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Abstract

A.V. Kisselev, V.A. Petrov Dependence of Deep Inelastic Structure Functions on Quark Masses:
IHEP Preprint 96-88. – Protvino, 1996. – p. 12, figs. 3, tables 3, refs.: 10.

We argue that the difference between the structure functions corresponding to deep inelastic
scattering with and without heavy quarks in the current fragmentation region scales at high Q2

and fixed (low) xBj . The lower bound on a charm contribution to the total structure function,
F c2 (Q

2, x), is calculated and compared with the recent data on F c2 (Q
2, x) from H1 Collaboration.

aNNOTACIQ

kISELEW a.w., pETROW w.a. zAWISIMOSTX STRUKTURNYH FUNKCIJ GLUBOKONEUPRUGOGO RASSE-
QNIQ OT MASS KWARKOW: pREPRINT ifw— 96-88. – pROTWINO, 1996. – 12 S., 3 RIS., 3 TABL.,
BIBLIOGR.: 10.

pOKAZANO, ˆTO RAZNOSTX MEVDU STRUKTURNYMI FUNKCIQMI GLUBOKONEUPRUGOGO RASSEQNIQ

S ROVDENIEM TQVELYH KWARKOW W OBLASTI FRAGMENTACII TOKA I STRUKTURNYMI FUNKCIQMI

PROCESSA BEZ TAKOGO ROVDENIQ OBLADAET MAS[TABNO–INWARIANTNYM POWEDENIEM PRI BOLX-
[IH Q2 I FIKSIROWANNYH MALYH xBj . wYˆISLENA NIVNQQ GRANICA DLQ F c2 (Q

2, x)–WKLADA
OˆAROWANNYH KWARKOW W POLNU@ STRUKTURNU@ FUNKCI@, PROIZWEDENO EE SRAWNENIE S NEDAW-
NO POLUˆENNYMI DANNYMI H1 KOLLABORACII PO F c2 (Q

2, x).
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Introduction

Quite often mass effects in high energy collisions are considered as some not very spec-
tacular corrections that finally die off. Nonetheless, it appears that in e+e− annihilation
even such overall characteristics as hadron multiplicities are quite sensitive to the value
of masses of the primary qq̄ pairs [1].

Recent considerations have shown that calculations based on QCD agree well with the
data at high enough energy [2] and that they yield an asymptotically constant difference
between multiplicities of hadrons induced by the primary quarks of different masses.

In this paper we study a similar effect in a deeply inelastic process [3], [4]. As a
by-product, we estimate heavy quark contributions to the total structure function.

1. Calculation of quark mass dependence

Let us consider, for definiteness, deep inelastic scattering of the electron (muon) off the
proton. The hadronic tensor (an imaginary part of the virtual photon–proton amplitude)
is defined via the electromagnetic current Jµ:

Wµν(p, q) =
1

2
(2π)2

∫
d4z exp(iqz)〈p|[Jµ(z), Jν(0)]|p〉, (1)

where p is the momentum of the proton, p2 =M2, and q is the momentum of the virtual
photon, q2 = −Q2 < 0.

A symmetric part of Wµν has two Lorentz structures:

Wµν =

(
−gµν + qνqν

q2

)
F1(Q

2, x) +
1

pq

(
pµ − qµpq

q2

)(
pν − qν pq

q2

)
F2(Q

2, x), (2)

where the structure functions F1 and F2 depend on Q2 and on the variable

x =
Q2

pq +
√
(pq)2 +Q2M2

. (3)
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In what follows we will analyse the structure function F2 of deep inelastic scattering
with open charm (beauty) production at small x. In this section we consider the case
of one single quark loop with mass mq and electric charge eq. A general case will be
discussed in Section 2.

At small x a leading contribution to F2 comes from one photon–gluon fusion subpro-
cess [5]:

Wµν =
∫
d4k

(2π)4
1

k4
Cαβµν (q, k;mq)dαα′(k)dββ′(k)Γ

α′β′(k, p), (4)

where k is the momentum of the virtual gluon, k2 < 0. The tensor Cαβµν denotes an
imaginary two gluon irreducible part of the photon–gluon amplitude, while Γαβ describes
a distribution of the gluon inside the proton. A quantity dαβ is a tensor part of the gluonic
propagator.

Let us choose an infinite momentum frame

pµ =
(
P +

M2

4P
, 0, 0, P − M

2

4P

)
. (5)

Then the gluon distribution Γαβ has to be calculated in the axial gauge nA = 0 with a
gauge vector nµ = (1, 0, 0,−1) [5]. One can take, for instance,

nµ = qµ + xpµ (6)

with x defined by Eq. (3).
From Eq. (2) we get

1

x
F2 =

[
−gµν + pµpν 3Q2

(pq)2 +Q2M2

]
W µν ≡ F (a)2 + F (b)2 . (7)

Two terms in the RHS of Eq. (7), F
(a)
2 and F

(b)
2 , correspond to two tensor projectors, gµν

and pµpν .
Note that the structure function FL = F2 − 2xF1 is completely defined by the term

pµpν and, thus, is proportional to F
(b)
2 .

By definition, the gluon distribution Γαβ can be rewritten in the form

Γαβ =
1

4π

∑
n

δ(p+ k − pn)〈p|Igα(0)|n〉〈n|Igβ(0)|p〉, (8)

where Igα is the conserved current. Both |p〉 and |n〉 are on shell states that result in

kαΓαβ = 0. (9)

From an explicit form for Cαβµν (see Ref. [4], Appendix I, for details) one can verify
that it obeys the same condition:

kαCµναβ = 0. (10)
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Equations (9) and (10) allow us to simplify expression (4) and get (r = a, b):

1

x
F
(r)
2 =

∫
d4k

(2π)4
1

k4
C
(r)
αβ (q, k;mq)Γ

αβ(k, p), (11)

with the notations

C
(a)
αβ = −gµνCµναβ ,
C
(b)
αβ =

3Q2

(pq)2 +Q2M2
pµpνC

µν
αβ . (12)

The tensor Γαβ can be expanded in Lorentz structures

Γαβ =
(
gαβ − kαkβ

k2

)
Γ1 +

(
pα − kαpk

k2

)(
pβ − kβ pk

k2

)
1

k2
Γ2

+
(
kα − nα k

2

kn

)(
kβ − nβ k

2

kn

)
1

k2
Γ3 +

(
pα − nα pk

kn

)(
pβ − nβ pk

kn

)
1

k2
Γ4 (13)

with Γi = Γi(k2,M2, pk).
Let us consider a contribution of the invariant function Γ1 into the structure function

F2 (11). With account for (9) and (10) we obtain

1

x
F
(r)
2 = e2q

1∫
x

dz

z

Q2(z/x)∫
Q20

dl2

l2
1− l2x2/Q2z2
1 +M2x2/Q2

C(r)
(
Q2

l2
,
m2q
l2
,
x

z

)
∂

∂ ln l2
g(l2, z), (14)

where
l2 = −k2 > 0, (15)

z =
kn

pn
(16)

and

Q20 =
M2z2

1− z . (17)

Here we use the notation:
C(r) = −gαβC(r)αβ . (18)

To be more correct, one has to write z > x(1+4m2/Q2) and l2 < Q(z/x)−4m2z/(z−x)
in (14), but me neglect power corrections O(m2/Q2).

In Eq. (14) the gluon distribution, g(l2, z), is introduced:

g(l2, z) =
1

2(2π)4

l2∫
Q20

dl′2

l′4

∫
d2k⊥Γ1(l′2, k⊥, z). (19)

If we use the new variable

ξ =
−k2

pk +
√
(pk)2 − k2M2

(20)
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instead of k2⊥, we will arrive at the expression

g(l2, z) =
z

32π3

l2∫
Q20

dl′2

l′4

1∫
z

dξ

(
M2 +

l′2

ξ2

)
Γ1(l

′2, ξ). (21)

A thorough analysis shows, however, that the main contribution to F2 at small x comes
from Γ2 and Γ4 in (13) and F2 is given by the formula (see [4] for details):

1

x
F2 = e

2
q

∑
r=a,b

1∫
z

dz

z

Q2(z/x)∫
Q20

dl2

l2

[
C̃(r)

(
Q2

l2
,
m2q
l2
,
x

z

)
∂

∂ ln l2
G(l2, z)

+ Ĉ(r)
(
Q2

l2
,
m2q
l2
,
x

z

)
∂

∂ ln l2
Ĝ(l2, z)

]
. (22)

As we are interested in a calculation of the difference of the structure functions cor-
responding to the massive and massless cases, we preserve those terms in C(r) which give
a leading contribution to ∆F2. In [4] we have calculated the functions C(a) in the lowest
order in the strong coupling αs:

C̃(a)(u, v, y) =
αs
4π
{[(1− y)2 + y2]L(u, v, y)− [(1− y)2 + y2 − 2v]M(v, y)− 1},

Ĉ(a)(u, v, y) =
αs

π
y(1− y)M(v, y), (23)

where

L(u, v, y) = ln
u(1− y)

y[v+ y(1− y)],

M(v, y) =
y(1− y)

v + y(1− y). (24)

As for the gluon distributions, they are given by the formulae:

G =
1

32π3z

l2∫
Q20

dl′2

l′4

1∫
z

dξ

ξ
(ξ − z)

(
M2 +

l′2

ξ2

)
[Γ2(l

′2, ξ) + Γ4(l
′2, ξ)], (25)

Ĝ =
1

32π3z

l2∫
Q20

dl′2

l′4

1∫
z

dξ

(
M2 +

l′2

ξ2

)[
(2ξ − z)2

4ξ2
Γ2(l

′2, ξ) + Γ4(l
′2, ξ)

]
. (26)

The analogous expressions for the functions C(b) are the following [4]:

C̃(b)(u, v, y) =
3αs
2π

1

u
y{2y[(1− 2y)(1− y)− v]L(u, v, y)

+ (1− y)[(1− y)2 + y2 − 2v]M(v, y)}+ 3α

2π
y(1− y),

Ĉ(b)(u, v, y) = −12αs
π

1

u
y2(1− y)2M(v, y). (27)
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It may be shown that the leading contribution to ∆F2 comes from the region l2 ∼ m2q,
k2 = −l2 being the gluon virtuality. Then one can easily see from (24) and (27) that the
first two terms in C̃(b) are suppressed by the factor k2/Q2 with respect to C̃(a), while the
third term in C̃(b) does not contribute to the difference C(b)|m=0 − C(b)|m�=0.

In the leading logarithmic approximation (LLA), only the function L remains in
Eqs. (23), which results in

1

x

∂

∂ lnQ2
F2(Q

2, x) =
αs
2π

1∫
x

dz

z
Pqg

(
x

z

)
G(Q2, z), (28)

where Pqg(z) is the Altarelli–Parisi splitting function and G(Q2, z) is the gluon distri-
bution in LLA defined by Eq. (25).

It is clear from (22) that ∆F2 = F2|m=0−F2|m�=0 is defined by the quantities (r = a, b)

∆C(r)(u, v, y) = C(r)(u, 0, y)− C(r)(u, v, y). (29)
Using Eq. (23) we obtain the important result

∆C̃(a) = ∆C̃(a)(v, y)

∆Ĉ(a) = ∆Ĉ(a)(v, y), (30)

while from (27) we get

∆C̃(b) =
1

u
∆C̃(b)(v, y),

∆Ĉ(b) =
1

u
∆Ĉ(b)(v, y). (31)

In this, we have

∆C̃(a),∆Ĉ(a)|−k2→∞ ∼
m2q
k2
. (32)

So, we get [4]

1

x
∆F2(Q

2,m2q, x)|Q2→∞ = e2q

1∫
x

dz

z

∞∫
Q20

dl2

l2

[
∆C̃

(
m2q
l2
,
x

z

)
∂

∂ ln l2
G(l2, z)

+ ∆Ĉ

(
m2q
l2
,
x

z

)
∂

∂ ln l2
Ĝ(l2, z)

]
. (33)

Here

∆C̃(v, y) =
αs

4π

{
[(1− y)2 + y2] ln

[
1 +

v

y(1− y)
]
− v

v + y(1− y)
}
,

∆Ĉ(v, y) =
αs

π
y(1− y) v

v + y(1− y) (34)

with G(l2, z) and Ĝ(l2, z) being defined by Eqs. (25) and (26).
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The integral in l2 (33) converges because of condition (32). Contributions from ∆C̃(b)

and ∆Ĉ(b) are suppressed by the factors (m2/Q2) lnQ2 and can thus be omitted.
Let us consider the gluon distribution Ĝ (26). At small z the leading contribution to

Ĝ(l2, z) comes from the region z 
 ξ, and we have

Ĝ(l2, z) � G(l2, z). (35)

Taking expression (35) into account, the structure function F2 (22) has the following form
at low x (with the term of the order of k2/Q2 and m2/Q2 subtracted)

1

x
F2 = e

2
q

1∫
x

dz

z

Q2(z/x)∫
Q20

dl2

l2
C

(
Q2

l2
,
m2q
l2
,
x

z

)
∂

∂ ln l2
G(l2, z), (36)

where

C(u, v, y) =
αs

4π
{[(1− y)2 + y2]L(u, v, y)− [(1− 3y)2 − 3y2 − 2v]M(v, y)− 1}. (37)

As for the difference of the structure function, we obtain the following prediction

1

x
∆F2(Q

2,m2q, x)|Q2→∞ =
1

x
∆F2(m

2
q, x) = e

2
q

1∫
x

dz

z

∞∫
Q20

dl2

l2
∆C

(
m2q
l2
,
x

z

)
∂

∂ ln l2
G(l2, z),

(38)
where

∆C(v, y) =
αs

4π
[(1− y)2 + y2]

{
ln
[
1 +

v

y(1− y)
]
− (1− 2y)2

v

v + y(1− y)
}
. (39)

2. Relation between measurable structure functions

Up to now, we considered those contributions to F2 that came from the quark with
electric charge eq and mass mq, F̃2|m�=0. Then we have taken the analogous contributions
from the massless quark with the same eq, F̃2|m=0, and calculated the quantity F̃2|m=0 −
F̃2|m�=0.

The total structure function F2 has the form

F2(Q
2, x) =

∑
q

e2qF̃
q
2 (Q

2, x), (40)

where the functions F̃ q2 are introduced (q = u, d, s, c, b).
The structure functions describing the open charm and bottom production in DIS, F c2

and F b2 , respectively, are related to F̃ c2 and F̃ b2 by the formulae

F c2 =
4

9
F̃ c2 ,

F b2 =
1

9
F̃ b2 . (41)
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At low x one can put (mu = md = ms = 0 is assumed)

F̃ u2 = F̃ d2 = F̃ s2 = F̃2 (42)

and define the difference between heavy and light flavour contributions to F2:

∆F̃ c2 = F̃2 − F̃ c2 ,
∆F̃ b2 = F̃2 − F̃ b2 . (43)

Notice that there are the functions F̃2 and F̃ q2 that have been calculated in the previous
section (see Eqs. (36) and (38)).

From Eqs. (38) and (43) one readily obtains that a linear combination

Σα(Q
2, x) ≡ F2(Q2, x) + αF c2 (Q2, x)− (4α+ 11)F b2 (Q

2, x) (44)

scales at Q2 →∞ and arbitrary parameter α. In terms of ∆F̃2 introduced in (38)

lim
Q2→∞

Σα(Q
2, x) = −4

9
(1 + α)∆F̃2(m

2
c, x) +

1

9
(4α + 10)∆F̃2(m

2
b, x). (45)

Let us now represent function F̃2 (36) in the following form

1

x
F̃2 =

1∫
x

dy

y

Y∫
0

dη C(η, y)G′
(
Y − η, x

y

)
, (46)

where we denote

Y = ln
Q2

yQ20
(47)

and introduce the variable η = ln(k2/Q20). Here G′ means the derivative of G(Q2, x) with
respect to the variable lnQ2.

Analogously, we get from (38)

1

x
∆F̃ q2 =

1∫
x

dy

y

Ym∫
−∞

dη∆C(η, y)G′
(
Ym − η, x

y

)
, (48)

with

Ym = ln
m2q
yQ20

. (49)

Here η = ln(m2q/k
2y(1− y)) � ln(m2q/k

2y) (remember that we consider small x).
The expression for ∆C is given by Eq. (39) and, in terms of the variables η and y,

looks like

∆C =
αs

4π
[(1− y)2 + y2]

[
ln (1 + eη)− (1− 2y)2

eη

1 + eη

]
. (50)
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As for the expression for C, it has to be defined via relation (11) and exact
formulae ([4]) taken at m = 0. The result is of the form

C(η, y) =
αs
2π

[
1

2U
ln

1 + U

1− U
(
1− 3

U2
V + V

)
−
(
1− 3

U2
V
)]
, (51)

where

U =
√
1− 4y(1− y)e−η,

V = (1− y)
[
y + (1− y)e−η

] (
1− e−η

)
. (52)

It is clear from (50) that
∆C(η, y) > 0 (53)

for −∞ < η <∞, 0 ≤ y ≤ 1 and ∆C(η, y) is negligible at η < 0 (see Figs. 1a-d).

Fig. 1. ∆C(η, y) as a function of the variable η at several fixed values of y.
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Moreover, the quantitative analysis shows that at least in the region y ≤ 0.2, which is
relevant for small x under consideration, one has

C(η, y) > ∆C(η, y), η > 0, (54)

(see Figs. 2a-d). Neglecting the small contribution to F̃2 from the region η < 0 and taking
into account that ∂G(Q2, x)/∂ lnQ2 > 0 at small x (cf. [6]), we thus conclude

∆F̃ q2 (m
2
q , x) < F̃2(Q

2, x)|Q2=m2q . (55)

Fig. 2. C(η, y) (solid curves) and ∆C(η, y) (dashed curves) as functions of the variable
η(η ≥ 0) at several fixed values of y.

From Eqs. (45), (55) we obtain the following inequality that holds for −2.5 ≤ α ≤ −1
0 < Σα(Q

2, x)|Q2�1GeV2 < −2

3
(1 + α)(F2 − F c2 − F b2 )(Q2, x)|Q2=m2c

+
1

3
(5 + 2α)(F2 − F c2 − F b2)(Q2, x)|Q2=m2b . (56)
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At the endpoints α = −2.5 and α = −1 we get(
F2 − 2.5F c2 − F b2

)
(Q2, x) <

(
F2 − F c2 − F b2

)
(Q2, x)|Q2=m2c ,(

F2 − F c2 − 7F b2
)
(Q2, x) <

(
F2 − F c2 − F b2

)
(Q2, x)|Q2=m2b . (57)

Data on the total structure function F2 for Q2 between 1.5 GeV2 and 5000 GeV2 and
x between 3× 10−5 and 0.32 are now available [7]. As for the charm structure function,
there are recent data on F c2 at Q2 = 12 GeV2, 25 GeV2 and 45 GeV2 with rather large
errors [8].

Using the first of inequalities (57) we get (assuming F c2 (m
2
c, x), F

b
2 (m

2
c, x) � 0 (cf. [9]))

F c2(Q
2, x) > 0.4

[
F2(Q

2, x)− F b2 (Q2, x)− F2(m2c, x)
]
. (58)

Taking use of the available data on F2(Q2, x) [7] and neglecting F b2 (as F b2/F2 reaches
at most 2÷ 3% at HERA) we estimate the lower bound according to (58). The result is
exhibited in Figs. 3a-c with m2c = 2.5 GeV2. Experimental data on F c2 at several values
of Q2 and x are taken from Ref. [8].

Fig. 3. The lower bounds on F c2 (Q
2, x) (solid curves) together with results from H1 collabora-

tion [8] (open and closed circles).
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Tables 1-3 present the result of our calculations of the lower bounds on F c2 at the
same Q2 and x. Three different values of F c2 for each Q2, x correspond to mc = 1.3 GeV,
mc = 1.5 GeV, mc = 1.7 GeV, respectively.

Table 1. The lower bounds on F c2 (Q
2, x) for Q2 = 12 GeV2.

〈x〉 F c2 (theor.) F c2 (exper.) [8]

0.173
.0008 0.161 0.211± 0.049 +0.045−0.040

0.145

0.137
.0020 0.128 0.263± 0.036 +0.043−0.041

0.116

0.120
.0032 0.112 0.190± 0.054 +0.052−0.049

0.101

Table 2. The lower bounds on F c2 (Q
2, x) for Q2 = 25 GeV2.

〈x〉 F c2 (theor.) F c2 (exper.) [8]

0.258
.0008 0.247 0.324± 0.099 +0.065−0.058

0.231

0.205
.0020 0.196 0.253± 0.069 +0.041−0.040

0.184

0.179
.0032 0.172 0.222± 0.066 +0.044−0.039

0.161

Table 3. The lower bounds on F c2 (Q
2, x) for Q2 = 45 GeV2.

〈x〉 F c2 (theor.) F c2 (exper.) [8]

0.258
.0020 0.249 0.156± 0.070 +0.031−0.028

0.237

0.226
.0032 0.218 0.275± 0.074 +0.045−0.042

0.207

0.165
.0080 0.160 0.200± 0.064 +0.040−0.035

0.152

These estimates of F c2 agree with the recent data on the charm contribution to F2 [8].
Our inequalities (56)-(58) are also in agreement with the results of Ref. [10], where the
ratio F c2/F2 was estimated. For a detailed comparison of our predictions with the data,
an improved measurement of the charm component F c2 is required.
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Conclusions

In this paper we have demonstrated that the lowest–order quark loop contributions
to the structure functions at small x contain mass–dependent terms which scale at high
Q2. This effect can be experimentally observed, and we predict theoretical bounds for the
corresponding contributions from c-quarks (see Eqs. (56) and (57), Figs. 3a-c, Tabs. 1-3).
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