thus the presented method of approximate solution of the Schwinger-Dyson equations

describes successfully the nonperturbative effects in the models considered. The method
is quite universal in the following sense: the general idea of the method about the approx-
imation of the Schwinger-Dyson equation by an exactly soluble equation with ”constant”
coefficients can be applied to any quantum field model with any types of sources. Of
course concrete calculations only can give an answer if the method is able to provide with
nontrivial nonperturbative information for more complicated models. However, the very
first results of its application are quite optimistic ones.

This work and my participation in the AUP-96 Workshop are supported by RFBR,
grant No. 95-02-03704.
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