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Abstract

Klishevich S.M. On Redefinitions of Variables in Gauge Field Theory: THEP Preprint 97-40. —
Protvino, 1997. — p. 13, refs.: 4.

In this paper, for massive fields of spins 2 and 3 with non-canonical Lagrangians, we build
Hamiltonians and full systems of constraints and show that the use of derivatives in a redefinition
of fields can give rise to a change of the number of physical degrees of freedom.
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Introduction

At constructing various kinds of field theory models it is often useful to redefine initial
fields for the theory to be of simpler and more understandable form. Such substitutions
of variables must not change physical contents of the model i.e. the number of physical
degrees of freedom must remain the same as before the substitution. In this, of course,
it is meant that a modification of Poincare group representations didn’t happen i.e. for
example, a massive vector field does not turn into three scalar fields. One has often to
perform such type of redefinitions in theories, which describe a physical particle with some
set of fields, see Ref. [1,2]. So, for instance, in [2] when describing massive spin-2 particle
propagation in a homogeneous electromagnetic field the result independent of space-time
dimensionality has been obtained using a redefinition of second rank field.

One can divide all substitutions of variables into two kinds. The first kind are the sub-
stitutions of variables without derivatives i.e. schematically ®, = ME{®p + FE®pd +
..., where M% is non-degenerate matrix. The second kind are substitutions with deriva-
tives i.e. they have form &', = MY ®p + HfOPp + ... . In this paper using the case of
free massive spin-3 field, we show that the number of physical degrees of freedom of the
theory can change, if one uses derivatives in the redefinition of fields.

To begin with in Section 1 we consider the free massive spin-2 field that is described
with a non-canonical Lagrangian' derived from the canonical form with the redefinition of
the second rank field. We build a canonical Hamiltonian and a full system of constraints
(all the constraints are of the first kind). A simple calculation shows that the number of
degrees of freedom remains the same at transition to the non-canonical form.

In Section 2 we are building a full system of constraints and canonical Hamiltonian for
a non-canonical Lagrangian, which describes free massive spin-3 field and which is derived
from the canonical form with the redefinition of fields without derivatives. In this case
all the constraints are of the first kind and the number of degrees of freedom remains the
same as in the canonical case.

N

'We call a Lagrangian of free massive spin-s field as canonical, if it breaks into the sum of Lagrangians
for massless fields of spins s, s — 1, ..., 0 in the massless limit, see [2].
2Describing systems with constraints, we use standard Dirac procedure, ref. [3,4].



In Section 3 we consider the field of spin 3 in the non-canonical form that has been
obtained from the canonical one with a redefinition of fields with the use of the derivative.
Building a Hamiltonian and full systems of constraints, we show that in this case the
number of field degrees of freedom increases. In this the constraints of the second kind
are present in a full system.

1. Free Massive Field with spin 2

At first, let us consider the spin-2 field to compare with the case of spin-3 field.

We consider the flat Minkowski space M* with metric signature (1, —1,—1, —1). Latin
indices take the value k,1,... = 0,1, 2,3 and the Greek ones — the value o, 3,... = 1,2, 3.
For convenience we will not make difference between upper and lower indices, while the
summation over the repeated indices will be understood, as usual, i.e.

We will describe the free massive field of spin 2 with the gauge invariant Lagrangian
of type

Lo = 8m7?,k18mh,kl — 28khk18m77,1m -+ (8khk1817?, -+ hC) — 8k7z8kh
+ 2 (8k7?,k181g0 — 81718“0 -+ hC) — 2 (8ll_)k81bk — 8lbk8kl_)l)
+ 2m (8ll_)khkl — 8kl_)kh -+ hC) — m? (Bklhkl — Bh) , (1)

where hy; is a symmetrical tensor and h = g*hy,.
The gauge transformations of the fields have the following form:

Shi = 2005,
ob, = 8}{/] + m{k, (2)
dp = mn.

Lagrangian (1) has been chosen in a non-canonical form (with the off-diagonal kinetic
part) in order that the Goldstone part (proportional to mass) for the field hy be absent
in the transformations. The transformations for h has the form dhy = 204§ + mgun,
where gi; is the metrical tensor, in the canonical form with the same normalization of
fields. Therefore, to pass to Lagrangian (1) and transformations (2) one need do the
following substitution of variables A’y — hiy — gri(p-

Further on, for convenience, we put m = 1.

Passing from Lagrangian (1) to the Hamiltonian formalism, we get the following five
constraints calculating the momenta

—
—

)
}oLz = p}oLzO - alh’ﬁ/@ + 28,3}7’04,3 + 280490 + 8ah007

C

(1)

Ch = pg() - 8aha07 (3)
(1)

Cb = pg - thaoz-



Let us define the Poisson brackets in the following form:
{7 (), 0k, )} = 60 (x—y),

{n* (2) 5 (W)} = &5 (x—y),
{n™ (@), po0 (W)} = d(z—y),
{0 (@), 05 (W)} = 95 (z—w),
{t(2). 05 ()} = d(z—y),
{o(@), 0" (W)} = d(x—-y), (4)
where we use the notation 65 (x —y) = 05650 (x — y).

The Poisson brackets of constraints (3) equal zero between themselves. At that the
Hamiltonian obtained from (1) has the following form:

) 1 1 1. 1 1
Ho = Dhgpls — gp,’é,@pﬁa + gpﬁap“’ + gpﬁap“’ + ipipi + < PP*

1 1. - - 1
+ gaahfaﬂﬁgﬁ + gaahfaﬂpgﬁ + aabﬂpf; + aabﬂpf; - gaahaﬂp(p

1 - _ _ _
- gaozhfaﬂp(p + hfozﬂpgé + haoﬁg - 8ah008,8ha,8 - aﬂhfﬂﬂaahfa,@

+ OhaaOshoo + OahooOahss + gaahaoaﬂﬁgo — 205h0005ha0
+ Oy hapOyhas + OhaaOyhgy + 0ghonOuhas — Oghaalshyy (5)
— 20,h5,0ahap — 20090ahoo — 200@0ahoo + 205haads@

+ 205k a0 — 205P00has — 20ahasdsp + 205ba0sba

— 205b00abs — 20abahoo — 200bahoo — 205bahas — 205bahas

+ 200bahps + 20abahiss + 40abohao + 40abohao + haphag
—+ Boohaa -+ Baahoo - B,@ﬁhfaa 5

where Vo5 = —gap and Apa.. = 7P Aug....

In order that the Hamiltonian equations be equivalent to the Lagrangian ones fol-
lowed from (1), one has to add the first step constraints to the Hamiltonian, but since
the constraints commute between themselves one needn’t add it to Hamiltonian for the
calculation of second step constraints.

At the second stage we get 5 second step constraints, calculating the evolution of first
step ones

—
N
~

Ch = 20spks — ph — 2Ahag — 40abo

2)

C" = — Ahaa + Oaphas + 280 — 204ba + haa (6)
C” = 0Oup,, — P? + 20,hao -



The Poisson brackets equal zero among the second step constraints and between them
and the first step ones.

The brackets between constraints (6) and Hamiltonian (5) equal either zero or linear
combinations of second step constraints. That is, new constraints do not appear at the
third stage. Hence (3) and (6) form the full system of constraints for this theory. In this,
all the constraints are the first kind ones.

It is easy to compute that the number of degrees of freedom equals five in this case.
This agrees with the formula 2s + 1 for a massive particle of arbitrary spin s.

2. Free massive field of spin 3: substitution of variables without
derivatives

As in the previous Section we will describe a free massive complex field of spin 3 with
the gauge invariant Lagrangian in the non-canonical form

Lo = =100, @pimOnDrim + 300k i OnBimn — 30 (O PrimOmP1 + h.c.)
+ 300120125 + 150, 8105 D, — 6 (20 Lt Ombr — 20 P11
— 01O,y + hoc.) + %albka,j)l + 300 hi1Om it — 600,y Orp i (7)
+30 (OthOkhis + h.c.) — 300xhdkh + 5 (A1@0kchi — xhdh + h.c.)
— i@kgﬁﬁk@ —15 (28m7zkl<1>klm — 40 hy ®; + Oxh®y + h.c.)
_ g (0kp®s + hc.) — 18 (9bih + hc.) + 5 (2B i
— 60Dy, + 9hh) (8)

where ®;,,, is the symmetric tensor and @, def G
The transformations of the fields for this Lagrangian have the following form:

0Prim = 304wim) — 29(kiOmy,

Ohr = 2008 + wi, (9)
dby, = 20kn + 5,
op = 12n,

at that ¢gMwy = 0.

The transformations of rank 2 and 3 fields have the form of type 6® = dw + g & and
dh = 0 + w + gn. It is evident that transformations (9) looks simpler, moreover the
Goldstone part for the field ®y;,, is absent in the transformations. This facilitate an
analysis of the theory at switching on interaction. The transition from the canonical form
to Lagrangian (7) and transformations (9) has been reached with the fields redefinitions
of type

(10)



In order to show that the number of degrees of freedom remains the same we will compute

the constraint algebra of theory (7).

Calculating the canonically conjugated momenta we obtain 14 first step constraints

(1) 6 36

Cb = gpg)oo - pg - 1285(1)775 + 2487(1)700 + gawbw

(1)

C" = —phy — 45P.50 + 15@g0 + 300, k0 + 18Dy,

(1)

Cg = - pgo + 60®aryy — 600y hay + 300ahyy — 300ah00 — 50ap, (11)
(1)

Co = —DPaoo + 300, Payo — 3000P+y0 + 3000 Pooo + 120, bo,
L P P
Cag =~ Papo — NapPooor — 300y Pagy + 3000 Pg)yy — 3000 Pg)00

-+ 30’)/04/385(1)775 — 60’)/04/387(1)700 — 128(abg) — 12704/387b7 .

Let us update Poisson brackets (4)

5(?53) (z—y),

6(31//6) (37 - y) )
6% (37 - y) ;

d(x—y) . (12)

The Poisson brackets of all the first step constraints equal zero among themselves.
Now we need to compute the canonical Hamiltonian. The result is rather cumbersome
even for free field, therefore, we place the concrete expression for the Hamiltonian in

Appendix 1.

From the condition of conservation of the first step constraints, we get the second step

constraints

— Oypb — 0.1pl — 5.4bg + 6p¥ — 240D 4 1202;P,50

+ 120*®gg0 + 7.20%by — 330, h0 + 13.5P.,,0 — 4.5Pq0,

+ 45h.y., — 45hgp,

- 30804 (1)0007

3Do00 — 300%heys + 30025hys 4 50%p — 6005P-ys + 900, P~

— 20,pl., + 5pl, + 600 hag — 600, Paro + 300, Pn0

(13)

30apgo0 — 300° Py + 30025 Pays — 60025P-5 + 9092, P00



+ 120%bo + 2492, by + 30y — 6003 hay + 15065y
— 450, hoo — g@ago,

Crs = =302, + Ply + 300°Pago — 3002 ;P00 + 3007 380
— 30703025P~50 — 307030 Pooo + 6076307 P00 — 1202 b
— 247,30%bg + 6000 hg)0 + 907050500 — 45Ya3P40
+ 15748%P000 + 187asbo -

The second step constraints have zero brackets among themselves and between them
and the first step ones. New constraints do not appear at the third stage. Hence (11)
and (13) constitute the full system of constraints. In this, all the constraints are of the
first kind.

It is easy to compute the number of independent field degrees of freedom. The number
of all field components equals 35 and number of the constraints 28, therefore, the number
of independent degrees of freedom equals 35 — 28 = 7. Thus passing to the non-canonical
form (7) with the substitution of variables (10), the number of degrees of freedom has not
changed.

3. Massive spin-3 field: substitution with derivatives

When looking at transformations (9) a desire arises to simplify the ones making a
third rank field shift of type
P — D+ gdyp (14)

so that the transformations for ® remain only of type dw. Besides, simplicity of the
transformations gives us another advantage. Since the metrical tensor is absent in the
transformations after such shift, the Lagrangian does not depend on the space-time di-
mensionality.

However the Lagrangian becomes the third degree one in derivatives. The question
emerges whether the number of physical degrees of freedom changes at that.

Let us show that the number of degrees of freedom increases by one at the redefinitions
of type (14).

In order to reduce the number of derivatives in the Lagrangian we introduce an aux-
iliary field vg. In this, the Lagrangian acquire the following form

Lo = (28mq>klm8ﬂ_]k — 20,9001, + 20,P1.0:0; — 30,900, + hc)
- 108nq)klm8n(i)klm + 308nq)kln8m(i)klm —-30 (anq)kmnam(i)k + hC)
+ 308mq>k8m(i>k + 158mq>m8k(i>k —6 (28mq>klm81l_)k — 28mb18m(i>l



— ObmOu®y + h-c.) + 300 hraOmbog — 600, hkom Oiless

+ 30 (Omhim®h + h.c.) — 300h0uh — 15 (20, st Drim

— 40, hien @ + Oph Py + h.c.) + (Xk (Orp — vg) + h.c.)

+ 10®m Pt — 30D, Dy, (15)

Correspondingly, gauge transformations (9) after shift (14) and entering the auxiliary field
have the following form:
0Prim = 30xWim),

Ohw = 200&) + wi,

o0by = 20km + 5, (16)
(S’Uk = 128k7],

dp = 12n.

Passing to the Hamiltonian form of theory (15), we obtain the following constraints
at this stage

(1)

= m,

(1)

cy = P

(1)

C(p = p“’ — )\(),

(1)11 1 b v

c - gp() — Py — 285(1)'776 + 287(I>700’

(1) 1, .

Co = ~gPa"Pat 206aPy0 — 20aPooo,

a), \

C" = — Dy — 45P, 0 + 15Pgo0 + 300, A0,

(1)

C‘}; - o pZO + 60(1)0"7’7 - 608'yha'y + 30804}7/77 - 308(1}7,00’
(1) .

Ca - - paOO + 308’)/@(170 - 3080‘@770’
(1)

Cgﬁ = - pg:,@o - 3p§)007a,8 - 3087(1)04,87 — 308(aq>ﬁ)00 + 308(04(1),8)77

+ 3085(13775’)/04/3 — 6087(13700’)/04/3 — 128(abg) — 12871)7%/3
+ 28(avg) + 687’07’)/04/3 . (17)
Since unlike (7) the additional variables, namely, the auxiliary field v; and the La-

grange multiplier A, arise in Lagrangian (15), therefore, one has to update the Poisson
brackets

{vo (z),pp ()} 6(z—y),

{va (z),p5(y)} = das(z—y),

Mo (@),m0 )} = d(x—y),

e (@), 03 (1)} = dap(z—1y) . (18)



There are only two the non-trivial brackets among the first step constraints

(@), Wy =b6@—y) (19)

hence, besides first kind constraints, the second kind ones emerge in the theory.
Canonical Hamiltonian obtained in this case is placed in Appendix 2.
From the condition of the first step constraint conservation, we obtain the second step
constraints

)
A(>)\ = 804)\047
)
A(p = Yo,
Ca = —04P + Va,
@)
C = )\07
2)
CZ = )\ou
(2)h o b 2 2
C" = 3P0 = 300%hyy + 30055hys — 3005855 + 300, D100,
(Q)h h b 2
Ch o= —20,pk, + 5pl + 600°hay — 600, Paryo + 3004Po0
- 30804(1)0007
2)
Co =+ 30aDhye — 300°Pary + 30025Pars — 60025Poys + 9002, P00
+ 120%by + 240%,by — 20°vs — 10020, + 30Pqyy
— 600, hay + 1500k, — 4594h00,
2)
Crs = — 30,02, + Py + 300°@ago — 30025Poo0 + 30025Pn0

-+ 60’)/04/@82(13770 — 30’)/04582(13000 — 30704/38'35(1)’750 — 1282,8b0
- 24704,882b0 + 682/3’00 + 67ag82vo + 608((1}?,@0
+ 907050710 + 15708P000 — 45YasPrqo - (20)

The first and second step constraints besides (19) have the following non-trivial Poisson
brackets

[ @), W = 6@—y),

(0% () A (W)} = 6 (x— ),

[0 AW} = Guslz— ),

[ @) )} = —busla—y) . (1)
where 9% = 70~



At the third stage new constraints do not emerge, but the partial determination of
the Lagrange multipliers happens

Al = — Bavo, A} =0.

(e} (e}

Thus, we have 15 7non commutative” constraints These are the first step
1) () (1 ) (2) (2
constraintsC'?, C'%, C') C” and the second step ones C'2, C'¥ C'Y. Among these con-

straints there is a hnear combination, that has zero brackets with all other constraints,
e., it is the first kind constraint
(1) (1) (2)

C° + 0.Co+ C,
thus, among 15 "non-commutative” constraints, there are only 14 second kind ones.

Having computed the constraint algebra, let us calculate the number of degrees of
freedom. The number of all field components in theory (15) equals 20+10+4+1+4+4 =
43. In this, there are 22 first and 20 second step constraints. Among them, there are
28 first and 14 second kind constraints. Hence the number of degrees of freedom for this
theory equals 43 — 28 — 3= = 8 and not 7 as for the theory describing the massive particle
of spin 3.

Thus, one can conclude that the presence of derivatives in field redefinitions, as in (14)
for example, can result in the change of the number of degrees of freedom in the theory.

Conclusion

Thus, in this paper we built the canonical Hamiltonians and full systems of constraints
for the free massive fields of spin 2 and 3. We have shown that at substitutions of variables
with use of derivatives the number of physical degrees of freedom in theory will be able
to change. Of course it is not mean that such changes always happen. It implies that the
use derivatives in substitutions of variables requires more careful examination.
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Appendix 1

The canonical Hamiltonian for the Lagrangian (7) has the following form:

H

1 —P (6] 1 —P (6] 3 —d (2} 1 —p b 1 b P

gpooopooo + Epa,@'ypa,@'y - %p,awpaa,@ + %paa,@p,@ + %pﬂpaa,@ (22)
L oy [ L Loy Ly o,

+ — - _ 4 w4 L P
30pa,gpa,g 720P,g,gpaa + 12pwp + 12pwp + 6p°‘p°‘ +D'p

— 303PaasPooo — 395PaasPooo + 30aPa00Dooo + 39aPacoPooo
3 ~ 3. = 6 ~ 6. -

+ gaaq)aﬂﬂpgyy + gaaq)aﬂﬂpgyy + gaabapg)OO + gaabapg)ﬂﬂ
9 _P 9 T b 7 —h 7 1 h

+ %80450]7&/3/3 + %804()0])04/@/@ + ﬂaahfaﬂpﬂﬂ + ﬂaahfaﬂpﬁﬁ
1

1. - 6 6 _ - 5
— 20, Pupopl — =00Pagop’ + =0ubol’. + =0ubop’ — =0uhaod?
2 CUZC sops + 5 Jal0Pa + 5 0abola — 3 0P

5, - 7 - 7 _
— Z04haop? + — Pooop” — P’ d..50p" ® 500"
5 op” + 18 2000l + 18 2000l + LapoPos T Pasolag

- 7 3 - 3 O =

— —Dpaopls — —Poaol — Dopt —bopl,, — = Pooop?
16 0Pss 16 0Pgs + 10 0Paa T 10 0P oo 1 000D
) 15 15 9

- Zq’oooﬁw + Z(i)aaﬂp(p + Z(I)aaﬂp(p + 550]0“’ + gboﬁw
+ 3005 P 00505P5 — 3005P a0y P00 — 1205P aas0- b
+ 1005P 0,5, 05P 0y + 3005 @ oasd5®sr5 — 300, Paasd Ppss
+ 300, P00, Ppo0 + 120, P o000 — 3005P5,500P sy
+ 300, 35600Pasy — 300, P50000Pasy — 1204Pas,0,bs
— 1205Pp050,by + 120, @0p50,bs — 120, Py p,0-b5s

— 3005P0000- P10 + 3005P 0000510 — 3005P 00005 Pooo
— 1205Pn0005bo + 240, ®5,000Paso — 3005P+1000Paso0

+ 3005P0000aPaso + %@@aﬂoaﬂz}o — 300, P 0,500, P a0
— 1205®P0005b0 + %8@&@8@0 — 1205 40005b0

— 3005P0000- Pasy + 3005Pa0005Pary — 1205P 000504

— 308aq>a0087@g/g7 + 128aq>a008gl_)g + 128aci>a008gbg

10



+ 2000 P 00000 Pooo + 1206 P000ubo + 3004 Po0003Pas0

— 3000 P0000aPss0 + 1200 Po000abo — %agbaaaz‘)g

+ %@baaﬂz‘w - %&J)O&J)O + 300,050 has — 3005 has®asy

— 300, hap®Pasy + 300shaa0yhsy — 3005haa0shyy + 505haa0s®

+ 3005haa0shoo + 1595haa®s00 — 1505haa®sry — 1805haabs

— 600, h5,00hap + 3005k, 00has — 505P00has — 3005ho00nhas

— 6000 haPg00 + 6000h05P sy + 55haadsp + 1505haa® 00

— 1505haa®p,y — 1805haabs — 595000has — 6000has® 00

+ 6000 has® sy + %%hwagﬁgo - %%hwiooo - %8ahaoégﬁo

63 - _ _
+ Zaaha()b() — 608gha08gha() -+ 608gha0q>ag0 + 608gha0q>agg

325 . - 255 - 63 . - 1
+ ?804}7«10(1)000 — ?%haoq),@,@o + Zaah/aﬂbﬂ — Zaasoaa@

_ 5 _ 5 - 5
— 50ap0ahoo — 580490(1)0400 + 580490(1)04,8,8 — 50a$0ahoo — 580495(1)0400
5 _ _ _
+ §8a35¢agg — 450, hoo P oo0 + 158ah00q>agg + 189, hoobe,

— 3000 h000shas + 300ah000ahss — 4500ho0Pa0o + 1500ho0Pass

_ _ - 255 -
+ 188ah00ba + 10(1)04,@7(1)04,87 + 30(1),@00(1)0«1,8 - E¢OOO¢O¢OLO
165 - 63 255 - 45 _ 45 -
—Pgpod —®o00b0 — — P00 P000 — — Panobo — — Paod
+ 16 L 000000 + g 000% 16 0000 — 2 0% — g 000
_ 45 _ . 63 -
— 30P3y Paas + E(I),@,@O(I)aao + 30®453Pa00 + §q>ooobo
_ _ - - 81-
+ 45hoohaa — 45hoohoo + 45haahoo — 45hsshaa + %bobo.
Appendix 2
Canonical Hamiltonian, corresponding to Lagrangian (15), has the form
1 3 1 1_ 1 _
H = Epgﬁ'ypgﬁ'y - %ﬁg’wpi’ag + gpg)oopg + gpgpg)oo + %pga,@p,% (23)

1—b¢> 1—hh 1—hh 5—bb 1—bb
+ 20pﬂpaaﬂ + 30paﬂpa,@ - 60pﬂ,@paa - 36p0p0 + 6papa

11



- aﬁq)aaﬂﬁg)oo - aﬁéaaﬂpg)oo - aa(paﬂﬂﬁg)oo - aa(i)aﬂﬂpg)oo
3

5

_ 3, = 1 _ 1. -
804(1304,8017?77 + gaaq)aﬁﬂpgyy + 5804}7/040])/2/6 + §8aha0pgﬂ

1= 1 _
+ Zq’ooopga + Z(I’oooﬁga + Pogopls + Pasobls — Z%aopﬁg

3 N 5 _ 5, = 1 _ 1. =
- Z(I)aaﬂpgﬂ - gaﬂq)aa,@pg - gaﬂq)aa,@pg - 5804(1)04,80])% - 5804(1)04,80])%

10 10 . - _ 1
+ ?804(1)0400138 + gaaq)aﬂﬂpg + aozbozﬁg + aozbong - 5804@&]38

— % a@apg — %Gaﬁopg — %Gavoﬁg — 20, P00000V0 — 200 Po000aT0
+ 205P00005v0 + 205Pa000500 — 205Pa000avs — 205Pa000.05
+ 600 Pa000505 + 600 Pa0005vs + 205Paa005V0 + 205Paa0dsv0
— 40P 0500570 — 400 Pap005v0 + 206 P sy 055 + 200Pap, 0405
— 20, P0050,05 — 20,P 0050505 + 20, PaapOs0y + 20, Paasdsvs,
+ 200600000 Po00 — 3005Paa0053Pooo — 3004 Po000a®ss0

+ 3004 P00005Pas0 + 3005 P0000aPaso — 8095P 50000 Paoo

— 30050000~ P50 — 30059004 Paso + 3005Paa005P-0

+ 240, ®5,000Paso — 300, Pus00,Paso + 1005P 400, P00

+ 1000 Pa000- Py — 3000 Pasr05Ps00 — 3005Pa000, Pasy

+ 300, 3000y Paas + 3005Pa0005Paryy + 1005Pas,05Pasy

+ 1005®P 00505P15 — 3000 Pup,05Ps,5 + 3000 Pus, 0, Ppss

+ 3005P 5,50, Poas — 300, P 5550, Paas + 1204 Pooo0abo

+ 1204 P0000abo — 1205P0005be — 1205P00005ba

— 1204Pa0005b5 — 1200 Pa000sbs — 1205Paa0dsbo

— 1205P0a005bo + 1204 P 45003b0 + 1200Pas0dsbo

— 128,1(1)0‘/3787(_% — 128,1&)%3787()/3 + 1287(13,1&/387(_)/3

12



-+ 1287(3&&/387()/3 — 308ahag8g7100 — 308ah008g71ag
+ 3005h000shan + 300ah000ahss — 6005ha005ha0
-+ 158aha08g}_1g0 + 3087}1&/38777,%3 — 608aha/38777,g7
+ 3000 hasOshyy + 3005 ha,05haa — 3005h,0shaa
75 = 75 . - - _
+ EaahOLOCI)OOO + EaahOLOCI)OOO — 4500700 P00 — 4500 hooPaoo
+ 1500 h00Pass + 1500ho0Pass + 6005ha0Pago + 6005ha0Paso
45 - 45 - - _
— ?&xhaofbg/go — ?&xhao(l)g/go — 6000 has®Ps00 — 6004 has®Ps00
-+ 158ghaa(i)g00 -+ 158g}_?,aaq)g00 — 3087}?,&/3&)&/37 — 30877?,,1/3(1)%37
+ 608,1}?,&/3&)/377 + 608a}_?,a/3q>/377 — 158ghaaci>g,y,y — 158g}_?,aaq)/g,y,y

35 - 45 _ 45 _ _
+ Z(I)OOOCI)OOO — Z(I’oooq’aao — Z(I)OLOLOCI)OOO + 30@300Paas

_ 45 _ _
+ 30(1)04,@,8(1)0400 — Z(I),H,HO(I)aaO + 10(1304/37(1)0‘/37 — 30(13577@&0‘/3

+ ’(_J())\() + ’005\0 — ’(_Ja)\a — ’Ua;\a + 804905\04 + 80495)\04 .

13



Kaumesuua C.M.
O nepeomnpeneneHNN IEPEMEHHBIX B KAJIMOPOBOUYHON TEOPUU IIOJIS.

Opurusan-MakeT HOOTOTOBJIEH ¢ HOMOMIbI0 cucTeMsl IATRX.
Penaxtop E.H.I'opusna. Texanueckuit penaxrop H.B.Opiosa.

Ilogmucano x mewaTn 20.06.97. dopmar 60 x 84/8. Odcernas neuars.
Ileu.t. 1.63.  Yw.-umsmar. 1.25.  Tupax 250.  3akas 1057.  Uumekc 3649.
JIP Ne020498 17.04.97.

THIO P® NucturyT Qusuku BHICOKUX SHEPTUI
142284, TIporBuro MockoBckoit 06
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