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Abstract

Kabachenko V.V., Pirogov Yu.F. Unified Compositeness of Leptons, Quarks and Higgs Bosons:
IHEP Preprint 96-97. – Protvino, 1996. – p. 16, figs. 2, refs.: 30.

The unified compositeness of leptons, quarks and Higgs bosons is proposed as a possible
scenario for New Physics beyond the Standard Model. The following topics of the scenario are
briefly discussed:
• Chiral gauge exceptional symmetry E6 as a strong internal binding mechanism;
• Higgs doublet as a composite Goldstone boson;
• Nonlinear Standard Model as a prototype “low energy” effective field theory of the unified
compositeness;
• Hidden local symmetry and an improved “low energy” effective field theory of the unified
compositeness;
• Heavy composite vector bosons and vector boson dominance of the SM gauge interactions;
• Universal dominant residual interactions as a signature of the unified compositeness;
• Manifestations of the residual interactions and the potential of the future TeV colliders to
uncover the unified compositeness.

aNNOTACIQ

kABAˆENKO w.w., pIROGOW ‘.f. oB˙EDINENNAQ KOMPOZITNOSTX LEPTONOW, KWARKOW I HIGGSOW-
SKIH BOZONOW: pREPRINT ifw— 96-97. – pROTWINO, 1996. – 16 S., 2 RIS., BIBLIOGR.: 30.

w KAˆESTWE WOZMOVNOGO SCENARIQ NOWOJ FIZIKI ZA PREDELAMI STANDARTNOJ MODELI PRED-
LAGAETSQ OB˙EDINENNAQ KOMPOZITNOSTX LEPTONOW, KWARKOW I HIGGSOWSKIH BOZONOW. kRATKO

OBSUVDA@TSQ SLEDU@]IE RAZDELY “TOGO SCENARIQ:
• kIRALXNAQ KALIBROWOˆNAQ ISKL@ˆITELXNAQ SIMMETRIQ Eo KAK MEHANIZM SILXNOJ SWQZI;
• hIGGSOWSKIJ DUBLET KAK SOSTAWNOJ GOLDSTOUNOWSKIJ BOZON;
• nELINEJNAQ STANDARTNAQ MODELX KAK PROTOTIP “NIZKO“NERGETIˆESKOJ” “FFEKTIWNOJ TEO-
RII OB˙EDINENNOJ KOMPOZITNOSTI;
• sKRYTAQ LOKALXNAQ SIMMETRIQ I ULUˆ[ENNAQ “NIZKO“NERGETIˆESKAQ” “FFEKTIWNAQ TEORIQ

OB˙EDINENNOJ KOMPOZITNOSTI;
• tQVELYE SOSTAWNYE WEKTORNYE BOZONY I WEKTORNO-BOZONNAQ DOMINANTNOSTX KALIBROWOˆ-
NYH WZAIMODEJSTWIJ sm;
• uNIWERSALXNYE DOMINANTNYE OSTATOˆNYE WZAIMODEJSTWIQ KAK SIGNATURA OB˙EDINENNOJ

KOMPOZITNOSTI;
• pROQWLENIQ OSTATOˆNYH WZAIMODEJSTWIJ I WOZMOVNOSTX OBNARUVENIQ OB˙EDINENNOJ KOM-
POZITNOSTI NA BUDU]IH e+e− LINEJNYH KOLLAJDERAH T“WNYH “NERGIJ.
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Introduction

Are leptons and quarks composite or not? This is the question. The same is for
Higgs bosons. If both these types of the Standard Model (SM) fields were composite
simultaneously, having common substructure, one could, in principle, solve a lot of the
SM problems. First of all, considering leptons and quarks as light composite fermions
one could find a rationale for the well-known generation problem and that of the fermion
quantum numbers (see, e.g., [1]). Further, treating the SM Higgs doublet as composite
Goldstone boson [2] one could solve the naturalness problem [3] of the SM without super-
symmetry. More than that, one could also try to unify Higgs self-interactions and Yukawa
interactions reducing thus their arbitrariness. This interactions should emerge as residual
ones from an interplay of the hyperstrong binding gauge interactions and the perturbative
weak gauge interactions, etc.

In a series of papers [4]–[6] one of the present authors (Yu.F.P.) has developed the
scheme of the unified compositeness of leptons, quarks and Higgs bosons (gauge bosons
being still elementary) as a promising scenario for New Physics beyond the SM. Some phe-
nomenological consequences of the scenario have been further studied by us in a number
of subsequent papers [7,8]. In this report we present a brief survey of these developments.

1. Scenario of unified compositeness

Let us expose the principal ideas of the scenario of unified compositeness of leptons,
quarks and Higgs bosons. The scenario encounters two stages: that of the dynamical
symmetry breaking and that of the spontaneous symmetry breaking.

Dynamical symmetry breaking. Let a hypothetical hyperstrong gauge theory Sloc,
responsible for the tight internal binding of the SM composite particles, possess a global
chiral symmetry G, that of the Lagrangian. As a result of the nontrivial topological
structure in Sloc at a scale F a partial dynamical symmetry breaking G→ H takes place,
where H is a residual symmetry of the vacuum |0 >. It is supposed that H embeds
the symmetry of the SM: H ⊇ ISM = SU(2)L × U(1)Y . In this, the broken symmetry
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G/H corresponds to true Goldstone bosons, in particular, to the Higgs doublet. On the
other hand, the unbroken chiral symmetry H is responsible via the ’t Hooft anomaly
matching condition for the appearance of the massless composite fermions in addition to
the massless composite Higgs bosons.

In reality, part of the Lagrangian symmetry G is gauge: G ⊃ Iloc ⊃ ISMloc . Thus this
symmetry undergoes the partial dynamical braking as Iloc → Rloc with the residual gauge
symmetry being Rloc = Iloc ∩ H and Rloc ⊇ ISMloc . The Goldstone bosons corresponding
to the broken part of the local symmetry Iloc/Rloc are absorbed via the Higgs mechanism
by the proper gauge bosons V , the latter becoming massive: MV 
 gVF . The rest of the
Goldstone bosons, including the Higgs doublet, is still massless at this stage.

In the framework of the effective field theory the dynamical symmetry breaking is
described by the nonlinear model G/H [9,10] with intrinsic gauge theory Iloc being spon-
taneously broken as Iloc → Rloc. Here the weak gauge interactions are considered as a
perturbation unimportance in the lowest approximation for the basic properties of the
symmetry breaking pattern. Still, interactions of Iloc explicitly violate symmetry G, and
their account results in important physical effects.

Spontaneous symmetry breaking. At Iloc being turned off, all the possible orien-
tations of the residual symmetry H inside the total symmetry G are equivalent. This
results in a set of the degenerate H invariant vacua |ξ >≡ ξ|0>, where ξ ∈ G/H. Explicit
violations due to Iloc being turned on, this equivalence is lost. The question arises as to
which the preferred orientation of H relative to Iloc is and what the true vacuum of the
lowest energy is. This is the so-called vacuum alignment problem [11,12]. The orientation
in question is determined by the radiative corrections caused by the virtual emission and
absorption of the Iloc gauge bosons.

Namely, let us consider the effective action Γ(φ) = −V (φ)eff + . . ., where the one-
loop effective potential is V (φ)eff = µ2φ†φ + λ(φ†φ)2 +O((φ†φ)3). The following general
statement is true [11,12]. The radiative corrections due to the dynamically unbroken
symmetry Rloc contribute positively to µ2 and thus stabilize the unperturbed vacuum
|0> trying to orient the residual global symmetry H along the symmetry Rloc itself. And
v.v., the radiative corrections due to dynamically broken symmetry Iloc/Rloc contribute
negatively to µ2 and hence destabilize vacuum |0> trying to disorient symmetry H relative
to symmetry Rloc. The net effect is µ2 = Cḡ2/(4π)2F2, where ḡ is a generic effective gauge
coupling constant, F is the mass scale of the dynamical symmetry breaking and C is a
numerical being determined by the ratio of the two contributions with opposite signs.

Thus there are tree possibilities for the curvature µ2 of the effective potential.

• µ2 ≥ 0. This is the case of the convex potential. Here Rloc is left unbroken, and
Goldstone bosons φ turn into the pseudo-Goldstone ones with m2 ≥ 0.
• µ2 < 0. In this case the potential is concave. This means that the symmetry Rloc is
spontaneously broken. Goldstone bosons φ turn into the would-be Goldstone ones
and are absorbed through the Higgs mechanism by the corresponding weak gauge
bosons.
• µ2 = 0. This is degenerate case of the flat one-loop potential. Here one-loop
approximation is insufficient and two-loop corrections have to be considered [13].
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We take for granted that one of the two last cases is realized, and the spontaneous
symmetry breaking of Rloc takes place. The Higgs self-interactions described by Veff 
 VH
are no longer fundamental but arise as residual ones from more fundamental gauge inter-
actions. Similarly, the effective Yukawa interactions must arise as a result of the radiative
effects due to Iloc. Both these types of interactions are deprived of their fundamental
status. Thus a kind of the unification of the Higgs and Yukawa interactions occurs, and
there appears an opportunity, at least, in principle, to reduce their arbitrariness.

Now, there are two possibilities for the mass scale F of the unified compositeness.

• TeV compositeness. It realizes in the most general one-loop case. Here one can
show that F = O(v), where v is the SM v.e.v. We consider this as phenomenolog-
ically unacceptable. For F � v to take place a fine tuning is required, and this is
unnatural.
• Deca-TeV compositeness. For the theory to be natural, one should put to one-
loop v ≡ 0. Then in two-loops one has µ2 = O((g2/(4π)2)2F2), whereas λ =
O(g2/(4π)2) as before. It follows hereof that v ≡ µ/

√
λ = O(g/4π F), or v =

O(
√

αW /4πF). In other words, one has F = O(mW/αW ), or F = O(10TeV).
Thus, the natural two-loop hierarchy F � v between compositeness scale and Fermi
scale arises.

It is this last scenario that will be developed in what follows. More details can be found
in refs. [4]–[6].

2. Chiral gauge exceptional symmetry

A paramount problem in building a realistic composite model of leptons and quarks is
to find underlying forces capable of binding these particles at the distances much smaller
than their Compton wave lengths. Strongly coupled non-Abelian gauge theories Sloc
provide presently a unique well-fitted framework for such a binding mechanism.

It is imperative that in the process of confinement a set of (almost) massless composite
fermions should emerge. In other words, this is to require that some residual chiral
symmetry should be left unbroken in the transition. A necessary (but not sufficient)
condition for this is the chiral anomaly matching condition [3,14].

There are conclusive arguments that strongly interacting SU(N) gauge theories with
n Dirac constituent fermions (so that their SU(N) representation is vector-like) break
the chiral symmetry SU(n) × SU(n) × U(1) down to the vector-like one SU(n) × U(1)
and hence do not produce massless composite fermions [15,16]. Similarly, for confining
groups SO(N) (Sp(N)) with strictly real (resp., pseudo-real) representations the chiral
symmetry SU(n) of n Weyl fermions is likely to be broken down to the vector one SO(n)
(resp., pseudo-vector one Sp(n)) [12,17,18]. If so, the only candidates to be considered
at all for composite model purposes are the non-Abelian gauge symmetries with complex
(non-self-contragradient) representations.

It is well-known that, restricting oneself by the simple Lie groups, one encounters just
three such possibilities: SU(N), N ≥ 3; SO(4k + 2), k ≥ 2 and exceptional group E6
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(see, e.g., [19]). The complex representations of the SU(N) group can be anomaly free
only if they contain necessarily higher rank tensors (in line with the fundamental ones, if
desired). The SO(4k + 2) group, though being anomaly free, does not admit composite
fermions built only of the constituent fermions in the fundamental (even dimensional
spinor) representations.

On the other hand, E6 group is free from both these drawbacks. First of all, E6 is
anomaly safe [19] in d = 4 dimensions so that there are no restrictions on its chiral fermion
content. Besides, it possesses the odd (namely, the third) rank invariant tensor in the
fundamental representation [20] and hence could lead to the required composite fermions.

Therefore one concludes that if one sticks to fermions in the fundamental representa-
tions of simple Lie groups, only chiral E6 is permissible as Sloc. In this, the semi-simple
Lie groups and/or nonfundamental representations, though not being excluded a priori,
nevertheless seem quite unnatural for a truly underlying theory one is searching for.

Partial chiral symmetry breaking. A priori, for a strongly interacting gauge theory
Sloc with chiral fermions there are two alternatives: either gauge symmetry is tumbled
dynamically through its own strong interactions until all the constituent fermions are
allowed to acquire dynamical masses, or the gauge symmetry remains exact and some of
the chiral fermions have to remain massless. (In principle, some intermediate patterns
could be adopted too.) It is the result of the dynamical competition between chiral
symmetry breaking and confinement: which of these possibilities will win. Presently one
does not know dynamical conditions under which either of them could be realized [18].

It is the second pattern (or at least some admixture of it) that is required for a
composite picture of leptons and quarks to have any dynamical reason at all. Therefore,
we take for granted that in the case under consideration underlying strongly coupled
gauge symmetry E6 is preserved, and proceed with studying the ensuing pattern of chiral
symmetry breaking.

So, let for the chiral gauge theory Sloc the Lagrangian chiral symmetry G be dynam-
ically broken to some vacuum residual symmetry H : G → H. This is supposed to take
place due to formation of vacuum bilinear condensate < χLχ̄R > (plus < χRχ̄L >) from
the constituent Weyl fermions χL,R. We postulate that in this transition all those and only
those constituents, which can get massive without breaking the confining gauge symme-
try, do acquire dynamical masses. More than that, these masses are assumed to be equal.
In other words, the hypothesis states that the residual chiral symmetry H is the maxi-
mal one consistent with the dynamical mass generation and preservation of the strongly
coupled gauge symmetry. This agrees with the pattern of chiral symmetry breakdown
adopted for vector-like, vector and pseudo-vector gauge theories, resp. SU(N), SO(N)
and Sp(N) [15]–[17]. Though this is just a hypothesis (a kind of the “survival” hypoth-
esis) it is well-formulated and is more predictive than mere postulating some breaking
pattern.

More explicitly, let in a general case of the chiral gauge E6 symmetry there be l left-
handed and r right-handed Weyl fermions χL and χR transforming as E6 fundamental
representation N = 27. (Equivalently, in terms of left-handed fermions only, let there be
l of N ’s and r of N ’s.) In general, l �= r are arbitrary. Asymptotic freedom of the gauge
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E6 requires only that (l + r) < 22. For definiteness let us assume that l ≥ r ≥ 0. The
Lagrangian chiral symmetry G, left unbroken by the E6 instantons, looks at different r
as follows (l ≥ 2):

G =




SU(l)L × SU(r)R × U(1), r ≥ 2;
SU(l)L × U(1), r = 1;
SU(l)L, r = 0.

(1)

Under the hypothesis adopted, in the given case of chiral gauge E6 the vacuum con-
densate in a suitably chosen basis can be brought to partly diagonal form as follows:

< χLχ̄R >= O(Λ3X)




0
. . . . . . . . . . . . . . .
1 0

. . .

1
. . .

0 1




︸ ︷︷ ︸
r

}
l − r


r

(2)

(ΛX being the confinement mass scale of the exceptional gauge symmetry). This means
that all r pieces of χR match some r pieces of χL leaving n = l−r pieces of χL unmatched.

The condensate (Eq. 2) possesses the following residual symmetry H

H =




SU(n)L × SU(r) × U(1), r ≥ 2;
SU(n)L × U(1), r = 1;
SU(n)L, r = 0,

(3)

where n ≡ l−r is the net chirality index of the constituents (0 ≤ n ≤ l). (Here one should
put SU(n) ≡ I for n = 0, 1.) In the strictly chiral case (r = 0, n = l) the chiral symmetry
is not broken at all (G = H), because according to the hypothesis the condensate just
can not be formed without breaking the Sloc = E6 gauge symmetry. In the other extreme
vector-like case (l = r, n = 0) the condensate (Eq. 2) reduces in terms of Dirac fermions
χ = (χL, χR) to the form < χχ̄ >∼ diag(1, . . . , 1), and the chiral symmetry is broken
down to the vector-like one. In an intermediate case (0 < n < l) the chiral symmetry
G is broken just partially (but to the maximum allowed extent). It is clear that all the
constituents are in the vector-like representation n× 1⊕ r⊕ r̄ under the SU(r) unbroken
subgroup. The same can be shown to be true for the U(1) residual subgroup.

Finally, we conclude that in the most general case of the chiral gauge E6 the surviving
chiral symmetry H is divided into two parts: strictly chiral and vector-like ones. Accord-
ingly, there are two types of constituents relative to H: n massless Weyl fermions and
r Dirac ones, the latter having equal dynamical masses. For the present purposes Dirac
constituents are supposed to be intrinsically massless, though they could have some small
explicit mass m (m� ΛX).
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Massless composite fermions. Rather general dynamical arguments require that
chiral anomalies should match at the constituent and composite levels [3,14]. In this,
anomalies for three unbroken currents have to match via massless composite fermions.
Chiral anomaly matching condition is the unique known raison d’ etre for the appearance
of such massless states. Now we proceed to study this condition for residual subgroup H
as given by Eq. 3.

It is well-known [20] that E6 possesses totally symmetric invariant tensor dabc; a, b, c =
1, . . . , 27 in the fundamental representation, alongside with the Levi-Civita tensor εabc···,
and so allows the formation of both three-particle and 27-particle fermion bound states.
In what follows we restrict ourselves only with three particle composites.

In general, for chiral gauge E6 there are three “strata” of composite fermions: pure
chiral, mixed chiral and vector-like ones, built of two kinds of E6 constituents, namely,
strictly chiral and vector-like ones. Lorentz couplings of constituents have to be chosen in
such a way as to allow for the formation of composite states of the required chiralities. A
priori, left- and right-handed components of Dirac constituents enter these states in dif-
ferent Lorentz structures, in particular, those with derivatives. Hence, it is admitted that
these constituents, though being potentially massive, in some chiral environment could
not acquire their dynamical mass, so that corresponding composites are left massless. (In
this respect massless chiral fermions somehow resemble composite Goldstone bosons, and
for this reason one should think that potential models are not applicable to them.)

Now, let ν(ρ) be the chiral index of the state ρ (i.e. the number of the corresponding
left-handed composite fermions minus that of the right-handed ones). ν(ρ) is some un-
known integer which is supposed to be eventually determined by the underlying dynamics.
The chiral anomaly matching condition can just somewhat restrict the allowable sets of
these indices. Note that states composed exclusively of Dirac constituents should have
zero indices due to the discrete LR-symmetry. Appropriate fermions fill in the vector-like
composite stratum and have masses O(ΛX) (à la QCD hadrons).

The only triangle anomaly at the level of constituents is that [SU(n)L]3 for three
SU(n)L currents. Solving the anomaly matching conditions one obtains in the most
general case a three-parametric set of solutions. These solutions are, in general, not vector-
like relative to the SU(r) × U(1) subgroup, though the constituents are. Nevertheless
appropriate anomalies match and are equal to 0 in both cases.

Further reduction of the allowed set of indices could be achieved by imposing some
additional physical restrictions. One of these is the matching condition of the mixed chiral-
gravitational anomalies for one U(1) and two gravitational currents [21]. This results in
the requirement

∑
Y = 0, where Y is the generator of the U(1) subgroup of the unbroken

chiral symmetry H. This gives one more relation for indices. The other possible restriction
is decoupling condition [22] (in more refined form, persistent mass condition [23] or the
constituent number independence [24]). But for chiral gauge theories the decoupling
conditions are not obligatory [25].

In addition to massless composite fermions there also appear composite Goldstone
bosons. They correspond to the broken symmetry G/H and are built of one chiral Weyl
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and one vector-like Dirac constituents. Goldstone bosons saturate the anomaly matching
for the broken currents from G/H.

Thus the chiral symmetry breaking pattern is just of the type required to embed the
SM. But in order to built a particular realistic composite model based on this binding
mechanism one has to specify a lot of “subtle” details, such as the quantum numbers of
constituents, the intrinsic gauge symmetry, the explicit mass terms etc. Presently this
cannot be done unambiguously.

Nevertheless the scheme do unambiguously produce the key message for the “low
energy” effective theory of unified compositeness. Namely, it should be a nonlinear model
G/H with G and H from the sets of Eq. 2 and Eq. 3, resp. This could be a starting point
for studying the unified compositeness at the subthreshold energies. Additional topics of
the scheme can be found in ref. [4].

3. Higgs doublet as composite Goldstone boson

Nonlinear Standard Model. To describe the “low energy” (i.e., below the composite-
ness scale) behaviour of the composite leptons, quarks and Higgs bosons, without detailed
knowledge of the hyperstrong interactions responsible for their internal substructure, one
has to refer to the framework of the effective field theory [9]. In essence, it requires just
the assumption about the symmetry breaking pattern G→ H, as well as the light particle
content. The simplest nonlinear model G/H to implement the idea of the Higgs doublet
as composite Goldstone boson was first proposed on phenomenological grounds in ref. [2].
It was further refined from the unified compositeness point of view and systematically
studied in ref. [5]. It may be called the minimal Nonlinear Standard Model (NSM). In
what follows we present the basic features of the NSM. More details can be found in
ref. [5].

It can be shown that the simplest nonlinear model G/H with the required properties
is based on the symmetry breaking pattern G = SU(3)×U(1) and H = ISM = SU(2)L×
U(1)Y . The extended symmetry G contains the broken isodoublet generators XI , X†I ,
I = 1, 2, as well as the broken hypercharge Y ′ in addition to the unbroken SM generators
of the weak isospin Ti, i = 1, 2, 3 and the weak hypercharge Y . With the broken generators
of G/H there are associated Goldstone doublet φI and singlet φ′. This extra Goldstone
boson is absorbed by the gauge boson of the additional dynamically broken local symmetry
U(1)Y ′. The latter is the minimum one required to eventually convert the true Goldstone
doublet φ via the radiative corrections into the SM Higgs doublet. In this prototype
model, the QCD colour symmetry is supposed to be trivially present on both sides of the
symmetry breaking chain.

Nonlinear realization. As the nonlinear model G/H, the NSM can be built via the
canonical nonlinear realization of the symmetry G that becomes linear when restricted to
H [10]. The Goldstone bosons parameterize the element of the left coset space ξ ∈ G/H

ξ = eiφ
′Y ′/F′ei(φIX

†I+h.c.)/F , (4)
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with F , F ′ = O(F) being the symmetry breaking mass scales. Here ξ and φ transform
under g ∈ G as

g : ξ → ξ̃ = gξh†(g, ξ),

φ → φ̃(g, ξ), (5)

where h(g, ξ) and φ̃(g, ξ) are uniquely determined through the natural decomposition

gξ ≡ ξ̃h = eiφ̃
′Y ′/F′ei(φ̃IX

†I+h.c.)/Fh. (6)

A matter field ψ transforms under g ∈ G as

g : ψ → ρ(h(g, ξ))ψ,

where ρ is a linear representation of H, and h(g, ξ) is determined by the equation above.
Derivatives of the Goldstone and matter fields enter through the Maurer-Cartan 1-form

∆µ ≡ 1/i ξ†Dµξ, with Dµ being the derivative covariant w.r.t. the gauge symmetry Iloc.
The 1-form ∆µ contains the nonlinear covariant derivative Dµφ of the Higgs-Goldstone
doublet φ, as well as a part required to construct the nonlinear covariant derivative Dµψ
of the matter fields ψ. Namely, let us divide ∆µ into two parts: ∆‖µ which is parallel to
G/H and ∆⊥µ orthogonal to it, along the unbroken symmetry H:

∆µ = (∆‖IµX†I + h.c.) + ∆0′‖µY
′

+ ∆i⊥µT
i +∆0⊥µY. (7)

Then one has

(Dµφ)I/F = ∆‖Iµ,

Dµψ =
(
∂µ + i(∆i⊥µT

i +∆0⊥µY )
)
ψ. (8)

All the terms in Eq. 7 transform nonlinearly under G as the irreducible representations
of H and can be used to construct the effective Lagrangian of the NSM. It consists of the
most general superficially H invariant expressions built of the ψ’s (but not of φ’s) and the
nonlinear covariant derivatives Dµφ and Dµψ, the latter ones transforming like ψ’s under
the nonlinearly realized extended symmetry G. Additional building blocks are given by
the nonlinear generalization of the gauge field strengths ∆µν ≡ 1/i ξ†[Dµ, Dν ]ξ.

Let us decompose Leff into the gauge, Higgs and fermion parts:

Leff = LG + LH + LF . (9)

Then the gauge part LG of the Lagrangian is built of the irreducible under H components
of ∆µν, the latter ones being defined as in Eq. 7. The Higgs part

LH = (Dµφ)†(Dµφ) +O(1/F4) (10)
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is uniquely determined by the symmetry breaking pattern. And finally, the fermion part
for the left-chiral fermion fields ψρ, belonging to the irreducible representation ρ of the
unbroken subgroup H, takes the form

LF =
∑
ρ

(mρψρ̄ψρ + h.c.) +
∑
ρ

ψ̄ρσµi/2
↔Dµ ψρ

+
∑
ρ

ηρψ̄
′
ρσµψρ∆

0′
‖µ + h.c.

+
1

F
∑
ρ1ρ2

χρ1ρ2ψ̄
I
ρ2

σµψρ1DµφI + h.c.

+
1

F
∑
ρ1ρ2

χ̄ρ1ρ2ψ̄
I
ρ2

σµψρ1(Dµφ)I + h.c. +O( 1F ). (11)

We have omitted terms irrelevant for the further discussion. Here m, η, χ and χ̄ are
arbitrary parameters. The first expression in LF describes the explicit mass terms of the
vector-like heavy composite fermions (mρ = O(F)). It can be shown that all the terms
O(1/F) mix with necessity the light chiral and heavy vector-like fermions. In the limit
F → ∞ the finite part of Leff reproduces exactly the SM Lagrangian (except for the
Higgs potential and Yukawa interactions). In this limit the heavy vector-like fermions
decouple from the SM light sector.

Higgs and Yukawa interactions. In reality, symmetry G is not exact but explicitly
violated, e.g., by the extended electroweak interactions, since only part of G, namely
Iloc = SU(2)L × U(1)Y × U(1)Y ′ , is supposed to be gauge. Gauge radiative corrections
may lead to a misalignment of the dynamically unbroken subgroup H relative to the gauge
ISMloc . This results in the spontaneous SM symmetry breaking and the appearance of the
Higgs and Yukawa effective interactions. This effect may be properly accounted for by
adding the symmetry violating effective Lagrangian

∆LH = F4
(

ḡ2tr(ξ†TiξTi) + ḡ21tr(ξ
†Y ξY )− ḡ′21 tr(ξ†Y ′ξY ′)

)
. (12)

Here the effective couplings ḡ2, ḡ21 and ḡ′21 are equal to the product of the corresponding
gauge constants squared and some spectral integrals. Note the difference in the sign
between the contributions of the dynamically broken and unbroken gauge interactions [11,
12]. Decomposition of VH = −∆LH in the region of weak fields (|φ|/F � 1) gives the
Higgs potential up to O(1/F2). Note that the Higgs boson is naturally expected to be
light in the scheme.

As for the Yukawa interactions, Leff includes three ingredients required for their
appearance: the chirality changing mass terms of the heavy vector-like fermions (m =
O(F)), the Goldstone interactions of these fermions (∼ Dµφ/F), and, finally, the weak
gauge mixing of the light chiral and heavy vector-like fermions. So, the loop corrections
may lead to the appearance of the symmetry violating effective Lagrangian like Eq. 12.
Its decomposition can be shown to result in the nonderivative Yukawa couplings of order
O(g2/(4π)2). More details can be found in ref. [5].
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4. Vector boson dominance of gauge interactions

Hidden local symmetry. Being a nonlinear model G/H, the NSM is equivalent to
the model with linearly realized symmetry G × Ĥloc [26]. Here Ĥloc 
 H is the hidden
local symmetry of the original NSM with the appropriate auxiliary gauge bosons. In the
context of the minimal NSM the phenomenon of the hidden local symmetry has been first
studied in ref. [6]. The essence of the latter one is as follows.

In the linear model, the field variable is the element of the whole group G that can be
parameterized as

ξ̂ = ξh, h ∈ H. (13)

The following transformation law under g × ĥ(x) ∈ G× Ĥloc takes place:

g × ĥ(x) : ξ̂ → gξ̂ĥ†(x). (14)

The linear model describes dynamical/spontaneous symmetry breaking G× Ĥloc → H,
with the total local symmetry being broken as Iloc × Ĥloc → ISMloc = SU(2)L × U(1)Y .

To construct the Lagrangian of the linear model one has to introduce the modified
1-form ∆̂µ = 1/i ξ̂†D̂µξ̂, with D̂µ being now the derivative covariant both under the

intrinsic gauge symmetry Iloc and the hidden local symmetry Ĥloc. Let us again divide
∆̂µ into two parts: ∆̂‖µ and ∆̂⊥µ. Under G × Ĥloc the longitudinal part ∆̂‖µ transforms
homogeneously as in the original nonlinear model, and so does now the transversal part
∆̂⊥µ. It is precisely the auxiliary vector fields Ŵ i

µ and Ŝµ, corresponding to Ĥloc which

make the transformation of ∆̂⊥ homogeneous. In the unitary under Ĥloc gauge, i.e. at
h ≡ 1 in Eq. 13, the modified 1-form looks like

∆̂‖µ = ∆‖µ,

∆̂i⊥µ = ∆i⊥µ − ĝŴ i
µ, (15)

∆̂0⊥µ = ∆0⊥µ − ĝ1Ŝµ,

where ∆µ is the 1-form present in the original minimal NSM, ĝ and ĝ1 being some new
strong coupling constants (supposedly, ĝ2/4π = O(1)).

In the effective Lagrangian of the linear model, the new terms appear. They are
related to the orthogonal part of the modified 1-form. Here are some of the appropriate
terms in the gauge sector:

LG =
λF2
2

(∆̂i⊥µ)
2 +

λ1F2
2

(∆̂0⊥µ)
2 + · · · , (16)

and for the chiral fermions they are

LF = ψ̄σµi(∂µ + iĝŴ i
µT
i + iĝ1Ŝµ)ψ

+ κψ̄σµT
iψ∆̂i⊥µ + κ1ψ̄σµY ψ∆̂0⊥µ + · · · . (17)

Here λ’s and κ’s are free parameters. It is to be noted that the matter fields ψ trans-
form now only under Ĥloc. The modified covariant derivative for them contains only the
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composite Ŵµ and Ŝµ, but not the elementary Wµ and Sµ, the latter ones entering only
through the nonminimal interactions.

Introducing the vector fields in such a way without kinetic terms is just a formal
procedure. But we believe that the required kinetic terms are developed by the quantum
effects, and the new composite vector bosons become physical. This takes place, e.g.,
in 2- and 3-dimensional nonlinear σ-models [27], as well as in the hadron physics as an
accomplished fact.

Vector boson dominance. From the Lagrangian of the linear model, one can read off
the Lagrangian terms of the vector boson-current interactions:

Lint = −gW i
µ

(
(1− λ)J iµ(φ) + κJ iµ(ψ)

)
−ĝŴ i

µ

(
λJ iµ(φ) + (1− κ)J iµ(ψ)

)
. (18)

Here J iµ(ψ) = ψ̄γµT
iψ and J iµ(φ) = φ†iτ i/2

↔
Dµ φ are the usual SM isotriplet currents,

with Dµ being the SM covariant derivative. To these isospin terms, one has to add the
similar hypercharge isosinglet terms. Impose now the natural requirement that all the
composite particles φ and ψ interact directly only with the composite vector bosons Ŵ
and Ŝ, but not with the elementary ones W and S. In other words, this is the well-known
hypothesis of the vector boson dominance (VBD). This requirement allows one to fix the
free parameters: λ = 1, κ = 0 and similarly for the isosinglet parameters.

The terms (∆̂i⊥)
2 and (∆̂0⊥)

2 describe the mass mixing of the elementary and composite
gauge bosons, namely, W with Ŵ and S with Ŝ. Diagonalizing these terms one gets two
sets of physical vector bosons: the massless isotriplet and isosinglet physical bosons W̄ i

and S̄, as well as the massive ones
¯̂
W
i

and
¯̂
S with masses of order F . Due to the heavy

physical vector boson exchange, the new low energy effective current-current interactions
appear in addition to that of the SM:

L(V BD)int = − 1

2F2
(
J iµ(ψ)J

i
µ(ψ) + η1J

0
µ(ψ)J

0
µ(ψ)

)
− 1

F2
(
J iµ(ψ)J

i
µ(φ) + η1J

0
µ(ψ)J

0
µ(φ)

)
. (19)

Here η1 is a free parameter, related to the original minimal NSM. Note that the VBD does
not affect the low energy Higgs boson self-interactions, the latter ones being determined
by the original minimal NSM alone:

Lint(φ) = − 1

F2
(1
3

J iµ(φ)J
i
µ(φ) + J0µ(φ)J

0
µ(φ)

)
. (20)

All these expressions are valid only at energies
√

s� F .
To resume, the unified compositeness plus the VBD prescribe the two-parameter set

of the universal residual fermion-fermion, fermion-boson and boson-boson interactions,
with their space-time and internal structure being fixed including sign. The unified com-
positeness scale F is expected to be in the deca-TeV region. Hence, the TeV energies are
required to probe these new contact interactions.

11



5. Universal dominant residual interactions

VBD of electroweak interactions. We have investigated the potential to test the
hypothesis of the VBD of electroweak interaction at the future 2 TeV e+e− linear collider
via e+e− → f̄f [7] and e+e− → ZH, W+W− [8]. We chose for studying a set of integral
characteristics: the relative deviation ∆ in the total cross-sections from the SM values,
the forward-backward charge asymmetry AFB, the left-right polarization asymmetry ALR
and the mixed asymmetry AFBLR .

We have calculated these observables for the processes e+e− → µ+µ− (τ+τ−), b̄b, c̄c,
jet jet and for the Bhabha scattering e+e− → e+e− as functions of the parameter η1 for
the various values of F . The general results of these calculations are as follows. For all
the processes (except Bhabha scattering) all the asymmetries have the similar behaviour.
First of all, there exists a particular value of η1 = tan2 θW 
 0.3 when all the asymmetries
coincide with those of the SM. The only way to unravel the contact interactions in this
particular case is to study directly the total cross-sections. Another particular value of
η1 = g21F2/s provides the best case for studying the contact interactions, when all the
asymmetries in all the processes saturate their maximal values.

To evaluate the statistical significance of the observed deviations we have considered
the total cross-sections. Fig. 1 presents the reach for the scale F at 2σ level (95% C.L.)
via the total cross-sections in the various f̄ f channels.

Fig. 1. The reach at 95% C.L. for the compositeness scale F , vs. the parameter η1, via studying
the total cross-sections of the processes e+e− → f̄f .

12



To this end we took into account only the statistical errors and accepted the integrated
luminosity

∫ Ldt moderately to be 20 fb−1. In the case of the Bhabha scattering e+e− →
e+e− an optimal value of the cutoff, equal to 0.85, was chosen. Here the sensitivity is
maximal due to the maximal suppression of the t-channel peak at the statistics still high
enough. It is seen that in the processes e+e− → f̄f the VBD can be tested for the unified
substructure scale F up to O(50 TeV).

For the processes e+e− → ZH and W+W−, it proved to be of importance to consider
the polarized cross-sections σ(Pe), with Pe denoting the polarization of electron beam (the
positron beam was taken to be unpolarized). So, we have studied the relative deviation
∆(Pe) in the polarized cross-section from that of the SM. In the cases of both ZH and
WW pair production one has |∆(−1)| � |∆(+1)|. Hence one is lead to conclude that it is
preferable to operate with the maximum right-handedly polarized electrons to observe as
large deviations in the total cross-sections from the SM values as possible. The advantage
of the right-handed polarization can be seen, e.g., from the picture that presents the scale
F versus the parameter η1, attainable at 95% C.L. (Fig. 2).

Fig. 2. The same as in Fig. 1 for the processes e+e− → ZH , +W− with the various electron
polarizations Pe (mH = 200 GeV).

Thus, using the right-handed polarized electron beam the VBD can be tested up to
the scale F of the order of 25 TeV in the e+e− annihilation into boson pairs. Here
the calculations for the W+W− pair production have been made under the instrumental
cutoff | cos θ| ≤ 0.8. In addition, an optimal cutoff in the forward direction, whose sense
is similar to that in the forward Bhabha scattering, has been found to be cos θ ≤ 0.3.
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Anomalous triple gauge interactions. In addition to the VBD interactions, a lot of
other “low energy” residual interactions is allowed in the scheme of the unified compos-
iteness. In particular, the exotic triple gauge interactions (TGI) [28] are conceivable too,
and can contribute to the W+W− pair production. The question arises as to what extent
the two types of new interactions could imitate each other.

The anomalous TGI should originate from a kind of the SM extension. Here, the SM
symmetry SU(2)L ×U(1)Y could be realized either linearly or nonlinearly. In the case of
the nonlinear realization (being still linear on the U(1)em subgroup), the nonlinearity scale
Λ is just the SM v.e.v. v. Thus, this kind of extension has nothing to do with the unified
compositeness we consider. On the other hand, for the linear SM symmetry realization
the scale Λ is not directly related with v and could be as high as desired. Thus, we chose
it to be the unified compositeness scale F = O(10 TeV).

All the conceivable linearly realized residual interactions are described by the SU(2)L×
U(1)Y invariant operators built of the SM fields [29,30]. All the operators which are
relevant to the anomalous TGI vertices are naturally expected to be O(g) or less in the
gauge couplings, but one exception, namely, OWS. The latter stems from the nonlinear
generalization of the field strengths in the NSM. The similar gauge kinetic terms of the
isotriplet W and isosinglet S bosons have no gauge couplings. So, the same must naturally
happen for OWS, for its origin is of the same nature.

Thus, we have retained the OWS operator alone and have chosen the proper effective
Lagrangian to be

Leff = C

2

1

F2OWS ≡
C

2

1

F2φ
† τi
2

φW i
µνSµν , (21)

where C = O(1). With account for all the contributions from this operator we have
found that the deviations from the SM predictions even in the most enhanced TGI case
are much smaller than those in the VBD case. So, the VBD is in fact dominant.

Conclusion

The scenario of unified compositeness of leptons, quarks and Higgs bosons, with the
unification of the Higgs and Yukawa interactions as residual ones, is the viable alternative
to presently popular scenarios of New Physics with the elementary point-like fields and
fundamental interactions. This scenario allows one to have a fresh look at the old problems
and to put forward the new ones. The naturally preferred Deca-TeV compositeness scale
makes the scenario amenable to experimental study at the future TeV energy colliders. If
realized in Nature, this scenario would open completely new prospects for the whole high
energy physics development.
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