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Abstract

Gershtein S.S., Logunov A.A., Mestvirishvili M.A. The Upper Limit on Graviton Mass: IHEP
Preprint 97-57. – Protvino, 1997. – p. 5, refs.: 7.

Basing on the field theory of gravity and observable parameters of the expanding Universe,
the upper limit of mg ≤ 4.5 · 10−66 g on the value of possible graviton mass has been derived.
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The problem of existence of nonzero invariant mass of the graviton can be of the
fundamental significance. The estimate for the upper bound on the graviton mass (mg <
2 · 10−62g) has been derived in Ref. [1], where the authors used the data on the existence
of the gravitational coupling between the galaxy clusters, which is not cut off by the
Yukawa potential, at least, up to distances ∼500 Kpc. In this paper we will present the
estimates for the upper limit on the graviton mass basing on the observable parameters
of the Universe expansion. The fact that in this case typical distances are 3-4 orders
of magnitude larger than those between gravitationally bound galaxy clusters allows one
to strengthen the estimates on the upper limit on the graviton mass by few orders of
magnitude, respectively.

It should be noted that introduction of the nonzero invariant mass of the graviton
requires going beyond the General Theory of Relativity (GTR). This can be done naturally
by using the notions of the gravitational field in the Minkowsky space [2,3]. In Ref. [3]
the complete energy-momentum tensor tµν (including the gravitational field), which is
conserved in the Minkowsky space, is considered as a source of the gravitational field
described by symmetric tensor Φµν . In an arbitrary fixed (not necessarily inertial) frame
of the Minkowsky space with metric tensor γµν , the equations for the density of the
gravitational field Φ̃µν can be written analogously to the Maxwell equations and Lorentz
condition for the electromagnetic field as follows:

(γαβDαDβ +m
2
g)Φ̃

µν = 16πt̃µν, (1)

DνΦ̃
µν = 0 , (2)

where Dα is the covariant derivative in the Minkowsky space, mg is the graviton mass
(h̄ = c = G = 1), and Φ̃µν , t̃µν are the densities of tensors

Φ̃µν =
√
−γΦµν , t̃µν =

√
−γtµν , γ = det(γµν) = det(γ̃µν) . (3)

Condition (2) singles out polarization states with spin values of 2 and 0 and provides the
conservation of the density of the energy-momentum tensor Dµ t̃µν = 0 in Eq. (1). The
density of the energy-momentum tensor is defined, following Hilbert, by Euler’s variation
with γµν metric of the Lagrangian density of the system

L̃ = L̃g(γµν ,Φµν) + L̃M (γµν ,Φµν ,ΦA) , (4)
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where L̃g is the density of the gravitational field Lagrangian, and L̃M corresponds to the
density of Lagrangian of the matter described by the ΦA fields

t̃µν = −2
δL̃

δγµν
, (5)

where Euler’s variation is

δL̃

δγµν
=
∂L̃

∂γµν
− ∂σ

(
∂L̃

∂γµν,σ

)
; γµν,σ =

∂γµν

∂xσ
. (6)

One can derive equations for the gravitational field and matter fields from the least action
principle

δL̃

δΦ̃µν
= 0,

δL̃

δΦA
= 0. (7)

To get the form of (1) and (2) for these equations it is necessary to have the density
of the gravitational field Φ̃µν coming into the density of the matter Lagrangian L̃M in
combination with the density of the metric tensor γ̃µν

g̃µν = γ̃µν + Φ̃µν , g̃µν =
√
−ggµν , g = det(gµν) = det(g̃µν) , (8)

i.e. L̃M (g̃µν ,ΦA). It means that the motion of the matter subjected to the gravitational
field looks like as if this could take place in the Riemann space with the metric gµν . The
Lagrangian density resulting in Eqs. (1) and (2) has the form

L̃ = L̃g + L̃M (g̃µν ,ΦA), (9)

L̃g =
1

16π
g̃µν(GλµνG

σ
λσ −G

λ
µσG

σ
νλ)−

m2

16π

(
1

2
γµν g̃

µν −
√
−g −

√
−γ
)
, (10)

where the Gλµν values are the components of the tensor

Gλµν =
1

2
gλσ(Dµgνσ +Dνgµσ −Dσgµν) , (11)

and due to this fact the L̃g value behaves as the density of the scalar under any coordinate
transformations. Using (9) and (10) and taking into account (7), one can write the
equations for the gravitational field in the form of [3]

(
Rµν −

1

2
δµνR

)
+
m2g
2
(δµν + g

µαγαν −
1

2
δµν g

αβγαβ) = 8πT µν , (12)

Dν g̃
µν = 0 , (13)

where T µν is the matter energy-momentum tensor in the Riemann space.
From these equations one gets the equations for the matter

∇νT̃
µν = 0, T̃ µν = −2

δL̃M

δgµν
, (14)
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where ∇ν is the covariant derivative in the effective Riemann space. Eqs. (12) and (13)
are covariant with respect to any coordinate transformations and form-invariant under
Lorentz’s transformations.

Writing down the interval of the effective Riemann space for the homogeneous and
isotropic Universe in the form of

ds2 = U(t)dt2 − V (t)

[
dr2

1− kr2
+ r2(dΘ2 + sin2ΘdΦ2)

]
, (15)

(where k = 1, −1, 0 for the closed, hyperbolic and “flat” Universe), one gets from
Eqs. (13)

∂

∂t

√
V 3

U
= 0, i.e. V = aU1/3, a = const. (16)

∂

∂r
[r2(1− kr2)1/2]− 2r(1− kr2)−1/2 = 0 . (17)

Eq. (17) is valid only for k = 0. Thus, the Universe can be only “flat” (i.e. its space

geometry is Euclidian). Using the proper time dτ = U1/2dt and denoting R2 = U1/3, one
can write down interval (15) in the form

ds2 = dτ 2 − aR2(τ )(dx2 + dy2 + dz2) . (18)

In this case Eqs. (12) in the inertial frame take the form1

(
1

R

dR

dτ

)2
=

8πG

3
ρ−

ω

R6

(
1−

3R4

a
+ 2R6

)
, (19)

1

R
·
d2R

dτ 2
= −

4πG

3

(
ρ+

3p

c2

)
− 2ω

(
1−

1

R6

)
, (20)

where

ω =
1

12

(
mgc

2

h̄

)2
. (21)

It follows from Eq. (19) in the region R >> 1 that the density of the matter in the
Universe is equal to

ρ(τ ) = ρc(τ ) +
1

16πG

(
mgc

2

h̄

)2
, (22)

1Note, that the metric of the Minkowsky space γµν comes into Eq.(12). Due to this fact the Minkowsky
space becomes observable, and the casualty principle for the gravitational field in the effective Riemann
space should be fulfilled: the motion of the matter subjected to the gravitational field should not leave the
light-cone limits in the Minkowsky space. This condition can be formulated in the form of gµνV

µV ν ≤ 0
for any isotropic vector V µ on the light cone γµνV

µV ν = 0. This condition being applied to interval (15)
with account for (16) and (17) leads to R2(R4 − a) ≤ 0. Thus, the constant “a” has the notion of the
fourth power of maximal value of the scale factor: a = R4max, and to describe the existing Universe, one
should have a >> 1.
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where ρc(τ ) is the critical density determined by the Hubble “constant”

ρc =
3H2(τ )

8πG
, H(τ ) =

1

R
·
dR

dτ
. (23)

This conclusion inevitably requires the existence of the “dark” matter that agrees with
current observations.

From (19) and (20) one can get the expression for the Universe deceleration parameter
q(τ ). At the present stage of the nonrelativistic matter dominance (p = 0)

q = −
R̈

R
·

1

H2
=

1

2
+

1

4H2

(
mgc

2

h̄

)2
. (24)

Relation (24) gives the principal possibility to determine the graviton mass from two other
observables, H and q. The sensitivity of q to the graviton mass is due to the fact that a
small value 1

λg
= mgc

h̄
comes into (24) multiplied by a large value

(
c
H

)
= 9.25·1027 ·h−1 cm,

which is the Hubble radius of the Universe. Though the q value has not been measured
with high accuracy, its possible values do not exceed few units (q ≤ 5, see [4]). This allows
one to estimate from (24) the graviton mass

mg ≤ 1.7 · 10−65 · h (g), where 0.4 ≤ h ≤ 1, (25)

h̄

mgc
> 0.2 ·

c

H
= 2 · 1027 · h−1 (cm). (26)

Despite the smallness of the upper limit in (25), nonzero graviton mass can have principal
influence on the character of the Universe evolution. One can see from Eq. (19) that
for R→ 0 the negative term ω

R6
in the right-hand side of the equation grows in absolute

value faster than the matter density (ρ ∼ 1
R4

for radiatively dominant stage). Therefore,
from the condition of the nonnegative left-hand side of (19), it follows that the expansion
should begin from some minimal value Rmin, which corresponds to dR

dτ
= 0. On the other

side, the expansion should stop at R >> 1, when density (22) reaches its minimal value

ρmin = 1
16πG

(
mgc2

h̄

)2
, and after that the expansion is replaced by the compression process

up to Rmin. So, nonzero graviton mass eliminates the cosmological singularity and leads
to a cyclic character of the Universe evolution. Such a character of the Universe evolution
seemed to be promising for a number of authors (see, for example, [5]). The time of the
Universe expansion from the maximal density to the minimal one is determined mostly
by the stage of the nonrelativistic matter dominance, and it is equal to [6]

τmax 	

√
2

3
·
πh̄

mgc2
. (27)

Accepting the value of (10− 15) · 109 years for the Universe age and using τmax ≥ 20 · 109

years, one gets more strict limit on the graviton mass

mg ≤ 4.5 · 10−66 (g) . (28)
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Equations (12) and (13) explain all known gravitational effects in the Solar system,
which are attributed to the noninertial frame. It is well known that the introduction of the
graviton mass in the linear tensor theory is accompanied by the difficulty: the presence
of “ghosts”. However, as it has been shown in Ref. [7], this difficulty is eliminated in
the framework of the nonlinear tensor theory described by Eqs. (12) and (13) under
condition that gravitons spread in the effective Riemann space, rather than Minkowsky’s
one (as it takes place in the linear theory). If this circumstance is sequently taken into
consideration, one gets a positively determined flux of the gravitational energy, when
calculating the intensity.
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