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Abstract

A.V. Kisselev, V.A. Petrov Dependence of Deep Inelastic Structure Functions on Quark Masses:
IHEP Preprint 96-88. — Protvino, 1996. — p. 12, figs. 3, tables 3, refs.: 10.

We argue that the difference between the structure functions corresponding to deep inelastic
scattering with and without heavy quarks in the current fragmentation region scales at high Q>
and fixed (low) zp;. The lower bound on a charm contribution to the total structure function,
F$(Q?, x), is calculated and compared with the recent data on Fy(Q?, =) from H1 Collaboration.

AnHOTaMsa

Kucenes A.B., Ilerpor B.A. 3aBucumMocTb CTPYKTYpPHBIX QYHKIUI ITyOOKOHEYIIPYTOrO pacce-
aHusg 0T Macc KBapkos: IIpemnpuuar MPBO 96-88. — IIporsuno, 1996. — 12 c., 3 puc., 3 Tabm.,
6ubmuorp.: 10.

IToka3ano, 9TO Pa3HOCTH MEXKIY CTPYKTYPHBIMU (DYHKIIUAME TJIyOOKOHEYIIPYTOrO PACCEsSHUS
C POXIEHUEM TsKEJIBIX KBAPKOB B 00J1aCcTU (PparMEHTAUN TOKA W CTPYKTYPHBIMEA (DyHKIIIAMEI
mporecca 6e3 TAKOTO POXKIEHUs 00JamaeT MacIITaOHO-MHBAPUAHTHBIM MOBEICHUEM IIPU GOJIb-
mux (Q m GUKCHPOBAHHBIX MAJIbIX Tp;. BbluncieHa HukHss rpanuna mis Fy(Q?, r)-Bxnana
OYapPOBAHHBLIX KBAPKOB B MOJIHYIO CTPYKTYPHYIO (DYHKIIUIO, IIPOU3BENCHO €€ CPABHEHME C HEIaB-
HO mosTyyeHHbIME faHEbIME H1 xommaGoparum o Fi(Q?, ).
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Introduction

Quite often mass effects in high energy collisions are considered as some not very spec-
tacular corrections that finally die off. Nonetheless, it appears that in e*e™ annihilation
even such overall characteristics as hadron multiplicities are quite sensitive to the value
of masses of the primary ¢q pairs [1].

Recent considerations have shown that calculations based on QCD agree well with the
data at high enough energy [2| and that they yield an asymptotically constant difference
between multiplicities of hadrons induced by the primary quarks of different masses.

In this paper we study a similar effect in a deeply inelastic process [3], [4]. As a
by-product, we estimate heavy quark contributions to the total structure function.

1. Calculation of quark mass dependence

Let us consider, for definiteness, deep inelastic scattering of the electron (muon) off the
proton. The hadronic tensor (an imaginary part of the virtual photon—proton amplitude)
is defined via the electromagnetic current J,,:

Wiulp,0) = 5(2n)? [ 'z exp(iaz) (11 (2), JulO)] 1) )

where p is the momentum of the proton, p?> = M?, and ¢ is the momentum of the virtual
photon, ¢ = —Q? < 0.
A symmetric part of W, has two Lorentz structures:

B ¢y 9 1 Pq Pq 2
WMV = <_guy + q2 ) Fl(Q ,LIZ‘) + p_q (pu - q#?) (p” - q”?) FQ(Q ,LIZ‘), (2)

where the structure functions F; and F, depend on Q% and on the variable
Q2

pq ++/(pq)* + QM2

Tr=

(3)



In what follows we will analyse the structure function F; of deep inelastic scattering
with open charm (beauty) production at small z. In this section we consider the case
of one single quark loop with mass m, and electric charge e;. A general case will be
discussed in Section 2.

At small z a leading contribution to F» comes from one photon—gluon fusion subpro-
cess [5]:

d*k 1 g
_ afB . o' B
W/J,l/ - / (27'(')4 FCIJJ/ (q7 k? mq)daa/(k)d,@,@/(k)r (k7p)7 (4)
where k is the momentum of the virtual gluon, ¥* < 0. The tensor C;ff denotes an
imaginary two gluon irreducible part of the photon-gluon amplitude, while I'*? describes
a distribution of the gluon inside the proton. A quantity d.gs is a tensor part of the gluonic

propagator.
Let us choose an infinite momentum frame
M? M?
=(P+—,0,0,P — — ). 5
Pu <+4P”’ 4P> (5)

Then the gluon distribution I'* has to be calculated in the axial gauge nA = 0 with a,
gauge vector n, = (1,0,0,—1) [5]. One can take, for instance,

Ny = qu + TPy (6)

with = defined by Eq. (3).
From Eq. (2) we get

1 3Q?
—Fy = |~ +p“p”(m)2¥% W = B 4+ Y. (7)
Two terms in the RHS of Eq. (7), FQQ) and FQ(b), correspond to two tensor projectors, g,
and p,py.

Note that the structure function Fy = F, — 2z F} is completely defined by the term
pupy and, thus, is proportional to FQ(b).

By definition, the gluon distribution I'*? can be rewritten in the form

D% = Y600+ b p) plI2(0) ) (] 3(0) ), ®

where 9 is the conserved current. Both |p) and |n) are on shell states that result in
k°Typ = 0. (9)

From an explicit form for C;jf (see Ref. [4], Appendix I, for details) one can verify
that it obeys the same condition:
k*Cls = 0. (10)
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Equations (9) and (10) allow us to simplify expression (4) and get (r = a, b):

I d*kE 1 )
~E :/ — ") (g, k: m)T*8 (k, p), 11
T 2 (27T)4k34 a,@(Q7 7mq) ( p) ( )
with the notations
Cll = —guCly,
3Q?
oY) — 2% 5 OM 12
af (pq)2+Q2M2pr af ( )

The tensor I'*? can be expanded in Lorentz structures

«a kakﬁ pk pk 1
B

k? k2N 1 pk pk\ 1
o —Na— | kg —ng— | =T o — Mg — —ng— |—=I'y (13
* (k " kn)( o nﬁkn)kQ 3 (p " kn)(p’g nﬁkn)kQ ¢ (13)
with T'; = T;(k?, M?, pk).
Let us consider a contribution of the invariant function I'y into the structure function
F, (11). With account for (9) and (10) we obtain

1 Q*(z/2) 1o 2.2/12.2 9 .2
1
EFQT) — 62/d_2 %lx—/ch(r) Q_’ Mg 2 9 g(12,2), (14)
x ‘) 12 1+ M32%/Q? 1270127 2) 0lnl?
0
where
P=-k >0, (15)
kn
= — 16
= (16)
and 12,2
2 Z
— ) 17
G=1— (17)
Here we use the notation:
CW = —gcl). (18)

To be more correct, one has to write z > z(14+4m?/Q?) and I? < Q(z/z)—4m?z/(z—x)
n (14), but me neglect power corrections O(m?/Q?).
In Eq. (14) the gluon distribution, g(I?, 2), is introduced:

2 1 l dl/2 2 12
g(2,2) = 2(2ﬂ)4/l,—4/d kT2 kL, 2). (19)
Q3

If we use the new variable 2
§= (20)
ph -+ \/(pk)? — 212




instead of k2, we will arrive at the expression

2 12
9%, 2) = 3213 / ?4 / % <M2 £2> L% 2)
Q2 z

A thorough analysis shows, however, that the main contribution to F% at small x comes
from T'y and I'y in (13) and F; is given by the formula (see [4] for details):

Q?(z/x)
dz all2 (7 Q? m2 z 0
= Zb/ / (e (TT‘) oinC?)
2 .2
~(r) Q_ mg O A 29
+C <l2’l2’2> 81n12G(l72) ( )

As we are interested in a calculation of the difference of the structure functions cor-
responding to the massive and massless cases, we preserve those terms in C'") which give
a leading contribution to AFy. In [4] we have calculated the functions C®) in the lowest
order in the strong coupling a:

C(u,v,y) = ZT [(1—y)* +y*)L(u,v,9) — [(1 —y)* + > — 20]M (v, y) — 1},
CO(u,v,y) = Zy(1—y)M(v,y), (23)
where
_ w1y
Lwvy) = o d oy
_ yl-y)
M(U7y) - v + y(l o y) (24)

As for the gluon distributions, they are given by the formulae:

1 ar e " ., )
¢ = 3 I 1,4/ (I (M £>[F2(l L6+ T4(1%,6)), (25)

o dl’? 2, (26 — 2) o .
¢ = 327r3 /1/4 z/d5 (M §2> lTB(l O+ a9 (26)

The analogous expressions for the functions C®) are the following [4]:

COuv,y) = oy (21— 2)(1 ~ y) — o] L(u,v,y)
b =)l =9+ o7~ 2]M ()} + oy(1 - ),
CO(u,v,y) = Tt Ly2(1— g M(v,). (27)



It may be shown that the leading contribution to AF, comes from the region ? ~ mg,
k* = —I? being the gluon virtuality. Then one can easily see from (24) and (27) that the
first two terms in C® are suppressed by the factor k2 /Q?* with respect to C(@_ while the
third term in C'® does not contribute to the difference COl, — CO|pso.

In the leading logarithmic approximation (LLA), only the function L remains in
Egs. (23), which results in

1
1 0 as [dz T
— Q% x) == | =P, (—)G 2, 2), 28

x81HQ2 2(@ ,.’17) 27Tx P q9 P (Q 72) ( )
where P,,(2) is the Altarelli-Parisi splitting function and G(Q?, z) is the gluon distri-

bution in LLA defined by Eq. (25).
It is clear from (22) that AFy = Fb|m—o — Fa|mzo is defined by the quantities (r = a, b)

AC (u,v,y) = CD(u,0,y) = C(u,v,y). (29)
Using Eq. (23) we obtain the important result

ACW = ACY(v,y)
ACW = ACY(v,y), (30)

while from (27) we get

1 ~
ACY = —ACO(v,y),

A 1. -
AC® = aAc*“’)(v,y). (31)
In this, we have
2
~ A m
AC@D ACD|_joog ~ k—; (32)
So, we get [4]
1 . , [dz Tdi? _(m2z\ 9 .,
— q
EAFQ(Q ,mq,x)|Q2_>oo = (qu/?c22 l_2 [AC (l—2,2> —alan(l ,Z)
0
L (m? oz 0 -
-1 = 2
+ AC( 12 ,Z> SO G ,z)]. (33)
Here
~ o () v
AC(v,y) = —8{ 1—y)?+ 21n[1+ ]— }
. o v
A = 2y(l—py)————— 34
C(v,y) —l y)vw(l_y) (34)

with G(12, z) and G(I2, z) being defined by Eqs. (25) and (26).



The integral in I2 (33) converges because of condition (32). Contributions from AC®)
and AC® are suppressed by the factors (m?/Q?)1n Q? and can thus be omitted.

Let us consider the gluon distribution G (26). At small z the leading contribution to
G(12, z) comes from the region z < £, and we have

G(1%,2) ~ G(1%, 2). (35)

Taking expression (35) into account, the structure function F» (22) has the following form
at low x (with the term of the order of k?/Q? and m?/Q? subtracted)

1 Q*(z/x)

1 dz d? _(Q* m? z\ 9
ZF, = 2/_ / x g~ 2
) 4 12C<z2’z ’z) gmpC2) (36)
0

where
C(u,v,y) = Z—;{[(l —y)? + 9% L(u,v,y) — [(1 — 3y)* = 3y* — 20]M(v,y) — 1}.  (37)

As for the difference of the structure function, we obtain the following prediction

1 dz [ dI? my z\ 0
EAFQ(Q2,m2,x)|Q2_>OO = AFg(m T)=¢e / B —AC (l—;’;> 81n12G(12’Z)’
T Q32
(38)

where

v

AC(v,y) = Z‘—;[u —y) gﬁ]{ln[1 b (39)

] —(1—2y)?

1—y) v+y(1—y)}'

2. Relation between measurable structure functions

Up to now, we considered those contributions to F» that came from the quark with
electric charge e, and mass my, F2|m¢0 Then we have taken the analogous contributions
from the massless quark with the same e, F2|m 0, and calculated the quantity F2|m 0—
Fy|mso.

The total structure function F5 has the form

= e (Q% ), (40)

where the functions FY are introduced (¢ = u, d, s, ¢, b).
The structure functions describing the open charm and bottom production in DIS, Fy
and F?, respectively, are related to F ¢ and F ’ by the formulae

1 -~
F? = §F2b. (41)



At low x one can put (m, = mg = ms = 0 is assumed)
F'=Fl=F=F (42)
and define the difference between heavy and light flavour contributions to Fb:
AF§ = Fy — F%,
AF! = Fy, — F. (43)

Notice that there are the functions F~’2 and F~’2q that have been calculated in the previous
section (see Egs. (36) and (38)).
From Egs. (38) and (43) one readily obtains that a linear combination

5a(@Q 2) = Fo(Q, ) + aF5(Q% 7) — (4a + 11) Fy (Q*, ) (44)

scales at Q% — oo and arbitrary parameter . In terms of AF, introduced in (38)

lim Yo (Q2 x) = _§1+@Agmﬁ@y+ggH4mAgm@xy (45)

Q%20

Let us now represent function F, (36) in the following form
Y
1~ rd
r T Y 0 y

2
Y = mgL (47)
yQ3
and introduce the variable 7 = In(k?/Q3). Here G’ means the derivative of G(Q?, x) with
respect to the variable In Q2.

Analogously, we get from (38)

where we denote

1 Y
1 - d
—AFy = /—y / dn AC(n,y)G' (Ym —n,§>, (48)
with
Y, 1m2 (49)
Il—.
yQo

Here n = In(m? /k*y(1 — y)) ~ In(m?2/k*y) (remember that we consider small ).
The expression for AC is given by Eq. (39) and, in terms of the variables n and y,

looks like "
_ Qs N2 2 m (1 9 €
AC=—[1-y)" +y]ln(1+€") —(1-2y) ol

o (50)



As for the expression for C, it has to be defined via relation (11) and exact

formulae ([4]) taken at m = 0. The result is of the form

as ['1 14+U 3 3
_ s [ L Y0 (12
Clmy) =5, [2Un1—U< U2V+V> ( U2v>]’

where

U = 1-4y(1—ye,
V = (1-vy) [y—i— (1— y)e"’} (1 - e_”) :

It is clear from (50) that
AC(n,y) >0

for —oo << 00,0 <y <1and AC(n,y) is negligible at n < 0 (see Figs. la-d).
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Fig. 1. AC(n,y) as a function of the variable 7 at several fixed values of y.
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Moreover, the quantitative analysis shows that at least in the region y < 0.2, which is
relevant for small z under consideration, one has

Cn,y) > AC(n,y), n>0, (54)

(see Figs. 2a-d). Neglecting the small contribution to F, from the region n < 0 and taking
into account that 0G(Q? x)/0InQ? > 0 at small z (cf. [6]), we thus conclude

rq 2 r- 2
AFQ (mq,x) < FQ(Q >x)|Q2:m3~ (55)
9 5 :— 3 8 é-
+ b :
C 6
3 b 5 F
- 4 £
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Fig. 2. C(n,y) (solid curves) and AC(n,y) (dashed curves) as functions of the variable
n(n > 0) at several fixed values of y.

From Egs. (45), (55) we obtain the following inequality that holds for —2.5 < a < —1
2 C
0< Ea(Q2>115')|c,22>>1Gev2 < _g(l +a)(Fy — Fy — Fg)(Q2>$)|Q2:m%

35+ 20)(Fy = B — FD(Q)lgrong- (560



At the endpoints a = —2.5 and a = —1 we get
(F—25F5 — F}) (Q%2) < (Fo—F§—F})(Q%)|ge=m2,

(Fo— Fs —TF}) (@) < (Fo—F5 — F}) (Q% )l ge_mz- (57)

Data on the total structure function F5 for Q? between 1.5 GeV? and 5000 GeV? and

x between 3 x 107> and 0.32 are now available [7]. As for the charm structure function,

there are recent data on F§ at Q% = 12 GeV?, 25 GeV? and 45 GeV? with rather large
errors [8].

Using the first of inequalities (57) we get (assuming Fi(m?2, ), F2(m?, x) ~ 0 (cf. [9]))

F5(Q*,2) > 04 | F(Q% z) — FJ(Q* z) — Fo(m7, ). (58)
Taking use of the available data on F,(Q? z) [7] and neglecting F? (as F?/F, reaches
at most 2 + 3% at HERA) we estimate the lower bound according to (58). The result is

exhibited in Figs. 3a-c with m? = 2.5 GeV?2. Experimental data on F¥ at several values
of Q? and z are taken from Ref. [8].
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Fig. 3. The lower bounds on F§(Q?, ) (solid curves) together with results from H1 collabora-
tion [8] (open and closed circles).
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Tables 1-3 present the result of our calculations of the lower bounds on Fy at the
same Q% and x. Three different values of F§ for each Q?, x correspond to m. = 1.3 GeV,
m. = 1.5 GeV, m, = 1.7 GeV, respectively.

Table 1. The lower bounds on F$(Q?, x) for Q% = 12 GeV?2.

(x) | Fs (theor.) Fs (exper.) [8]
0.173
.0008 0.161 0.211 4 0.049 3545
0.145
0.137
.0020 0.128 0.263 4 0.036 70553
0.116
0.120
.0032 0.112 0.190 + 0.054 *9-952
0.101

Table 2. The lower bounds on F$(Q?, x) for Q% = 25 GeV?2.

(x) | Fs (theor.) Fs (exper.) [8]
0.258
.0008 0.247 0.324 +0.099 9963
0.231
0.205
.0020 0.196 0.253 4 0.069 *00%
0.184
0.179
.0032 0.172 0.222 4+ 0.066 3553
0.161

Table 3. The lower bounds on F$(Q?, x) for Q% = 45 GeV?2.

(x) | Fs (theor.) Fs (exper.) [8]
0.258
.0020 0.249 0.156 4- 0.070 *0 058
0.237
0.226
.0032 0.218 0.275+0.074 *0035
0.207
0.165
.0080 0.160 0.200 4 0.064 3032
0.152

These estimates of Fy agree with the recent data on the charm contribution to F; [8].
Our inequalities (56)-(58) are also in agreement with the results of Ref. [10], where the
ratio F§/F, was estimated. For a detailed comparison of our predictions with the data,
an improved measurement of the charm component F¥ is required.
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Conclusions

In this paper we have demonstrated that the lowest—order quark loop contributions
to the structure functions at small z contain mass—dependent terms which scale at high
Q?. This effect can be experimentally observed, and we predict theoretical bounds for the
corresponding contributions from c-quarks (see Egs. (56) and (57), Figs. 3a-c, Tabs. 1-3).
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