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We consider hadrons as relativistic straight-line strings with massive spinning point-like
quarks at the ends. We describe classical mechanics of this system and then quantize it. As a
result we have got a good description of the observed meson spectra.
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mY RASSMATRIWAEM ADRONY KAK RELQTIWISTSKIE PRQMOLINEJNYE STRUNY, NA KONCAH KO-
TORYH NAHODQTSQ TOˆEˆNYE MASSIWNYE ˆASTICY SO SPINAMI. oPISANA KLASSIˆESKAQ MEHANI-
KA TAKOJ SISTEMY I EE KWANTOWANIE. w REZULXTATE POLUˆENO HORO[EE OPISANIE NABL@DAEMYH

SPEKTROW MEZONOW.
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1. Introduction

By hadrons here we mean mainly mesons consisting of a quark and an antiquark. But
all the ideas of this report can be applied to baryons consisting of a quark and a diquark.

To describe heavy-quark mesons one can use a potential model. But the notion of a
potential fails for light quarks. On the other hand quantum chromodynamics suggests
that the self-interacting gluon field of a quark and an antiquark forms a narrow tube or a
string between them when they are far enough from one another, which is responsible for
their confinement. This idea does not depend on the quark masses and will be considered
here.

So, we consider a meson as an extended relativistic object formed by a string and
point-like particles attached to its ends. First we consider classical mechanics of such a
system and then canonically quantize it. We propose to use successive approximations
starting from simple configurations of the string.

The simplest configuration is an open straight-line string (massless spinless quarks).
It has been shown that it gives a good description of the light-quark mesons lying on the
leading Regge trajectory [1]. Next approximation considered here is a rigid straight-line
string with massive spinning particles at the ends.

More complicated string configurations and quark oscillations may be responsible for
the mesons from daughter Regge trajectories, which are still not well known from ex-
periment. Of course, successive approximations should not exceed the accuracy of the
string model itself which may need a modification at some step. In any case, only those
configurations of the string should be considered which admit relativistic quantization.

To make our presentation of the relativistic mechanics of an extended object clearer
we start with a point-like spinning particle [2,3]. Then we introduce a straight-line string
and a more general object called a rotator, consider its Lagrangian and Hamiltonian
mechanics and perform relativistic canonical quantization. The application to massive
spinless quarks makes it possible to account for the difference between light-quark and
heavy-quark meson trajectories. As a simple illustration we give a formula for the s-quark
mass through that of the ρ- and K∗-mesons. Inclusion of the spin of one quark helps to
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understand why the orbital spin of the simple string model may be replaced by the total
spin of the meson in the formula for the Regge trajectory. We conclude by mentioning
possible generalizations of the model.

2. Spin and constraints

Since starting from a classical (non-quantized) theory has some advantages, let us
briefly introduce a (quasi)classical theory of spinning point-like particle [2,3]. The angular
momentum of non-relativistic particle

�L = [�r, �p] (1)

with coordinate �r, momentum �p and canonical Poisson brackets {ri, pj} = δij, obeys the
relations

{Li, Lj} = εijkLk, (2)

which determine the properties of the angular momentum. After replacing classical num-
bers by quantum operators and Poisson brackets by commutators {, } → −i[, ]−, �L be-
comes an operator which, because of the operator form of (2) alone can have integer

and half-integer eigenvalues, but relation (1) connecting �L with two variables selects only
integer eigenvalues. To get half-integer spin, we must replace (1) by

�S =
1

2i
[�ξ, �ξ], (3)

where �ξ has canonical Poisson brackets {ξi, ξj} = −iδij. Then �S has the main property
of the angular momentum

{Si, Sj} = εijkSk. (4)

But for definition (3) not to be trivial, ξi must be anticommuting (odd) quantities

ξiξj = −ξjξi. (5)

Then quantization replaces the Poisson brackets of ξi by an anticommutator, {, } →
−i[, ]+,

[ξ̂i, ξ̂j]+ = δij, (6)

the solution of which is given by the Pauli matrices

�̂ξ =
1
√
2
�σ (7)

and quantum spin (3) is

�̂S =
1

2
�σ. (8)

In an explicitly invariant relativistic theory a point-like particle can not be described
by a 3-vector �r(t). Instead it must be described by a 4-vector rµ(τ ) depending on an
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invariant evolution parameter τ . Since physically we are interested only in the dependence
of �r(τ ) on t = r0(τ ), the dependence of both of them on τ is not physical and may be
arbitrary changed. The explicitly invariant relativistic theory should not change under
the reparametrization τ → f(τ ). This implies that the coordinates rµ and conjugate
momentum components pµ are not independent, but satisfy a constraint condition

ϕ(p) = 0, (9)

where for a free spinless particle with massm the constraint function ϕ(p) = p2−m2. The
Hamiltonian of such a system is simply a linear combination of constraint functions [4].
In our case the Hamiltonian is

H = cϕ(p), (10)

where c is arbitrary or fixed by a gauge condition. The τ -evolution of the dynamical
variable X(= r, p) is given by the Poisson brackets of X and H

Ẋ = {X,H}, (11)

where
{pµ, rν} = gµν . (12)

In (10-12) all rµ and pν are considered as independent and only after calculating the
brackets in (11) one should use constraint condition (9).

In quantum theory the wave function of the particle satisfies the equation

ϕ(p̂)ψ = 0, (13)

where ϕ(p̂) is the constraint function of the operator arguments.
Let us illustrate this scheme by a free point-like relativistic particle with mass m and

spin 1/2. Instead of �ξ(t) we must use a 4-(axial)vector ξµ(τ ). To exclude its unphysical
component one introduces a new unphysical dynamical variable ξ5(τ ) and a Lagrange
multiplier λ (entering the Lagrangian without τ derivative). ξ5 and λ are axial scalars.
All the spin variables ξµ, ξ5 and λ anticommute and have the Poisson brackets

{ξµ, ξν} = igµν , {ξ5, ξ5} = −i. (14)

The Lagrangian has the form

L = L(ṙ, ξ, ξ5, ξ̇, ξ̇5, λ) = L0(ṙ, ξ, ξ
5, λ) + L1(ξ̇, ξ̇

5), (15)

where, in accordance with (14),

L1(ξ̇) =
1

2i
(ξξ̇ − ξ5ξ̇5). (16)

The ṙ-dependent part L0 is determined by the reparametrization and Poincaré invariance

L0 = −
√
ṙ2F (u), (17)
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where u are reparametrization-invariant axial scalars

u0 = vξ, u5 = ξ5, v =
ṙ
√
ṙ2
. (18)

Since (u0)2 = 0, (u5)2 = 0, (uλ)∗ = λu = −uλ and F must be a real even scalar function,
its most general form is

F (u) = m+ i(F0u
0 + F5u

5)λ, (19)

where m, F0 and F5 are constants. We could add to (19) a term icu0u5, but since λ

is arbitrary we can eliminate this term by a redefinition of λ (λ → λ + cu0/F5). The
momentum of the particle, conjugate to r, is

pµ = −
∂L

∂ṙµ
= vµF + (ξµ − (ξv)vµ)iF0λ. (20)

Let us put
p1 = p− (ξ − (ξv)v)iF0λ. (21)

Then
p1 = vF (22)

and since v2 = 1 we have
p21 = F 2, v =

p1√
p21
. (23)

The first eq.(23) gives us a constraint function

ϕ = p21 − F 2, (24)

and the second one permits to express the velocity variable v through momentum p. As
a result, the constraint function ϕ is

ϕ = p2 −m2 − 2mi(F0
pξ
√
p2

+ F5ξ
5)λ. (25)

Up to an arbitrary factor this is the Hamiltonian of our particle. Taking the variation of
it with respect to λ we get a spin constraint

ϕ1 = F0
pξ
√
p2

+ F5ξ
5, ϕ1 = 0. (26)

It is important that this constraint must conserve

ϕ̇1 = {ϕ1, ϕ} = 0. (27)

With the help of (14) we get a condition for this conservation

F 20 − F 25 = 0. (28)

This is also the condition of the supersymmetry [3,5] of the spinning particle action.
After quantization the constraint (26) gives the Dirac equation. With condition (28)

its wave function satisfies also the equation corresponding to constraint (25), which is the
Klein-Gordon equation.
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3. Rotating rod, string and rotator

Before considering a relativistic string in the 4-dimensional space-time, let us imagine
a rod in 3 dimensions with ”mass density at rest” a and length l rotating in a plane around
its center so that the linear velocity of its ends is 1. Let us calculate the energy E and
the angular momentum of this rod. Knowing the linear velocity of a point at the distance
x from the center to be v = x/(l/2), and using relativistic formulas for the energy and
momentum at each x we have

E =

l/2∫
−l/2

adx
√
1− v2

=
aπ

2
l (29)

L =

l/2∫
−l/2

xvadx
√
1− v2

=
aπ

8
l2 (30)

and, since E = m is the mass of the rotating rod,

L =
1

2πa
m2, (31)

what is a linearly rising Regge trajectory. Of course, this model is logically inconsistent
since the ends of the rod moving with the velocity of light can not be at rest. This
inconsistency is eliminated by the notion of relativistic string, described by a 4-vector
function xµ(τ, σ) of an evolution parameter τ and a parameter σ labelling points on the
string, with the Lagrangian

Lstr = −a

σ2∫
σ1

((ẋx′)2 − ẋ2x′2)1/2dσ (32)

(prime means the derivative with respect to σ). It is not difficult to show that for the
straight-line string

xµ(τ, σ) = rµ(τ ) + f(τ, σ)qµ(τ ) (33)

we have exactly formulas (29-31) for the length, energy and angular momentum, the
parameter a being interpreted as ”string tension”.

We shall not fix the parameters of the string ends fi(τ ) = f(τ, σi) from the beginning,
considering them as dynamical variables determined from the Lagrangian by the varia-
tional principle. Then the relativistic description of the straight-line string (33) contains
physically superfluous variables and the string theory should be invariant under the three
sets of τ -dependent transformations:

1) shift of r along q,
r→ r + α(τ )q, (34)

2) multiplication of q by an arbitrary function,

q → β(τ )q, (35)
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3) reparametrization of τ , which for a Lagrangian means the equality

L(γ(τ )ż) = γ(τ )L(ż), (36)

where ż stands for every velocity in the Lagrangian.
We shall call a rotator any system possessing this symmetry. It may be more compli-

cated than string (32-33), may contain spins or other variables, but it always contains a
straight-line string (33).

This symmetry implies that the rotator canonical variables obey three constraints
(which are in involution with respect to their Poisson brackets since transformations (34-
36) form a group) and the rotator canonical Hamiltonian is zero.

The rotator we are interested in has the Lagrangian

L = Lstr +
∑
i=1,2

Li + Lint, (37)

where Lstr is the Lagrangian of the straight-line string (32-33), Li is the Lagrangian of
a point-like spinning particle (15-16, 18-19, 28), attached to the i-th end of the string
and Lint is an additional Lagrangian describing an interaction of the string with its end
particles if it is necessary. Li depends on ẋi, ξi, ξ

5
i , ξ̇i, ξ̇

5, λi, where ẋi stands for the velocity
of the end of the string perpendicular to the string direction. A possible movement of the
end particles along the string is a separate question which is not considered here. Without
this movement Lagrangian (37) contains only first derivatives of r, q and ξ and does not
contain ḟi which makes it possible to easily express fi through other variables. We shall
call this solution as a rigid rotator.

4. Rigid rotator with n spins

Let a rigid rotator contain n spins. The spin variables of different spins commute with
each other (and anticommute with themselves). Knowing the configuration space and the
symmetry of the rotator we can write a general form of its Lagrangian

L = −
√
−ṅ2F (l, u) +

n∑
i=1

L1(ξi), (38)

where L1 is given in (16),

n = q/
√
−q2 (39)

and F is a real even function of the invariants

l =
√
−ṙ2⊥/ṅ

2, (40)

ṙ⊥ = ṙ + (ṙn)n− (ṙṅ)ṅ/ṅ2, (41)

u = {uai }, uai = vaξi, a = 0, 1, 2, 3, u5i = ξ5i , (42)
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v0 = ṙ⊥/
√
ṙ2⊥, v1 = ṅ/

√
−ṅ2, v2µ = εµνρσv

0νv3ρv1σ, v3 = n. (43)

Calculating the momenta p and π conjugate to r and q we get the three constraint
functions:

ϕ1 = pq, ϕ2 = πq, (44)

ϕ3 =

(
(q2 −

(qp)2

p2
)π2n

)1/2
−K(l, u), (45)

where
K = lFl − F, (46)

an argument as a lower index means the partial derivative with respect to this argument,
l is a function of pn and u, implicitly given by the equation

Fl(l, u) =
√
p2n, (47)

pn and πn are functions of p and π and spin variables (summation over i is implied)

pn = p+ l−1(Fu0iu
2
i + Fu2iu

0
i )v
2 (48)

πn =

(
gµν −

pµpνn
ppn

){
πn −

1
√
−q2

[(Fu0iu
1
i + Fu1i u

0
i )v
0
ν + (Fu2iu

1
i − Fu1i u

2
i )v
2
ν]

}
(49)

and the velocity variables are expressed through the phase space variables by successive
use of the formulas

v0 =
pn√
p2n

, v1 =
πn√
−π2n

. (50)

The Hamiltonian of the rotator is a linear combination of the constraint functions

H =
∑
i=1,2,3

ciϕi. (51)

The non-zero Poisson brackets and the dynamical equations are

{pµ, rν} = {πµ, qν} = gµν (52)

{ξµi , ξ
ν
i } = igµν, {ξ5i , ξ

5
i } = −i (53)

Ẋ = {X,H}. (54)

After calculating the brackets and for the initial conditions ϕi = 0.
The canonical quantization of the rotator can be done in the usual way

x→ x̂, {, } → −i[, ]∓ (55)

ϕiψ = 0, (56)
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where ϕi are the constraint functions (44-45) and other ones which may follow from
the Hamiltonian (51) and ϕ3 (45) (spin constraints, for instance). The solution of the
(anti)commutation relations for two spin variables is

ξ̂µ1 =
1
√
2
γ5γµ ⊗ I, ξ̂51 =

1
√
2
γ5 ⊗ I, (57)

ξ̂µ2 = I ⊗
1
√
2
γ5γµ, ξ̂52 = I ⊗

1
√
2
γ5. (58)

The generalization for any number of spins is straightforward. The quantization is rela-
tivistic since replacement (55) preserves the Poincaré algebra.

5. Applications: spinless rotator

For a rigid rotator without spins eqs. (38), (45) and (47) simplify

L = −
√
−ṅ2F (l) (59)

ϕ3 =
√
−L2µ −K(l(p2)) (60)

K = lFl − F, Fl(l) =
√
p2, (61)

where Lµ is the orbital spin of the system. In a gauge in which b1 = b2 = 0, the wave
function of the quantum rotator satisfies the equation

(

√
�̂L
2

−K(l(p̂2))− a0)ψ = 0, (62)

where a0 is a constant of order h̄ which may enter the quantum operator form of (60) to
improve the agreement with experiment for small L, where our model is less reliable. For
the eigenstates in (62)

√
L(L+ 1) = K(l(m2)) + a0, L = 0, 1, 2, (63)

with possible exception for L = 0, when the model can be unreliable.
For the straight-line string with point-like spinless particles with masses m1 and m2

at the ends Lagrangian (37) with Lint = 0 corresponds to

F (l) =
a

2

∑
i=1,2


l2 arcsin li

l
+

(
mili

a

)1/2 (
li + 2

mi

a

)
 (64)

li =
√
l2 + (mi/2a)2 −mi/2a. (65)
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This function determined the function K(l(m2)) in the Regge trajectory (63) implicitly,
through eqs.(61), and can be calculated numerically for any quark masses mi. For mi <<
m, or mi << al, m being the meson mass one can use the expansion

F (l) =
1

2
πal2


1 + 4

3π

∑
i=1,2

x
1/2
i

(
1−

3

20
xi + 0(x2i )

) (66)

xi = mi/(la). (67)

For the opposite case, when mi >> al (or m1 + m2 is close to m, both mi being of the
same order)

F (l) = l
∑
i=1,2

mi


1 + a2l2

2m2i
+O


( al

mi

)4

 . (68)

For the intermediate case, when m1 << al << m2

F (l) =
1

4
πal2

[
1 +

8

3π
x
3/2
1 (1−

3

20
x1 +O(x21))

]
+

+ lm2


1 + a2l2

2m22
+O


( al

m2

)4

 . (69)

For the first case

K(l(m2)) =
m2

2πa


1− 4

3π

∑
i=1,2

y
3/2
i

(
1−

3

20
yi

)
+

1

(3π)2


∑
i=1,2

y
3/2
i



2

+

+ O(y
7/2
i ) ) , yi = πmi/m. (70)

For the second one

K(l(m2)) =
1

a

[
2

3
(m−m1 −m2)

]3/2 ( m1m2

m1 +m2

)1/2 (
1 +O

(
m−m1 −m2

m

))
(71)

and for the third, intermediate case

K(l(m2)) =
1

πa
(m−m2)

2

(
1 +O

((
m1

m−m2

)3/2
,
m−m2

m2

))
. (72)

Note the doubling of the slope in the intermediate case as compared with the first one. To
get a feeling of these formulas we can express the strange quark mass ms through meson
masses. From (63)

K(l(m2ρL)) = K(l(m2K∗L)), (73)

where mρL andmK∗L are masses of the mesons lying on the leading ρ- and K∗-trajectories
with the same spin L. Neglecting the u- and d-quark masses we have

ms

mK∗L
=

1

π
Z
2/3
L

(
1 +

1

10
Z
2/3
L +

1

18π
ZL +O(Z

4/3
L )

)
(74)
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ZL =
3π

4

(
1−

m2ρL
m2K∗L

)
.

For L = 1 (mρ = 768 MeV, mK∗ = 892 MeV), we get ms = 218 MeV. For L = 2 (ma2 =
1318 MeV, mK∗2 = 1425 MeV), we get ms = 234MeV. For L = 3 (mρ3 = 1690 MeV,
mK∗3 = 1780 MeV), we get ms = 223MeV. We conclude that ms = (225 ± 5)MeV is a
good determination of the strange quark mass.

The comparison of simplified formula (70), obtained in a different way, with experiment
has been made in [6].

6. Rotator with one spin

The Lagrangian of a rotator with one spin 1/2 (”squark-quark meson”) is

L = −(−ṅ2)1/2F (l, u) + L1, (75)

where L1 is given by eq.(16) and

F (l, u) = F 0(l) +
i

2
Fab(l)u

aub +

+ (iFa(l)u
a +

1

3!
Fabcu

aubuc)λ, (76)

where a, b, c = 0, 1, 3, 5 (see eqs. (39-43)). The constraint function ϕ3 is given by the
expression

ϕ3 =
√
−J2 −K0 +

i

2
Vabc

acb + (iFac
a +

1

3!
Vabcc

acbcc)λ, (77)

where Jµ is the total spin of the rotator,

K0 = lF 0− F 0, F 0l (l) =
√
p2 (78)

Vab = Fab − εoab5, Vabc = Fabc + Fl[abFc]l(F
0
ll)
−1 (79)

c0 =
pξ
√
p2
, c1 =

π1ξ√
−π21

, c3 = nξ, c5 = ξ5, (80)

πµ1 = (gµν −
pµpν

p2
−

qµp q
ν
p

q2p
)πν, qp = q −

(qp)p

p2
. (81)

The conservation of the spin constraint

ϕ4 = iFac
a +

1

3!
Vabcc

acbcc (82)

leads to the conditions

F aFa = 0, F aVab = 0, F aVabc = 0, (83)
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or
Vab = εabcdF

cXd, Vabc = εabcdF
dY, (84)

where
F a = gabFb, (85)

and gab is diagonal with −g00 = g11 = g33 = g55 = −1. The consistency of quantization
(non-zero solution of the generalized Dirac equation corresponding to (82)) imposes fur-
ther limitations on the interaction and for the leading Regge trajectory we have the same
formula as for the spinless rotator with the substitution J for L.

Conclusion

We see that the simple string model can explain the main meson states including their
dependence on the quark masses and spins. It seems worthwhile to explore this model
further and try to consider string vibrations to account for daughter meson states and to
investigate electroweak quark interactions inside a rotator to describe electroweak meson
formfactors [7].
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