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The complex energy eigenstates were introduced long ago by George Gamov for the
description of α-decay [1]. Many years had passed since that time until heuristic con-
sideration of Gamov found a rigorous explanation in the new formulation of quantum
mechanics based on the Rigged Hilbert Space (RHS). In the long list of references on this
subject we shall mention here only a series of papers of Austin-Brussels group [2]-[5] and
Arno Bohm’s textbook on Quantum Mechanics [6]. This new formulation of quantum
mechanics, of course, coincides with the usual one in the common domain but in addition
opens a possibility to describe unstable states and irreversible processes, leading to the
invention of semi-group of time translation related to a microphysical arrow of time. The
main features of this theory could be explicitly demonstrated for the Friedrichs model
that serves as an universal example with resonances and which is exactly solvable in non-
analytic way [7]. In this model the eigenstates of free hamiltonian — the discrete state
|1 > and continuum |ω >, 0 ≤ ω ≤∞, interact with intensity λ:

H = H0 + λV = (1)

= ω1|1 >< 1|+
∞∫
0

dω|ω >< ω| + λ

∞∫
0

dω {V (ω)|ω >< 1|+ V ∗(ω)|1 >< ω|} ,

where the formfactor V (ω) is smooth, square integrable function. The solution of eigen-
value problem for (1)

(H − E)Ψ = 0 (2)

could be represented in the following form:

Ψ = f(E)|1 > +

∞∫
0

dωf(E, ω)|ω > . (3)

Problem (2) gives two equation for functions f(E) and f(E, ω):

(ω1 −E)f(E) + λ

∞∫
0

dωV ∗(ω)f(E, ω) = 0,

(ω − E)f(E, ω) + λf(E)V (E) = 0. (4)
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The solution of (4) and its properties were discussed in numerous publications and we
will not dwell on details showing only the straight way to the subject of the present talk.
The second equation of (4) permits us to express function f(E, ω) via f(E):

f(E, ω) = Aδ(ω− E)− λ
V (ω)

ω − E
f(E), (5)

where A is an arbitrary constant. Substitution of (5) into (4) immediately gives us the
key equation: 

(ω1 − E)− λ2
∞∫
0

dω′
|V (ω′)|2
ω′ − E


 f(E) = −λAV ∗(E). (6)

The factor in square brackets in l.h.s. of (6) is nothing else but inverse resolvent 1/η(E)
of H, whose properties are completely defined by the formfactor V (ω). Under certain
conditions [7] this resolvent does not have poles for real, positive E and therefore the
general solution of (3) takes the form:

Ψ = |E > −λη(E)V ∗

|1 > −λ

∞∫
0

dω
V (ω)

ω − E
|ω >


 , (7)

where we put the constant A = 1. The resolvent η(E) in (7) is defined for E ∈ C by the
equation:

1

η(E)
= ω1 − E − λ2

∞∫
0

dω
|V (ω)|2
ω − E

. (8)

Apparently, the 1/η(ω) is the analytic function without singularities on the first sheet of
the complex E-plane. The physical solutions of eigenvalue problem (3) corresponding to
in- and out- going asymptotic conditions are defined by boundary values of the r.h.s. of
(7), when E → E ± iε. A close inspection of (8) gets us convinced us that on the second
sheet of E- plane the η(ω) may have a set of poles which correspond to unstable states.
Their eigenvalues Ec are the solutions of equation:

1

η(E)
= 0. (9)

Clearly, each solution of (9) will have a complex conjugated partner on the second sheet
as well. The states Ψ(E) with proper continuation to points Ec are the Gamov vectors —
the eigenstates with complex eigenvalues. We refer here the reader to the comprehensive
discussion of the definition and properties of the Gamov vectors to the above mentioned
literature. The question which we may now formulate is the following: if there is a
relativistic generalization of the Friedrichs model which possesses the simplicity of non-
relativistic example, admits the exact solution and exhibits the universality of description
of relativistic unstable states. The answer is positive and the model has been formulated
and solved in our joint paper with Professors I.Antoniou and M.Gadella [8]. Here I present
the review of this work.
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Certainly the obvious example of the relativistic system with unstable states is pro-
vided by the field theory of two interacting scalar fields with masses M and m , which
satisfy the condition:

M > 2m, (10)

i.e. the mass of one field lays upper the threshold of two particles state of the second
field. Unfortunately if we consider the interaction

Sint = λ
∫
d4xϕ(x)ψ2(x), (11)

where ϕ-field has mass M and ψ-field has mass m, then the model becomes an ordinary
field theory with all difficulties which leave no hope for the exact solution of the eigenvalue
problem for its hamiltonian and constructing true asymptotic states. To find the solvable
model we must somehow simplify the field theory (11), leaving nonetheless the possibility
of creating unstable states. As we have learned from the nonrelativistic Friedrichs model,
the physical reason for transforming the stable state (particle) into unstable one is the
interaction with the system whose spectrum is continuous and the transition (decay) is
allowed energetically. The simplest example of such a system are two particle states
without interaction.

In the relativistic case the state vector of two free particles is subject to two constraints
(equations):

( p21 −m2)ψ(x1, x2) = 0,

( p22 −m2)ψ(x1, x2) = 0, (12)

where p1,2µ is usual notation for operator of translation of coordinates x1,2µ . Instead of xiµ
and piµ we can introduce total and relative coordinates and the corresponding momenta

x1µ = Xµ +
1

2
qµ; p1µ =

Pµ

2
+ pµ,

x2µ = Xµ − 1

2
qµ; p2µ =

Pµ

2
− pµ. (13)

With commutation relations

[Xµ, Pν ] = [qµ, pν ] = −igµν, (14)

all other commutators vanish.
Equations (12) in these variables become

[P 2 − (4m2 − p2⊥)]ψ(xµ, qµ) = 0,

Pp ψ (xµ, qµ) = 0. (15)

The first of eq.(15) has a meaning of mass shell condition with squared mass operator µ2

defined by:

µ2 = 4m2 − p2⊥; pµ⊥ = pµ − P µ
Pp

p2
. (16)
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It is clear that due to second equation (15) the system admits a one-time description and
therefore this equation is very important [9]. System (15) is the simplest one among the
so called Komar-Todorov systems [10]. In the general case the mass operator may have a
more complicated form

µ2 = µ2(pµ, qµ),

but should commutes with Pp-operator. That means that µ2 could be a function of the
following form:

µ2 = µ2(p2⊥, q
2
⊥, p⊥q⊥).

For our purpose even system (15) is too complicated. We’ll use a simpler one whose
internal degrees of freedom are described by scalar q, instead of 4-vector qµ. Correspond-
ingly, the momentum conjugated to q is scalar p. In this case there is no need for second
equation (15), and mass squared operator is simply

µ2 = 4m2 + p2 = (4m2 − ∂2

∂q2
). (17)

The wave function ψ(Xµ, q) corresponds to only S-wave states contained in ψ(xµ, qµ) and
the reduction of the first to the latter produces ψ(xµ, q) even with respect to q :

ψ(xµ, q) = ψ(xµ,−q). (18)

The solutions of the generalized Klein-Gordon equation

(P 2 − µ2)ψ(xµ, q) = 0, (19)

with µ2 given in (17) could be written in the following form:

ψ(xµ, q) =
∫
d4kµ

∞∫
−∞

dκ
cos qκ

(2π)4
e−ikµx

µ

δ(k2 − 4m2 − κ2)B(kµ, κ), (20)

where we took into account (18). The amplitude B(kµ, κ) is also an even function of κ.
Integrating r.h.s. of (20) over k0 gives:

ψ(xµ, q) =

∞∫
−∞

dκ
d3k cosκq

(2π)42ε(k, κ)
(B
(&k, κ)eikx + B(&k, κ)e−ikx), (21)

where kµ = (ε, &k) and

ε(k, κ) = [4m2 + κ2 + &k2]1/2. (22)

We can change the variables in (21) making ε independent instead of κ

κ = (ε2 − k2 − 4m2)1/2,
dκ

ε
=

dε

κ
, (23)
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then

ψ(xµ, q) =

∞∫
0

dεd3k cosκ(k)q

(3π)4κ(kµ)
(B(&k, ε)eikx + B
(&k, ε)e−ikx). (24)

Following the usual way of the second quantization of scalar field mutatis muduntis one
may construct the quantum field ψ(xµ, q). The action functional for field ψ(x, q) could
be written as follows:

A =
∫
d4xdq

1

2

[
(∂µψ)2 − ψ

(
4m2 − ∂2

∂q2

)
ψ

]
. (25)

Defining canonical commutation relation for ψ(x, q)

[ψ(x, q), π(x′, q′] = iδ4(x− x′)
δ(q + q′) + δ(q − q)

2
, (26)

we’ll finally obtain the quantum field ψ(x, q)

ψ(x, q) =

∞∫
E0

dεd3k cosκ(kµ)q

(2π)4κ(kµ)
[B+(&k, ε)eikx + B(&k, ε)e−ikx] (27)

with the following commutation relation for creation and annihilation operators B+ and B

[B(&k, ε), B+(&k′, ε′)] = (2π)4κ(kµ)δ
4(kµ − k′µ). (28)

Action (25) gives also the energy-momentum operators as well as the Lorentz group
generators which in terms of creation and annihilation operators look like

Pµ =
∫

d4k

(2π)3κ(k)
kµB

+(&k, ε)B(&k, ε), (29)

Mµν = − i

2

∫
d4k

(2π)4κ(k)

[(
kµ

∂

∂kν
− kν

∂

∂kµ

)
B+(&k, ε)B(&k, ε)−B+(&k, ε) ×

×
(
kµ

∂

∂kµ
− kν

∂

∂kµ

)
B(&k, ε)

]
. (30)

One may get convinced that commutation relation (28) produces the usual Poincaré alge-
bra of Pµ and Mµν defined in (29) and (30). If we defined the eigenvalue of the operator
&P as &k, the operator P0 will have the continuous spectrum which lies above the point
E0 = (4m2 + &k)1/2. In what follows we will suppose that every integral over energy will
start at this point, otherwise we will explicitly write the integration limits.

The states of the field ψ(x, q) in our generalization of the Friedrichs model will play
the role of the system with continuous spectrum, the role of state with discrete eigenvalue
will play the states of usual real scalar field ϕ(x):

ϕ(&x, t) =
∫
dk̃[a+(&k)eikx + a(&k)e−ikx], (31)
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where

dk̃ =
d3k

(2π)32ω(k)
, ω(&k) = (&k2 + M2)1/2. (32)

The creation and annihilation operators in (31) satisfy the usual commutation relations:

[a(&k), a+(&k′)] = (2π)32ω(k)δ(&k − &k′). (33)

The formulation of relativistic generalization of the Friedrichs model will be completed if
we switch on the interaction between two subsystems – ψ(x, q) and ϕ. The latter we’ll
introduce in the following form:

Aint = λ
∫
d4x

∞∫
−∞

dqψ(x, q)f(q)ϕ(x), (34)

where the even function f(q) is the Lorentz scalar and its Fourie transform is:

f(q) =
∫
dx cos xqα(x). (35)

Clearly, the f(q) plays the role of formfactor and to avoid the divergencies in our theory
we can choose it to be as decreasing as we like.

The total hamiltonian of our system is given now by the equation:

P0 =
∫ d3kdEE

(2π)4κ(k, E)
B+(&k, E)B(&k, E) +

+
∫

d3k

(2π)32ω
ωa+(&k)a(&k) +

∫
d3kdE

(2π)32ω

λα(κ(k, E))

κ(k, E)
×

× (a(&k) + a+(−&k))(B+(&k, E) + B(−&k, E)). (36)

The generator of three dimensional translations and rotations is the sum of two terms

&P =
∫

d3kdE

(2π)4κ(k, E)
&kB+(&k, E)B(&k, E) +

∫
d3k&k

(2π)32ω
(&k)a(&k), (37)

Mij = −i
∫

d3k

(2π)4κ(k, E)
B+(&k, E)

(
kj

∂

∂kj
− kj

∂

∂ki

)
B(&k, E)−

− i
∫

d3k

(2π)32ω
a+(&k)

(
ki

∂

∂kj
− kj

∂

∂ki

)
a(&k), (38)

but Lorentz-boost generators acquire an additional term due to the interaction:

Moi = i
∫

d3kdE

(2π)4κ(k, E)
B+(&k, E)

(
E

∂

∂ki
+ ki

∂

∂E

)
B(&k, E) +
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+ i
∫

d3k

(2π)32ω
a+
(
ω

∂

∂ki

)
a(&k) +

+
i

2

∫ d3kdE

(2π)3
λα(κ(k, E))

κ(k, E)

(
E

∂

∂ki
+ ki

∂

∂E

)
B(&k, E) + B+(−&k, E)

E
×

× a(−&k) + a+(k)

w
. (39)

Again, using commutation relations (28) and (33) one could obtain the Poincaré algebra
for Pµ and Mµν defined by (36)-(39).

The task we are facing now is the diagonalizing of hamiltonian (36). This could be
written as the eigenvalue problem

[Pµ, b
+(E,&k)] = kµb

+(E,&k), (40)

where kµ = (E,&k) and Pµ is given by (36), (37).
The solution of the eigenvalue problem could be obtained similar to the nonrelativistic

case and we will not present it here. The result could be expressed with the help of the
Green function G(E, k) — the object analogous to nonrelativistic resolvent η(E). This
Green function is defined by the equation:

G(E, k) =
1

ω2 −E2 − Π(E, k)
, (41)

where

Π(E, k) =

∞∫
E0

dE′2E′
ρ(E′, k)

E′2 −E2
(42)

and E0 = (4m2 + k2)1/2 (see note after eq.(30)). The spectral density ρ(E, k) is defined
by the formfactor f(q):

ρ(E, k) = 2π
λ2α2(κ(E, k))

κ(E, k)
. (43)

Equations (41) and (42) are written for the complex values E2 and we’ll specify its meaning
for real E2 later. First of all we’ll suppose that integral in r.h.s. of (42) exist and moreover

Π(E, k)→ 0, (44)

when E → ∞. From (42) we see that Π(E, k) is an analytical function of E2 with a cut
on physical sheet from E2 = E20 to infinity. The discontinuity of Π(E, k) on this cut is
given by:

∆Π(E, k) = Π(E + iε, k)− Π(E − iε, k) = 2πiρ(E, k). (45)

It is assumed that ρ(E, k) vanishes at threshold

ρ(E0(k), k) = 0. (46)
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The function G(E, k) also has the same analytical properties, and its discontinuity has
the following form:

∆ G(E, k) = G(E + iε, k)−G(E − iε, k) =

= ρ(E, k)G(E + iε, k)G(E − iε, k) = ρ(E, k)|G(E, k)|2, (47)

therefore G(E, k) satisfies the following dispersion relation:

G(E, k) =
∫
dE′2

1

E′2 − E2
ρ(E′, k)|G(E′, k)|2, (48)

which is really the Kallen-Lehman representation for the propagator. Under assumption
(44), it is evident that

G(E, k)→− 1

E2
, (49)

when E →∞, and comparing (49) and (48) we conclude that

∞∫
E20

dE′2ρ(E′, k)|G(E′, k)|2 = 1. (50)

Also the following statement, based on (44) is valid:

G(E, k)→ 1

ω2 − E2
+ o(

1

ω2 − E2
), (51)

|ω2 − E2| → ∞
wherefrom we get

∞∫
E20

dE′2(ω2 − E′2)ρ(E′, k)|G(E′, k)|2 = 0. (52)

These sum rules (50) and (52) will be used in what follows.
The unstable case which we are going to consider here corresponds to the Green func-

tion G(E, k) (41) without poles on real axis in the complex plane E, its only singularity
on physical sheet is the cut. Two unphysical sheets of the function G(E, k) in the E2

plane, nearest to the physical one we will denote as (0)-upper and (2)-lower. The way to
(0) from (1)-physical sheet is up from the lower rim of the cut, while the way to (2)-sheet
is down from the upper rim of the cut. Correspondingly we can define the (0) and (2)
sheets of G(E, k) on the E-plane. In an unstable case the Green function has the pole
singularity on (0) and (2) sheets which lie above the point E2 = k2+µ
2c and E2 = k2+µ2c
correspondingly, where

µ2c = µ2 − iµΓ (53)

and µ and Γ are real positive numbers defined by the formfactor f(q).
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The solutions of eigenvalue problem (40), corresponding to in-going boundary condi-
tions are given in terms of the Green function:

b+in(E, k) = B+(E, k) + 2πα(κ(E, k))G(E + iε, k)

[∫
dE′

λα

κ
(E′, k)×

×
(

B+(E, k)

E′ −E − iε
− B(E′,−k)

E′ + E

)
− (E + ω)a+(k) + (E − ω)a(−k)

2ω

]

for positive energy and

bin(E, k) = B(E, k) + 2πα(κ(E, k))G(E − iε, k)

[∫
dE′

λα

κ
(E′, k)×

×
(

B(E′, k)

E′ − E + iε
− B+(E′,−k)

E′ + E

)
− (E + ω)a(k) + (E − ω)a+(−k)

2ω

]

for negative energy
E ≥ E0(k) = (4m2 + k2)1/2. (54)

The out-set of operators corresponds to change ε→ −ε in (53).
Note that in the stable case, when the threshold E0 lies above mass of the ϕ(x)-field

the Green function G(E, k) has a simple pole on real axis E which lies below threshold
E = E0 in the point E = ω(k). In this case there appears an additional solution of (40)
which corresponds to perturbed operators ã(k) and ã+(k). Together with operators b(k, E)
and b+(k, E) these operators form a complete set which is connected with initial one —
a(k), a+(k);B(k, E), B+(k, E) by the Bogolubov transformation. In the instable case the
operators ã(k) and ã+(k) are absent but nevertheless the Bogolubov transformation exists.

The commutation relations of new operators b in
out

(k, E) and b+in
out

(k, E) are:

[bin(k, E), b+in(k
′, E′)] = [bout(k, E), b+out(k

′, E′)] = (2π)4κ(k, E)δ(E − E′)δ3(&k − &k′),

[bout(k, E), b+in(k
′, E′)] = (2π)4κ(k, E)δ(E − E′)δ3(&k − &k′)

G(E + iε, k)

G(E − iε, k)
,

[bin(k, E), b+out(k
′, E′)] = (2π)4κ(k, E)δ(E − E′)δ3(&k − &k′)

G(E − iε, k)

G(E + iε, k)
, (55)

all other commutators vanish.
In terms of new operators the energy momentum vector is diagonal, which follows

from the fact that b and b+ solve the eigenvalue problem. Also, direct calculation gives:

Pµ =
∫

d3kdE

(2π)4κ(k, E)
kµb

+
in
out

(k, E)b in
out

(k, E), (56)

where kµ = (E,&k) and l.h.s. of (56) is given by eqs.(36) and (37) up to the irrelevant
c-number constant in P0, which arises due to operators ordering. Further important
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properties of new operators is its transformation. The part of it, corresponding to three
dimensional rotations is trivial therefore we present only commutation of b-operators with
Lorentz boosts:

[Moi, b
+
in
out

(E, k)] = i

(
E

∂

∂ki
+ ki

∂

∂E

)
b+in
out

(E, k), (57)

which manifest the correct law of Lorentz transformation of scalar function of 4-momenta
kµ = (E,&k). Note that for calculation of (55)-(57) we used only an explicit form of b(E, k)
and fundamental commutation relation of initial operators — (28) and (33) together with
the properties of Green function G(E, k).

Commutation relations (55) promise a simple way for constructing the space of states
of our system in the Fock space of unperturbed system formed by operators B+(E, k) and
a+(k) above initial vacuum |0 >, defined by

B(E, k)|0 >= 0, a(k)|0 >= 0. (58)

The explicit form of b(E, k) got us convinced that

b(E, k)|0 >
= 0, (59)

i.e. there arises a new vacuum state which is a superposition of states with an arbitrary
number of particles of B- and a-types. This new vacuum has the following form:

Ω = eV |0 >, (60)

where the exponential of dressing operator V is quadratic in creation operators B+(E, k)
and a+(k). The new vacuum is defined by equation:

b in
out

Ω = 0. (61)

The solution of () is given with the help of factorization problem of Green function G(E, k).
The latter is formulated in the following way: let the Green function G(E, k) have the
properties stated above, find the function γ(E, k), analytic in the right semiplane, such
that

γ(E, k)γ(−E, k) = G(E, k) (62)

on the whole complexE- plane with additional conditions which guaranties its uniqueness:

1

γ(E, k)
+ E + ω + 2x +

∞∫
E0

dE′
ρ(E′, k)γ(E′, k)

E′ + E
= 0, (63)

∞∫
E0

dE′ρ(E′, k)γ(E′, k) = 2x(ω + x), (64)

where ρ(E, k) defined in (43), ω = (k2 + M2)1/2 and x is the function of k.
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From (63) it is evident that γ(E, k) has a cut in the left semiplane with discontinuity
defined by discontinuity of G(E, k), the asymptotic behaviour of γ(E) is

γ(E, k)→− 1

E
+

ω + 2x

E2
+ 0

(
1

E3

)
, (65)

when E → ∞. All the equations (62)-(64) hold true in the whole complex E-plane. For
the real E we have to use an appropriate limiting procedure (E ± iε).

Having the solution of the factorization problem of the Green function we can present
the explicit form of the exponential of dressing operator

V (B+, a+) =
∫

d3k

(2π)32(ω + x)




1

2

∞∫
E0

dEdE′q(k, E)q(k, E′)
(

1 +
2(ω + x)

E + E′

)
,

B+(k, E)B+(−k, E) +

∞∫
E0

dEq(E, k)B+(k, E)a+(−k)− x

2ω
a+(k)a+(−k)


 , (66)

where

q(k, E) =
λα(κ(k, E))

κ(k, E)
γ(k, E). (67)

This operator V defines new, Lorentz invariant vacuum state. Note, that the Ω is a
new vacuum for both in- and out- operators b(k, E). Now we can construct new Fock
space acting on Ω with creation operators b+(k, E). In particular, one-particle state is

b+in(k, E)Ω =

{
B+(k, E) +

2πλα(κ(k, E))

2(ω + x)
γ(−E − iε)×

×
[∫

dE′q(k, E′)
(

1 +
2(ω + x)

E′ − E − iε

)
B+(k, E) + a+(k)

]
Ω

}
, (68)

where we have used the explicit form of B+(k, E) and Ω to eliminate the annihilation
operators B(k, E) and a(k). This equation has to be compared with equation (7). If we
forget for a time being that the creation operators act in (68) on the new vacuum Ω, there
is a correspondence between (7) and (68) and now we get knowledge what different objects
in nonrelativistic case are remnants of the relativistic one. In particular, the one-particle
resolvent η−1+ (E) is what remained of γ(k,−E) — ”square root” if the Green function or,
more precisely — the solution of the factorization problem. Their properties, however,
are similar. For example, let us consider the Green function G(E, k) in the vicinity of its
complex pole of the point µ2c — eq.(53)

G(E, k) � c2

−E2 + (µ2c + k2)
, (69)

when E2−k2 ∼ µ2c , with c being some constant. At this point the solution of factorization
problem with the required asymptotic properties apparently has the following form:

γ(E) � − c

E + (µ2c + k2)1/2
,
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γ(−E) � +
c

E − (µ2c + k2)1/2
, (70)

when E ∼ Ec, which coincides with the behaviour of η−1(E).
Now we are ready to discuss the main point of the present paper — an instable

relativistic particle. As was already stated the latter manifests itself in the structure of
operators b+in

out

(k, E) and, consequently in the energy dependence of eigenstates of total

hamiltonian P0. Consider, for example, state (68). Due to the presence of γ(−E − iε),
the state Φin(k, E)

Φin(k, E) = bin(k, E)Ω (71)

has a pole out the second sheet of complex E-plane, where we can start from real axis
on the physical sheet, from the upper rim of the cut. This statement, as well as all other
considerations of the present section acquire its rigorous mathematical foundation in the
framework of rigged Hilbert space [2] and its generalization — rigged Fock space [11].
Referring the reader for details to these papers we shall very briefly point out the needed
definition in the due course. In the vicinity of point E = Ec(k)

Ec(k) = (&k2 + µ2 − iµΓ)1/2 =

= A(k)− iB(k), (72)

where

A(k) =


 [(&k2 + µ2)2 + µ2Γ2]1/2 + (&k2 + µ2)

2



1/2

,

B(k) =


 [(&k2 + µ2)2 + µ2Γ2]1/2 − (&k2 + µ2)

2



1/2

the state Φin(E, k) could be written as

Φin(E, k) � 1

E − Ec(&k)
ϕinG (&k), (73)

where index G stands for Gamov. According to the general consideration of Bohm and
Gadella [2] the Gamov vector ϕG(&k) should be understood as follows. Consider the state

ϕ(E,&k):

ϕ(E,&k) =
1

2(ω + x)γ(E, k)



∞∫
E0

dE′q(E′, k)

(
1 +

2(ω + x)

E′ − E

)
B+(k, E′)+

a+(k)
]
Ω. (74)

If we formally set E = Ec in (74), we as well formally obtain the residue in the pole

ϕinG (&k), but this couldn’t be done because the r.h.s. of (74) defined only for E on the

12



physical sheet — the integration path is along the real axis, and to reach E = Ec(k)
we have to make analytic extension of (74). This analytic extension cannot be made for

creation operator B+(k, E), but according to the RHS philosophy considering ϕ(E,&k) as
an antilinear functional for the appropriate space of test function (states) we can define

analytic continuation of scalar product (fϕ(E,&k)) to the point E = Ec(&k). It is clear that
this continuation is based on that of

f(&k, E) ≡ (f,B+(k, E)Ω) (75)

to the lower half plane. In this case

(f, ϕ(Ec(k), &k)) =
1

2(ω + x)γ(Ec, k)



∞∫
E0

dE′q(E′, k)

(
1 +

2(ω + x)

E′ − Ec(k)

)
f(k, E′) −

−f(&k)
]
Ω, (76)

where we denote
f(&k) ≡ (f, a+(k)Ω),

has a meaning as the complex number.
The simplest choice for f(&k, E), which does not depend on the location of Ec(&k) is, as

in nonrelativistic case [2], a square integrable Hardy function of energy from below. The
Hardly class H2− from below is formed by function on real axis which are boundary values
of functions analytic in the lower half plane and square integrable.

Alternatively one can define the state vector ϕoutG (&k), extending Φout(E,&k) in the vicin-

ity of point E = E
c (
&k):

Φout(E,&k) =
1

E − E
c (k)
ϕoutG (&k). (77)

In this case the space of test functions states which make sense of analytic extension of
(74) consists of such f , that (75) has analytic continuation to the upper half plane i.e.
belongs to the Hardly class H2+.

As was pointed out in the discussion of nonrelativistic case [2]–[6] the states ϕinG (&k)
are generalized eigenstates of hamiltonian P0 with complex eigenvalues Ec(k) and E
c (k)
correspondingly. Also these states exhibit a remarkable property to have one way evolution
under action ut = exp(−iP0t). The same properties hold true in the relativistic case as
well.

So far we have dealt with generalized ket-vectors ϕinG (&k) and ϕoutG (&k) which were anti-
linear functionals on the space of test functions f− and f+ with properties

(f±, B+(k, E)Ω) = f±(k, E) ∈ H2±. (78)

Alternatively we can define the generalized bra-vectors ϕinG (&k) and ϕoutG (&k) as linear func-
tionals whose space of test functions are exchanged.
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Going back to the definition of creation and annihilation operators b+in(out)(k, E) and
bin(out)(k, E) we can also define operators which ”create” and ”annihilate” Gamov states.
Indeed, let us consider

ψ+(k, E) =
∫ ∞
E0

dE′
λα

κ
(E′, k)

(
B+(k, E′)
E′ − E

− B(−k, E′)
E′ + E

)
−

− (E + ω)a+(k) + (E − ω)a(−k)

2ω
(79)

and

ψ(k, E) =
∫ ∞
E0

dE′
λα

κ
(E′, k)

(
B(k, E′)
E′ −E

− B+(−k, E′)
E′ + E

)
−

− (E + ω)a(k) + (E − ω)a+(−k)

2ω
. (80)

Apparently that analytic continuation described above for the state ψ+(k, E)Ω produces

states ϕinG (&k) or ϕoutG (&k), and we can consider ψ+(&k, Ec(k)) and ψ+(&k, E
c (&k)) as operators

which create Gamov ket-states. In the same sense ψ(&k, Ec(&k)) and ψ(&k, E
c (k)) create
Gamov bra-states. The nonvanishing commutation relations for these operators are:

[ψ(&k, Ec(k)), ψ+(&k′, Ec(k′))] = (2π)3δ(&k− &k′)2Ec(k)Z,

[ψ(&k, E
c (k)), ψ+(&k′, E
c (k
′))] = (2π)3δ(&k − &k′)2E
c (k)Z
, (81)

where

Z =
d

dE2
G−1(E, k)|E2−k2=µ2c .

These commutation relation may be a starting point for the introduction of the Gamov
field, which will be considered elsewhere.

Now let us discuss the Lorentz transformation of Gamov vectors. Commutation rela-
tions (55) together with Lorentz invariance of vacuum state provide us with infinitesimal
transformation of state (71):

MoiΦin(&k, E) = i

(
ki

∂

∂E
+ E

∂

∂ki

)
.Φin(&k, E). (82)

For the finite boost transformation this gives

U(α)Φin(&k, E) = exp iαiMoiΦin(k, E) =

Φin(&k
′
α, E

′
α), (83)

where
E′α = Echα− (&n&k)shα,

&kα = &k − &n(&k&n) + &n((&k&n)chα− Eshα) (84)

αi = αni, &n
2 = 1.
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The r.h.s. of (83) has a pole at the point E′α = Ec(k′α) which, of course, coincides with
E = Ec(k) on the E-plane because the complex mass does not change. Comparing the
pole terms in both sides of (85) we come to conclusion that

U(α)ϕinG (&k) = ϕinG (&k′α) (85)

with
&k′α = &k − &n(&k&n) + &n((&k&n)chα −Ec(k)shα).

This equation, being understood literary leads to nonsense because the transformed space
components of the momentum become complex. The difficulty could be resolved making
use again of the RHS. Indeed, the only successive definition of the Gamov state is the
analytic continuation of antilinear functional (f, ϕ(&k, E)) to the point E = Ec(k), so,
instead of (83) we should define the Lorentz transformation of ϕinG as the following:

(f, U(α)ϕinG (k)) ≡ (U
(α)f, ϕ(&k, E))|E→Ec(�k). (86)

The only thing we should take care of is that the transformed f stays in the admitted
space of test functions.

The same procedure holds true for generalized ket-ϕoutG (k) as well as for Gamov bra-
vectors.

With this definition of Lorentz transformations of Gamov states (three-dimensional
rotations brings no difficulty) we can consider incorporation of a semigroup of time trans-
lation into the Poincaré group. The action of the general element of translation subgroup
T (a) parameterized by 4-vector aµ on Gamov ket ϕinG (&k) is defined by equation, similar
to (86):

(f, T (a)ϕinG (&k)) ≡ (T (a)+f, ϕinG (&k)) (87)

with
T (a) = exp(−iPµaµ),

where Pµ is energy-momentum. The remarkable property of translations, as was pointed
out in nonrelativistic case, is that it leaves the space of test functions for ϕinG (k) unchanged
only if

a0 ≥ 0, (88)

i.e. the state ϕinG (&k) may evolve only in a positive time direction, while the state ϕoutG (&k)
may evolve only backward in time, making the collapse of wave function impossible.

Now let us combine the translation T (a) with the Lorentz transformation

(f, T (a)U(α)ϕinG (&k)) ≡ (U+(α)T+(a)f, ϕinG (&k)) =

= (U+(α)T+(a)U+−1(α)U+(α)f, ϕinG (&k)) =

= (T+(a′(−α))U+(α)f, ϕinG (&k)) = (89)

= ei(a
′
0(−α)Ec(k)−�a(−α)�k)(U+(α)f, ϕinG (&k)),
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where in the last equation (89) we have used the fact that ϕinG (&k) is the generalized

eigenvector of Pµ with eigenvalue (Ec(k), &k). The a′µ(α) in (89) is given by:

a′0(−α) = a0chα + &n&ashα,

&a′(−α) = &a− &n(&a&n) + &n(&a&nchα + a0shα). (90)

Apparently, the space of test functions will stay unchanged only if

a′0(−α) ≥ 0. (91)

This inequality gives us the set of translations whose action on ϕinG (&k) may be defined:
indeed, if the vector aµ is time-like with nonnegative zero component then it has this
property in each frame of reference. So, in the relativistic case the permitted translations
of ϕinG (&k) belong to a future cone V+. Alternatively permitted translations of ϕoutG (&k)
belong to a past cone V−. Note, that in the nonrelativistic case all possible translations
were separated into future and past oriented ones (being nevertheless the remnants of
V+ ∪ V−).

In the relativistic case there exist the translations onto space-like vectors, which have
no analogs in the nonrelativistic case and which cannot be defined either for ϕinG (&k), or

for ϕoutG (&k).
Taking the semidirect product of {T±(a) : aµ ∈ V±} and the Lorentz group we obtain

the Poincaré semigroup P± which is the motion group for the Gamov states. It will be
very interesting to construct the whole set of representations for this semigroup.

The work was supported in part by Russian Foundation for Fundamental Research
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