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Abstract

Pyatov P.N., Saponov P.A. Newton Relations for Guantum Matrix Algebras of RTT -Type:
IHEP Preprint 96-76. – Protvino, 1996. – p. 5, refs.: 8.

A quantum version of Newton relations is found for the matrix T of the generators of the
RTT -algebra.
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The two kinds of quantum matrix algebras are known in the quantum group theory.
One of them is the Reflection Equation Algebra (REA) (see [1] and references therein).
The other is the algebra defined by the famous RTT -relations (1) (see [2]), and we will
refer to it as the RTT -algebra hereafter. In recent papers [3] there were considered the
sets {sk(L)} and {σk(L)} of elements of the REA where L denotes the matrix of the
REA generators. In the classical limit (R = permutation matrix) the sets {sk} and {σk}
turn, respectively, into the so-called power sums and basic symmetric polynomials in the
eigenvalues λi of matrix L. Found in [3] was a system of quantum Newton relations
among the elements of the sets {sk(L)} and {σk(L)} and a polynomial identity for the
quantum matrix L. These generalize, respectively, the iterative Newton relations and the
Cayley-Hamilton theorem of classical matrix analysis [8]. In the present paper we give a
definition of the two sets {sk(T )} and {σk(T )} and find the generalized Newton relations
among their elements for the case of quantum matrix algebra of the RTT -type.

According to [2] the RTT -algebra is generated by N2 operators Ti
j obeying the com-

mutation relations
R12T1T2 = T1T2R12 , (1)

where the compact matrix notations of [2] are employed. The nondegenerate N2 × N2
matrix R is a solution of the Yang-Baxter equation

R12R23R12 = R23R12R23 , (2)

and besides this usual requirement we will assume it to be the closed Hecke symmetry of
finite rank p [4]. It means that in addition to (2) R satisfies the Hecke condition

R2 = I+ λR λ = q − q−1 , (3)

while the closure condition requires the matrix (R12)
t1 be invertible. The meaning of the

finite rank condition will be explained below.
As was shown in [4] with such a choice of the matrix R algebra (1) can be given the

structure of the Hopf algebra and one can define q-analogues of Young (anti)symmetrizing
projectors and quantum Levi-Civita tensors associated with R. These projectors will be
a usefull technical tool for us and we will write down part of their properties relevant
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for our consideration. For the proofs and more detailed treatment the reader is referred
to [4].

The Young q-antisymmetrizer of the rank k is defined by the inductive relations:

P (1) = I

P (k) =
1

kq

(
qk−1I− qk−2Rk−1 + . . .+ (−1)k−1R1 · . . . ·Rk−1

)
P (k−1) . (4)

Here the abbreviated notations for the matrices Ri ≡ Ri,i+1 (acting nontrivially in the
tensor product of i-th and (i + 1)-th matrix spaces) are used, and the symbol kq stands
for the q-number kq ≡ (qk − q−k)/λ. Note, that definition (4) is correct provided that
kq 	= 0, k ≥ 1, therefore q is not a root of unity. Later on we always assume that this is
the case.

The Hecke symmetry R is of finite rank p if P (p) 	= 0 and P (p+1) = 0. Together with
the closure condition it allows one to prove that the projector P (p) is one dimensional and
therefore can be presented in the form

P (p)
j1...jp

i1...ip
= u|i1...ip〉v

〈j1...jp| ≡ u|12...p〉v〈12...p| . (5)

Tensors u| 〉 and v〈 | are the left and right q-antisymmetric Levi-Chivita tensors and their
defining property reads as follows

Riu|12...p〉 = v〈12...p|Ri = −1

q
Ri ∀ i ≤ p− 1 . (6)

The full contraction of these tensors is normalised to be unity

∑
{i}
v〈i1...ip|u|i1...ip〉 ≡ v〈12...p|u|12...p〉 = 1 .

We will also need the relation connecting projectors of different ranks

P (k) = qp(p−k)
(
p

k

)
q

Trq(k+1...p)P
(p) ,

(
p

k

)
q

≡ pq!

kq! (p− k)q! . (7)

The symbol Trq(...) stands for the quantum trace operation [5,2] over several matrix spaces
and q-factorials are defined as 0q! = 1q ! = 1, kq! = kq(k − 1)q!. The definition of the
quantum trace in our case reads:

TrqX = Tr C ·X C def= Tr(1)
(
(Rt112)

−1)t1P12
)
, (8)

where X is an arbitrary matrix, and C is correctly defined provided that R matrix is
closed. Important properties of C consist in the following:

R12C1C2 = C1C2R12 (9)

v〈12...p|C1 . . . Cp = q−p2v〈12...p| , C1 . . .Cpu|12...p〉 = q−p2u|12...p〉 . (10)
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Let us introduce now the two commuting subsets of algebra (1). The first of them was
defined in [6] for an arbitrary solution R of the Yang-Baxter equation (2)

sk = Tr(1...k) (Rk−1 . . . R1T1 . . . Tk) .

In the classical limit (R = permutation matrix), where the matrix T becomes the usual
one with commuting entries, the generators sk turn into the power sums of eigenvalues
{τi} of the matrix T :

sk → Tr T k ≡
N∑
i=1

(τi)
k .

For our consideration it is more convenient to use a slightly modified definition of sk.
This modification is based on the existence of one parameter family of automorphisms of
algebra (1)

T → CαT , (11)

which, in turn, is a direct consequence of (9). Now, fixing α = 1 we get another possible
set of sk(T ) which will be more appropriate for our purposes

sk(T ) = Trq(1...k) (Rk−1 . . .R1T1 . . . Tk) . (12)

With the help of (1) (2) and (9) one can prove by direct calculation that sk(T ) from (12)
commute with each other.

Define now another set of commuting elements

σk(T ) = q
k(1−p)

(
p

k

)
q

v〈12...p|T1 . . . Tku|12...p〉 , (13)

where the normalizing factor is taken for the future convenience. In the classical limit
the elements σk(T ) turn into the basic symmetric sums of the eigenvalues τi of matrix
T . One can prove the commutativity of σk by straightforward calculations too. However
it is more convenient to establish a q-analogue of the Newton relations among {sk} and
{σk} first. These relations allow us to express the set {σk} in terms of {sk}. Then the
commutativity of {sk} will directly lead to that of {σk}.

First of all let transform σk in (13). Taking into account equations (7), (10) and (5)
one gets:

σk ≡ α(k)v〈12...p|T1 . . . Tku|12...p〉 = α(k)qp2v〈12...p|(CT )1 . . . (CT )kCk+1 . . .Cpu|12...p〉
= α(k)qp

2

Trq(1...p)(P
(p)T1 . . . Tk) = α(k)q

p2

(
p

k

)−1
q

q−p(p−k)Trq(1...k)(P
(k)T1 . . . Tk)

= qkTrq(1...k)(P
(k)T1 . . . Tk). (14)

Here α(k) stands for the numerical factor in (13). Now with the help of (14) and the
definition of P (k) we can prove the following:
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Proposition. The generators sk and σk defined in (12) and (13) are connected
by the generalized Newton relations of the form:
nq

qn
σn − σn−1s1 + σn−2s2 − . . .+ (−1)n−1σ1sn−1 + (−1)nsn = 0 n = 1, 2, . . . p . (15)

Proof. From the definition of q-antisymmetryzer P (k+1) (4) one can get the follow-
ing equality

P (k) =
(k + 1)q
qk

P (k+1) +
1

qk
(qk−1Rk − qk−2Rk−1Rk + . . .+ (−1)k−1R1 . . .Rk)P (k) .

Using this formula we transform identically a typical term of (15):

σksn−k = qkTrq(1...n)(P
(k)T1 . . . TkRn−1 . . . Rk+1Tk+1 . . . Tn)

= (k + 1)qTrq(1... n)(P
(k+1)Rn−1 . . . Rk+1T1 . . . Tn)

+
k−1∑
i=0

qk−1−2i Trq(1... n)(P
(k)Rn−1 . . . RkT1 . . . Tn)

= (k + 1)qTrq(1... n)(P
(k+1)Rn−1 . . . Rk+1 T1 . . . Tn)

+ kqTrq(1... n)(P
(k)Rn−1 . . . Rk T1 . . . Tn) (16)

In passing to the second equality we used the cyclic property of the quantum trace, formula
(1) and the following relations on the q-antisymmetrizers P (k) [4]:

P (k)Ri = −1

q
P (k) for 1 ≤ i ≤ k − 1 .

Eventually one should note that the boundary terms of above relations (16) read:

σn−1s1 =
nq

qn
σn + (n− 1)qTrq(1... n)(P

(n−1)Rn−1T1 . . . Tn)

σ1sn−1 = 2qTrq(1...n)(P
(2)Rn−1 . . . R2T1 . . . Tn) + sn . (17)

Now assertion (15) is a simple consequence of equations (16) and (17).

The quantum Newton relations (15) obtained here for the case of the RTT -algebra (1)
coincide in their form with those of the reflection equation algebra [3]. However, we would
like to emphasize one important difference. The corresponding elements σk generate the
center of REA, whereas elements (13) are mutually commuting but not central in the
algebra (1). This allows one to interpret T as the monodromy matrix of some finite
dimensional integrable model and the generators σk, being connected with the spectrum
of T , play the role of the involutive set of integrals of motion. Actually in order to realize
the above remark one should develope a kind of representation theory for algebra (1).
For example, using the specific representation of the RTT -algebra with the R matrix of
SLq(N) type one can reproduce the relativistic Toda chain [7]. Acknowledgements. We

are indebted to D. Gurevich, A. Isaev and O. Ogievetsky for various valuable discussions.
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