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It is shown that the scalar product in the physical subspace of a relativistic quantum me-
chanical system could be constructed making use of the Faddeev-Popov procedure with respect
to gauge group of time reparametrization.
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The quantization procedure of mechanical system with the first class constraints ac-
cording to Dirac theory [1] could be performed in two ways. The former which is more
close to the conventional one consists in adding to the set of the first class constraints
their gauge fixing conditions and introducing independent coordinates on the reduced
phase space. After that the quantization postulate is introduced in terms of the reduced
symplectic structure or in other words for Dirac brackets. This way works fairly well for
e.g. gauge field theories where its shortcomings are unessential. The latter originates
from the fact that the independent variables on the reduced phase space often have very
complicated transformation law with respect to the Lorentz group and one has to pay
special attention to the ordering problem and definition of quantum Poincare generators.

Another way of quantization of gauge invariant system, as was also pointed out by
Dirac, consists in quantization of coordinates of extended phase space and constructing the
representation of fundamental commutation relations in extended space of states. The
physical subspace of this extended space is formed by the vectors, invariant under the
action of gauge group whose generators are quantum constraints. In this case we do not
face the necessity to introduce gauge fixing conditions for operators. But the quantization
procedure is not completed at this stage. The matter is that the scalar product that exists
in the extended space of states couldn’t be reduced to physical subspace because the
latter contains only vectors invariant with respect to gauge group and integration in this
scalar product automatically will also include integration over infinite volume of this gauge
group, making each scalar product of physical vectors infinite. This situation is familiar to
us from the theory of gauge fields and the correct answer consists in eliminating integration
over gauge group with the help of Faddeev-Popov procedure [2]. The definition of scalar
product in the physical subspace along this way was suggested in [3] for the case when the
gauge group generators are linear functions of momenta. For more complicated situations,
e.g. when the gauge group generators are quadratic in momenta, the corresponding
Faddeev-Popov determinant does not commute with gauge fixing δ-function and we need
specify some ordering of operators which define the correct scalar product for physical
vectors.

The situation when the gauge group generators are a quadratic function of the mo-
menta is common for every relativistic particle and extended relativistic object if we
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formulate the theory in manifestly covariant way. This quadratic constraint — the mass
shell condition is the generator of time reparametrization. We consider first the example
of point relativistic particle, the simplest object that is described by the minimal set of
variables : particle’s coordinate x(τ ) and its velocity ẋ(τ ). Here the τ is an arbitrary
parameter that numerates the points on the world line. The action of the point particle
should be invariant with respect to Lorentz transformation:

δxµ = ωµν x
ν,

ωµν = −ωνµ (1)

and also it should depend only on the world line of the particle but not on its parameter-
ization. These requirements fix the action up to a numerical factor m - the mass of the
particle:

A = m
∫
dτ
√
ẋ2(τ ). (2)

The canonical momentum pµ, conjugated to the coordinate xµ is given by:

pµ =
δA

δẋµ(τ )
= m

ẋmu(τ )√
ẋ2(τ )

. (3)

Due to degeneracy of the Lagrangian we can’t express all components of velocity ẋµ via
pµ, in terms of canonical variables i.e. the components of momentum are not independent,
but are subject to constraint:

φ(τ ) = p2 −m2 = 0. (4)

The function φ(τ ) is called the primary constraint. The canonical hamiltonianHc vanishes
because the lagrangian is the homogeneous function of velocities of the first degree, which,
in turn, is the consequence of reparametrization invariance of the action:

Hc = pµx
µ − L = 0. (5)

According to general theory [1], the role of the generator of evolution is played by con-
straint (4)

H = a(τ )φ(τ ), (6)

where the Lagrange multiplier a(τ ) is a smooth, positive function.
Quantization of this system is straightforward. The canonical Poisson brackets

{xµ, pν} = gµν (7)

become commutation relations for operators xµ and pµ

[xµ, pν ] = −igµν , (8)

which act in the extended space of states H. The physical subspace Hph ⊂ H consists of
the vectors, satisfying the quantum constraint condition:
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φΨph = (p2 −m2)Ψph = 0, (9)

which is apparently the Klein-Gordon equation.
It is a general property of the manifestly covariant formulation of quantum theory of

any relativistic mechanical system that the set of the first class constraints included the
mass shell condition in quantum theory defines a physical subspace in an extended space
of state, where we construct the representation of fundamental commutation relations.
This extended space of states is yet a linear vector space. Now we have to endow it with
some scalar product, with respect to which the operators, that represent the fundamental
variables will be formally hermitian. Apparently, for our case this scalar product in x–
representation is given by

< Ψ1Ψ2 >=
∫
d4xΨ∗1(x)Ψ2(x). (10)

With respect to this scalar product the operators xµ and pµ are self-adjoint in the ex-
tended Hilbert space H. Further we must consider the reduction of this scalar product
for the vectors belonging to the physical subspace. This procedure sheds light on the
origin of the so called ” Klein-Gordon scalar product” and that will be discussed now is
very important for each quantum relativistic system. The matter is that scalar product
(10) in the extended Hilbert space does not exist for the vectors which belong to the
physical subspace Hph. The reason for that is the invariance of physical vectors under the
gauge transformation, generated by φ. In other words, in integral (10) the integration is
performed over the whole x– space, including automatically the orbits of the gauge group,
that has an infinite volume. Indeed, the general solution of (9) has the following form:

Ψph(x) =
∫
d4peipxΨph(p) =

∫
d4peipxδ(p2 −m2)ψ(p) (11)

Note that the factor δ(p2 −m2) in the p-representation of state Ψph(p) arises due to the
invariance of the physical states under transformations, generated by φ. Taking two states
from the physical subspace and substituting it into the scalar product (10) we shall get

< Ψ1ph,Ψ2ph >= (2π)4
∫
dpΨ∗1ph(p)Ψ2ph(p), (12)

so in the r.h.s. the integrand contains two factors δ(p2 − m2), which make the scalar
product infinite. It is exactly the same situation which arises in the functional integral
approach in the gauge fields theory and the cure for this decease is the Faddeev-Popov
procedure [2] , which reduces the integration over the whole region to the integration over
the equivalence classes with respect to the action of the gauge group. Intuitively it is
clear that this process should cancel one of the factor δ(p2 −m2) out of the integrand.
That is very simple in the p— representation, but we must derive the general formula
for scalar product, independent of the representation of the wave functions. To do that
according to Faddeev-Popov we must insert into the integral noninvariant operator which
will remove the integration over the infinite gauge group orbit, the operator

A = ∆δ(nx− t), (13)
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where nµ is c-number vector (though we can consider also the case when nµ depends on
the dynamical variable e.g. pµ), n2 ≥ 0. The reader, familiar with the gauge field theory
recognized in (13) the δ function of the gauge fixing condition and the Faddeev-Popov
determinant ∆. Usually the latter is determined by the equation

∆

∞∫

−∞
dαδ(nxα − t) = 1, (14)

where the xαµ is the gauge transformation of operator xµ:

xαµ = e−iαφ/2xµeiαφ/2 = xµ + αpµ. (15)

This definition as well as formula (14) does work in the case when the constraint, that
generates the gauge transformation is a linear function of the momenta. In our case φ
is the quadratic function of the momenta and this naive prescription is not valid. The
reason for that is noncommutativity of xµ and xαµ. The naive answer for the Faddeev-
Popov determinant which one can obtain omitting noncommutativity gives ∆ = np, but
this determinant does not commute with δ(nx− t), the situation was not encountered in
the gauge fields theory and we have to solve the ordering problem. The correct answer
we obtain only with symmetric ordering:

1

2

[
∆

∞∫

−∞
dαδ(nxα − t) +

∞∫

−∞
dαδ(nxα − t)∆

]
= 1, (16)

with ∆ = np. So the correct form of noninvariant operator (13) is the following:

A =
1

2

[
npδ(nx− t) + δ(nx− t)np

]
. (17)

One can get convinced in that through the following simple consideration. The δ–
function of an operator O is defined by the Fourier representation:

δ(O) =
1

2π

∞∫

−∞
dyeiyO, (18)

so the gauge transformed A–operator is given by

Aα =
1

2

[
npδ(nx− t+ αnp) + δ(nx− t+ αnp)np

]
=

=
1

2π

∞∫

−∞
dy

1

2

[
npeiy(nx−t+αnp) + eiy(nx−t+αnp)np

]
. (19)

Using commutation relations (11) one can prove that

eiy(nx−t+αnp) = eiy(nx−t)eiα(ynp−
1
2
y2n2), (20)
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and
npeiy(nx−t+αnp) = eiy(nx−t+αnp)(np− yn2). (21)

Substitution of (20) and (21) into (19) gives

Aα =
1

2π

∞∫

−∞
dyeiy(nx−t)

(
np− 1

2
yn2
)
eiα(ynp−

1
2
y2n2). (22)

Now we can fulfill the integration of Aα over α:

∞∫

−∞
dαAα =

∞∫

−∞
dyeiy(nx−t)(np− 1

2
yn2)δ

(
y(np− 1

2
yn2)

)
=

=

∞∫

−∞
dyeiy(nx−t)δ(y) = 1 (23)

The role of the symmetric ordering of operators in (17) now becomes evident — it leads
to cancellation of the second zero of argument of δ– function in (26).

Inserting (17) into scalar product (10) we finally get the scalar product in the physical
subspace, valid in any representation:

(
Ψ1phΨ2ph

)
≡< Ψ1phAΨ2ph > . (24)

In particular, choosing nµ = (1,�0) we obtain the known ” Klein-Gordon scalar product”

(
Ψ1phΨ2ph

)
= −i

∫
d3xΨ1ph(x)

↔
∂0 Ψ2ph(x)|x0=t. (25)

Note, that the operator
↔
∂0 in this scalar product is the heir of the Faddeev-Popov de-

terminant. Now we can check that in p-representation this A operator does cancel one
δ(p2 −m2) in integral (11).

By explicit calculations one can prove that scalar product (24) does not depend on
the gauge fixing parameter t:

d

dt

(
Ψ1phΨ2ph

)
=< Ψ1ph

d

dt
AΨ2ph >= 0. (26)

Apparently not every operator may be defined on the Hph. In addition to common
concepts of the operator theory on the Hilbert space (or rigged Hilbert space) we must
differentiate the operators which act in the extended space H and which leave Hph invari-
ant. In the case of the point particle, the operator pµ commutes with quantum constraint
φ and therefore transforms the physical vector into another physical vector:

φ
(
pµΨph

)
= pµφΨph = 0. (27)
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We shall call the operators, that leave the physical subspaces invariant the physical opera-
tors. Another example of the physical operators provides the Lorentz angular momentum
Mµν :

Mµν = xµpν − xνpµ. (28)

The important and nontrivial property of the physical operators is that in spite of the
fact that they do not commute with operator A, that defines the scalar product in the
physical subspace, the following property is valid:

(
Ψ1phFΨ2ph

)
=
(
F+Ψ1phΨ2ph

)
, (29)

where F and F+ denote a physical operator and its hermitean conjugation. The reason for
this property is that the commutator of any physical operator with A proportional to d

dt
A

and due to (26) this operator has a vanishing matrix element on the physical subspace.
A more complicated situation arises with the operator xµ. Apparently the physical

vectors belong to the domain of this operator, but acting on it, xµ transforms it into
nonphysical ones:

φ
(
xµΨph

)
= xµφΨph + [φ, xµ]Ψph = 2ipµΨph 
= 0, (30)

therefore the operator xµ is not physical itself. Here originate the difficulties with the no-
tion of localizability of quantum relativistic particle. Indeed, if we have not the hermitian
operator on the physical subspace, whose eigenvalues are xµ or xi, we can’t speak about
pure states of this operator. The extensive and very profound discussion of this subject
was presented by Pryce [4] and Wigner and Newton [5].

The same procedure holds true also for the Dirac particle, whose classical theory
was suggested in the paper of Berezin and Marinov [6]. We will not present here the
whole discussion and details of this paper. For our purposes we need only the canonical
formalism of the theory. The phase space of the Dirac particle contains, apart from usual
canonical coordinate and momentum xµ,, pµ also the Grassmannian variables ξµ,, ξ5 with
Poisson brackets: {

ξµ, ξν
}D

= igµν .
{
ξ5, ξ5

}
= −i. (31)

The set of first class constraints on canonical variables are the following:

L = p2 −m2, λ = pξ −mξ5. (32)

These constraints form the simplest nontrivial graded algebra with respect to Poisson
brackets (7), (31) and are the generators of gauge transformation with usual bosonic pa-
rameter and with the Grassmannian one. Quantization of the Dirac particle consists in
postulating commutation relations for bosonic and anticommutation relations for Grass-
mannian variables:

[xµ, pν ] = −igµν,
[ξµ, ξν ]+ = gµν ,

[ξ5, ξ5]+ = −1, (33)
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and again the constraints convert into conditions on the physical states
(
p2 −m2

)
Ψph = 0,(

pξ −mξ5
)

Ψph = 0. (34)

To satisfy algebra (33) we set

ξµ =
1√
2
γ5γµ,

ξ5 =
1√
2
γ5, (35)

then the last equation takes the form of Dirac equation
(
pµγµ −m

)
Ψph = 0 (36)

As in the case of the point scalar particle, we shall define first the Lorentz invariant
scalar product in the extended Hilbert space H:

< Ψ1Ψ2 >=
∫
d4xΨ̄1(x)Ψ2(x), (37)

where Ψ̄1(x) is the usual Dirac-conjugated spinor:

Ψ̄1(x) = Ψ+1 (x)γ
0. (38)

With respect to this scalar product all our variables, xµ, pµ and γ’s are hermitean or
anti-hermitean. As in the case of the scalar point particle, this scalar product does not
exist for the states belonging to the physical subspace Hph, and again the divergence of
the scalar product of physical states arises due to their invariance under gauge group
transformations. The gauge group of spin particle corresponds to the algebra:

λ2 = L, [λ, L] = 0 (39)

where λ and L were defined in (32). Apart from the usual reparametrization it contains
transformations with the Grassmannian parameter generated by an odd constraint λ and
we can expect that the divergence of scalar product in the case of spin particle will be
”stronger” than in the case of spinless one. But the matter is that the integration over
Grassmannian variable never diverges [7], therefore the divergence of the scalar product of
physical vectors will be produced only by integration over the subgroup, generated by L,
i.e. is the same as in spinless case and may be eliminated with the same Faddeev-Popov
operator A:

(
Ψ1ph,Ψ2ph

)
≡ < Ψ1ph, AΨ2ph >=

=
∫
d4xΨ̄1ph(x)

1

2

[
npδ(nx− t) + δ(nx− t)np

]
Ψ2ph. (40)

7



This formula seems to be different from the usual scalar product for Dirac particle [8], but
making use of Dirac equation (36) we can express the action of operator np on physical
vectors by the l.h.s. of the following equation:

pnΨph = mγnΨph − γnp⊥γΨph, pµ⊥ = pµ − nµpn/n2. (41)

Substituting (41) into (40) we arrive at

(
Ψ1ph,Ψ2ph

)
= 2m

∫
d4xδ(xn− t)Ψ̄1ph(x)nγΨ2ph(x)−

−
∫
d4xi

∂

∂xµ⊥

[
Ψ̄1ph(x)γnγ

µΨ2ph(x)δ(xn− t)
]
. (42)

The last term in (42) vanishes as the integral of the total derivative and we finally obtain:

(
Ψ1ph,Ψ2ph

)
= 2m

∫
d3x⊥Ψ̄1ph(x)nγΨ2ph(x), (43)

which for nµ = (1,�0) coincides with thee familiar scalar product for the Dirac particle:

(
Ψ1ph,Ψ2ph

)
= 2m

∫
d3xΨ+1ph(x)Ψ2ph(x), (44)

A more complicated relativistic mechanical system e.g. a relativistic oscillator contains
apart from the mass shell constraint also a constraint linear in canonical momenta which
involves no difficulties [3]. The same situation occurs in any system of Komar-Todorov
type [9].The present approach is not applicable to the case of covariant quantization of
the relativistic string because in this case the quantum constraints do not form the first
class algebra due to anomaly [10]. It will be interesting to apply the formalism in the case
of canonical gravity where one of constrains is also quadratic in canonical momenta and,
besides, is a nonlinear function of coordinates.

The work was supported in part by Russian Foundation of Fundamental Research
grant No95-01-00647a.
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