

ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ ФЕДЕРАЦИИ

ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

ИФВЭ 97-66 ОТФ

А.К. Лиходед¹, С.Р. Слабоспицкий²

О МЕХАНИЗМЕ ФРАГМЕНТАЦИИ ОЧАРОВАННЫХ *с*-КВАРКОВ В АДРОННЫХ СТОЛКНОВЕНИЯХ

 $^{1}\mathrm{E-mail:}\ LIKHODED@mx.ihep.su,$

²E-mail: SLABOSPITSKY@mx.ihep.su

Протвино 1997

Аннотация

Лиходед А.К., Слабоспицкий С.Р. О механизме фрагментации очарованных *с*-кварков в адронных столкновениях: Препринт ИФВЭ 97–66. – Протвино, 1997. – 15 с., 5 рис., 2 табл., библиогр.: 15.

Предложен модифицированный механизм фрагментации очарованных кварков в D- мезоны в адрон–адронных соударениях. Показано, что различие в распределениях валентных кварков в начальных $\pi^{\pm}-$ и K^{\pm} -мезонах приводит к отличающимся спектрам D- и D_s -мезонов, рожденных в $\pi^{\pm}-$ и K^{\pm} -пучках.

Abstract

Likhoded A.K., Slabospitsky S.R. On Mechanism of Charmed *c*–Quarks Fragmentation in Hadronic Collisions: IHEP Preprint 97–66. – Protvino, 1997. – p. 15, figs. 5, tables 2, refs.: 15.

We propose a modification of the fragmentation mechanism of the charmed quarks into Dmesons in the hadronic collisions. It is shown that the difference in valence quark distributions in the initial π^{\pm} - and K^{\pm} -mesons leads to distinctive inclusive spectra of D- and D_s -mesons produced in π^{\pm} - and K^{\pm} -beams.

> Сосударственный научный центр Российской Федерации
> Институт физики высоких энергий, 1997

Введение

Адронное рождение частиц с открытым очарованием наряду с другими процессами ($e^+e^- \rightarrow c\bar{c}$ и т.д.) представляет одну из интересных возможностей изучения процесса адронизации тяжелых кварков $c \rightarrow D, \Lambda_c, ...$ [1].

Известно, что рождение очарованных частиц в e^+e^- -аннигиляции,

$$e^+e^- \rightarrow DX,$$
 (1)

можно разделить на процесс рождения $c\bar{c}$ -пары и процесс независимой фрагментации каждого c (\bar{c})-кварка в D-мезоны:

$$c(\bar{c}) \rightarrow D(\bar{D}) X.$$
 (2)

При этом процесс фрагментации описывается с помощью функции фрагментации D(z), где $z = p_D/p_c$ (p_D и p_c — импульсы D-мезона и c-кварка соответственно). Следует заметить, однако, что масштабно-инвариантное описание достигается при достаточно больших энергиях, т.е. в пределе $\sqrt{s} \gg m_D$. При малых энергиях ($\sqrt{s} \ge m_D$) велика роль нескейлинговых (степенных) поправок, что не позволяет свести ответ к простому факторизованному виду

$$\frac{d\sigma_D}{dz} \approx \sigma_{c\bar{c}} \otimes D(z). \tag{3}$$

В какой мере картина фрагментации тяжелых кварков, рожденных в e^+e^- соударениях, может быть перенесена на случай адронных столкновений? В адронных взаимодействиях наличие легких партонов от начальных адронов может сильно изменить картину адронизации. Следует различать две кинематические области: область малых $p_{\top} < p_0$ и область, где $p_{\top} > p_0$. Здесь p_0 — некоторое граничное значение, выше которого процесс адронизации имеет так же, как и в e^+e^- аннигиляции, фрагментационный характер, а сечение имеет вид

$$\frac{d\sigma_D}{dp_{\top}} = \int \frac{d\sigma_c}{dk_{\top}} \otimes D(z)dz.$$
(4)

При $p_{\top} < p_0$ наличие легких партонов, рожденных одновременно с $c\bar{c}$ -парой, может сильно изменить ответ в форме (4).

В нашей предыдущей публикации [2] мы попытались учесть этот факт, сводя часть адронизации c-кварка к рекомбинации с валентными кварками. Остальная часть описывалась фрагментационной картиной. В рамках такого рассмотрения удается правильно описывать асимметрию в рождении лидирующих и нелидирующих очарованных адронов [2]. Заметим, однако, что полученное нами описание полного спектра не является удовлетворительным. И связано это в основном с превышением спектра в области малых x. Этот факт обусловлен использованием модели фрагментации во всей кинематической области.

В настоящей работе мы пытаемся улучшить описание адронизации c-кварков в области малых p_{\top} , не используя модель фрагментации как основной механизм. Эту модель мы будем использовать только на границах фазового объема, где импульсы c-кварков достигают максимального значения и где адронное сопровождение c-кварков минимально.

Заметим также, что в настоящей работе мы опускаем обсуждения, связанные с абсолютной нормировкой сечения рождения очарованных частиц. Дело в том, что эта проблема определяется учетом высших поправок теории возмущений КХД и выбором константы сильных взаимодействий $\alpha_s(\mu^2)$. Как следует из анализа $O(\alpha_s^3)$ – поправок к сечению рождения $c\bar{c}$ (см., например, работу [1]), их учет практически не меняет форму инклюзивных распределений *c*–кварков. По этой причине далее мы ограничимся исследованием формы дифференциальных спектров очарованных частиц.

Работа организована следующим образом. В разделе 1 мы рассматриваем модификацию фрагментационного механизма. В разделе 2 проводится сравнение результатов наших расчетов с экспериментальными данными по образованию D-мезонов в пучках π -мезонов. Предсказания модели для случая K-пучков рассмотрены в разделе 3. Основные результаты и выводы приведены в разделе 4.

1. Адронизация с-кварков в адронных столкновениях

В рамках партонной модели сечение образования тяжелых *Q*-кварков в адронадронных столкновениях имеет вид

$$\sigma(h_1h_2 \to Q\bar{Q}X) = \Sigma_{i,j} \int \hat{\sigma}(ij \to Q\bar{Q}) f_i^{h_1}(x_1) dx_1 f_j^{h_2}(x_2) dx_2, \tag{5}$$

где суммирование проводится по всем типам партонов, участвующих в подпроцессе образования Q-кварков $ij \to Q\bar{Q}; \hat{\sigma}$ — сечение соответствующего подпроцесса; $f_i^h(x)$ — распределения партонов типа i в адроне $h; x_{1(2)}$ — доля импульса адрона $h_{1(2)}$, уносимая соответствующим адроном.

Как отмечалось во введении, наличие легких партонов начальных адронов приводит к существенно различным сценариям адронизации очарованных c кварков в адрон–адронных столкновениях и в e^+e^- -аннигиляции. В частности, взаимодействие в конечном состоянии с валентными кварками из начальных адронов (рекомбинация) позволяет объяснить эффект лидирования в рождении очарованных частиц (т.е. различие в x-распределениях D- и \overline{D} -мезонов, а также Λ_c - и $\overline{\Lambda}_c$ -барионов) [2,3]. Такой учет взаимодействия очарованных кварков с валентными кварками из начальных адронов осуществляется введением функции рекомбинации кварков $R(x_V, z; x)$ [3]. Ниже мы приводим основные моменты механизма рекомбинации. Подробное рассмотрение этого механизма приведено в работах [2,3]. Так, рекомбинация кварков q_V и \bar{Q} в мезон M_Q описывается функцией $R(x_V, z; x)$:

$$R(x_V, z; x) = \rho(\xi_V, \xi_Q) \ \delta(1 - \xi_V - \xi_Q), \tag{6}$$

$$\rho(\xi_V, \xi_Q) = \frac{\Gamma(2 - \alpha_V - \alpha_Q)}{\Gamma(1 - \alpha_V)\Gamma(1 - \alpha_Q)} \xi_V^{(1 - \alpha_V)} \xi_Q^{(1 - \alpha_Q)}, \tag{7}$$

где $\xi_V = x_V/x$ и $\xi_Q = z/x$, а x_V , z и x — доли импульса начального адрона в с.ц.м., уносимые валентным кварком, кварком \bar{Q} и мезоном $M_{\bar{Q}}$, соответственно. α_Q пересечение ведущих редже-тректорий для q_V и \bar{Q} кварков. В наших вычислениях мы полагали [4,5]

$$\alpha_u = \alpha_d = \frac{1}{2}, \quad \alpha_s \approx 0, \quad \alpha_c \approx -2.2.$$
(8)

С помощью функции рекомбинации кварков q_V и \bar{Q} в мезон $R(x_V, z; x)$, инклюзивный спектр $M_{\bar{Q}}$ -мезона можно представить в виде

$$x^* \frac{d\sigma^{rec}}{dx} = R_0 \int x_V z^* \frac{d^2\sigma}{dx_V dz} R(x_V, z; x) \frac{dx_V}{x_V} \frac{dz}{z},$$
(9)

где $x^* = 2E/\sqrt{s}$, $x = 2p_l/\sqrt{s}$, E и p_l — энергия и продольный импульс $M_{\bar{Q}}$ -мезона в с.ц.м. начальных адронов; x_V и z — доли импульса, уносимые валентными и тяжелыми кварками, соответственно; $x_V z^* \frac{d^2\sigma}{dx_V dz}$ — дваждыдифференциальное сечение образования кварков q_V и \bar{Q} в адронных столкновениях.

Параметр R_0 является свободным параметром модели, определяющим относительный вклад рекомбинации. В настоящей работе наилучшее описание экспериментальных данных достигается при

$$R_0 \approx 0.8. \tag{10}$$

Отметим, что учет рекомбинации с валентными кварками совершенно необходим для объяснения эффекта лидирования, однако вклад этого механизма в полное инклюзивное сечение рождения очарованных частиц довольно мал (~ 10%). Основную роль этот механизм играет в области больших x.

В рамках традиционного механизма фрагментации инклюзивное сечение рождения очарованных адронов (*D*-мезонов) имеет вид

$$E_H \frac{d^3 \sigma^F}{d^3 p_H} = \int E_c \frac{d^3 \sigma(h_1 h_2 \to cX)}{d^3 p_c} D(z) \,\delta(\vec{p}_H - z\vec{p}_c) \,d^3 p_c.$$
(11)

В области малых x, которая и определяет основной вклад в полное сечение рождения очарованных адронов, процесс адронизации c-кварков выглядит несколько сложнее.

Действительно, при вычислениях спектров очарованных частиц, образующихся в адронных столкновениях, предполагается, что функция фрагментации D(z)известна из других экспериментов (в частности, из e^+e^- -аннигиляции).

Одна из наиболее широко используемых параметризаций имеет вид [6]

$$D(z) \sim [z(1 - \frac{1}{z} - \frac{\epsilon}{1 - z})]^{-2},$$
 (12)

где параметр $\epsilon \approx m_q^2/m_Q^2$ определяется типом адрона (например, $\epsilon_{D^0} = 0.135 \pm 0.010$ и $\epsilon_{D^*} = 0.078 \pm 0.008$ [7]). Другая параметризация, предложенная нами ранее [5], учитывает редже–асимптотику при $z \to 0$:

$$D(z) \sim z^{-\alpha_Q} (1-z)^{\gamma},\tag{13}$$

где $\gamma \approx 1$, а α_Q — пересечение ведущей редже–траектории для Q-кварка ($\alpha_c \approx -2.2$, см. (8)). Обе эти параметризации достаточно хорошо описывают экспериментальные данные. Сравнение описания реакции $e^+e^- \rightarrow DX$ с помощью функций фрагментации в виде (12) и (13) приведено в работах [8,9].

Как это отмечалось во введении, применение функции фрагментации оправдано при асимптотически больших инвариантных массах пары $c\bar{c}$: $M_{c\bar{c}} \gg 2m_c$. Однако это условие не выполняется в адронном рождении очарованных частиц. Здесь основной вклад в инклюзивное сечение очарования вносят c-кварки из небольших инвариантных масс пары $c\bar{c}$ ($M_{c\bar{c}} \geq 2m_c$), насыщающих в основном центральную область по фейнмановской переменной x. Большие же инвариантные массы $c\bar{c}$ пары, где уместно применение формализма функции фрагментации, дают вклад при больших x и больших p_{\top} .

Рис. 1. Дифференциальные распределения $\frac{d\sigma}{dx}$ очарованных *с*-кварков для всех значений $M_{c\bar{c}}$ (верхняя кривая) и для $M_{c\bar{c}} \ge M_0 = 10$ ГэВ (нижняя кривая). Экспериментальные точки соответствуют выходам очарованных частиц, просуммированным по всем типам *D* и \bar{D} -мезонов (реакция π^-N -столкновений при $E_{\pi} = 250$ ГэВ [10]).

Эти рассуждения проиллюстрированы рис. 1, где мы привели инклюзивные распределения *с*-кварков по *x* для всех $M_{c\bar{c}}$ (верхняя кривая) и для *с*-кварков с инвариантной массой $M_{c\bar{c}} \ge M_0 = 10$ ГэВ (нижняя кривая). Как видно из рисунка, именно очарованные кварки с малыми инвариантными массами $c\bar{c}$ -пары дают основной вклад в сечение рождения очарования в центральной области, а область $x \to 1$ соответствует вкладу от больших масс $M_{c\bar{c}}$. На этом же рисунке приведен спектр очарованных частиц, просуммированный по всем типам D– и \bar{D} -мезонов в сравнении со спектром *с*-кварков (в реакции π^-N -столкновений при $E_{\pi} = 250$ ГэВ [10]).

Из рис. 1 видно также, что имеет место соотношение типа дуальности: спектр очарованных адронов, просуммированный по всем сортам очарованных мезонов, хорошо описывается инклюзивным спектром *с*–кварков.

Такое удовлетворительное описание суммарных спектров D-мезонов чисто cкварковыми спектрами отмечалось ранее [1,10]. Совершенно очевидно, однако, что в рамках чисто фрагментационного механизма спектры D- и \overline{D} -мезонов (а также очарованных барионов и антибарионов) должны быть одинаковыми, что не позволяет объяснить эффект лидирования. Как отмечалось выше, учет механизма рекомбинации позволяет воспроизвести этот эффект. Следовательно, можно было бы предположить, что инклюзивное сечение рождения D-мезона описывается суммой двух механизмов:

$$\frac{d\sigma_D}{dx} = \frac{d\sigma_D^{HF}(\vec{p}_D = \vec{p}_c)}{dx} + \frac{d\sigma_D^{rec}}{dx},\tag{14}$$

где первое слагаемое отвечает "жесткой" (HF) фрагментации (т.е. при адронизации очарованный кварк не теряет свой импульс), а второе слагаемое отвечает вкладу от рекомбинации (т.е. учитывает взаимодействие очарованного c кварка с валентными кварками из начальных адронов).

Однако такая простая добавка рекомбинационного вклада к спектру c-кварков (т.е. D-мезонов) не позволяет воспроизвести поведение x-зависимости соответствующей асимметрии A:

$$A = \frac{\frac{d\sigma}{dx}(leading) - \frac{d\sigma}{dx}(non - leading)}{\frac{d\sigma}{dx}(leading) + \frac{d\sigma}{dx}(non - leading)}.$$
(15)

Действительно, на рис. 2 представлено описание асимметрии (15) по формуле (14). На этом рисунке различные кривые отвечают различным значениям параметра R_0 (см. (9) и (10)) для рекомбинационного механизма. Как видно, невозможно достичь одновременно хорошего описания асимметрии A как при малых x ($0 \le x \le 0.4$), так и при больших x ($0.5 \le x \le 0.8$) вместе с описанием инклюзивного распределения D-мезонов.

Это объясняется тем, что простое приравнивание спектров D-мезонов спектру c-кварков (т.е. $D(z) \sim \delta(1-z)$) приводит к слишком "жестким" спектрам D-мезонов при больших x. Тем самым, мы приходим к необходимости описывать

адронизацию c кварков при больших значениях фейнмановской переменной x более мягкой (по сравнению с $\delta(1-z)$) функцией фрагментации.

Рис. 2. Описание асимметрии A(x) (эффекта лидирования) в $\pi^- p$ -столкновениях [10, 11] в механизме "жесткой" фрагментации (см. (14)). Кривые отвечают различным значениям параметра R_0 (см. (9) и (10)) для рекомбинационного механизма. Значение $R_0 = 3.0$ отвечает верхней кривой и т.д.

С учетом сказанного выше мы модифицируем традиционную картину адронизации очарованных кварков в результате фрагментации.

В области малых инвариантных масс $c\bar{c}$ -пары описание адронизации в терминах функции фрагментации (взятой из e^+e^- -аннигиляции), по-видимому, не обосновано. Действительно, число партонов из начальных адронов в центральной области по xдостаточно велико. Поэтому c-кварк вполне может образовать очарованный адрон совместно с одним из этих партонов. При такой адронизации практически не будет происходить потери импульса c-кварка (т.е. $\vec{p}_D \approx \vec{p}_c$). Следовательно, в области малых x мы должны ожидать совпадения спектров D-мезонов и c-кварков. В области же больших x должен работать традиционный фрагментационный механизм (а также механизм рекомбинации).

Таким образом, мы рассмотрим два режима фрагментации очарованных кварков.

1. Вблизи порога образования c-кварков, т.е. при $M_{c\bar{c}} \geq 2m_c$ импульс образующегося D-мезона должен практически совпадать с импульсом очарованного кварка-родителя.

2. Для $c\bar{c}$ -пары с инвариантной массой $M_{c\bar{c}}$, большей некоторого масштаба M_0 (при этом $M_0 \gg 2m_c$), процесс адронизации *c*-кварков может быть описан с помощью функции фрагментации (например, в виде (12) или (13)).

В терминах фрагментационного механизма эти два режима можно записать единым образом, введя зависимость функции фрагментации от инвариантной массы *cc*-пары:

$$D^{MF}(z, M_{c\bar{c}}) = \begin{cases} \sim \delta(1-z) & \text{при } M_{c\bar{c}} \approx 2m_c \\ D(z) \text{ из (12) или (13)} & \text{при } M_{c\bar{c}} \ge M_0 \end{cases}.$$
(16)

Заметим, что предполагаемая нами зависимость функции фрагментации c-кварков от $M_{c\bar{c}}$ не связана каким-либо образом с логарифмическим нарушением скейлинга в функциях фрагментации.

Чтобы единым образом воспроизвести два режима фрагментации (16), мы используем простейшую зависимость $D(z, M_{c\bar{c}})$ в виде (13)

$$D^{MF}(z, M_{c\bar{c}}) \sim z^{-\alpha(M_{c\bar{c}})}(1-z),$$
 (17)

с двумя условиями на $\alpha(M_{c\bar{c}})$:

Выбранная нами параметризация $\alpha(M_{c\bar{c}})$ приведена в приложении 1. Подгонка к экспериментальным данным показывает, что значение параметра M_0 ,

$$M_0 \approx 10 \ \Gamma \Rightarrow B$$
,

позволяет удовлетворительно описывать данные эксперимента. Такое значение не противоречит экспериментам в e^+e^- аннигиляции, где при энергии $\sqrt{s} \approx 10$ ГэВ уже допустимо описание в терминах механизма фрагментации зависимостью типа (3).

Итак, суммарное дифференциальное сечение рождения очарованного *H*-адрона можно представить в виде

$$\frac{d\sigma(H)}{dx} = \frac{d\sigma^{MF}(H)}{dx} + \frac{d\sigma^{rec}(H)}{dx},$$
(19)

где $\frac{d\sigma^{rec}(H)}{dx}$ — дифференциальное сечение образования H-адрона в результате рекомбинации c-кварка с валентными кварками (см. (9)), а $\frac{d\sigma^{MF}(H)}{dx}$ — дифференциальное сечение образования H-адрона в результате фрагментации c-кварка, описывающееся формулой (11) с модифицированной функцией фрагментации $D^{MF}(z, M_{c\bar{c}})$.

Как и ранее [2], мы предполагаем, что мезонное $(Q\bar{q})$ -состояние переходит в векторный M_{V^-} или псевдоскалярный M_{PS} -мезон $M(Q\bar{q})$ с весом, пропорциональным спину:

$$M_{PS} : M_V = 1 : 3. (20)$$

Так как векторные D^* -мезоны образуются в основном прямым образом (а не в результате распадов), то наше дальнейшее рассмотрение касается векторных D^* -мезонов. Учет распадов $D^* \to D\pi, D\gamma$ представляется тривиальной задачей.

2. Сравнение предсказаний модели с экспериментами в π^{\pm} -пучках

Как указывалось во введении, наша работа посвящена описанию двух типов инклюзивных распределений по x: дифференциальных сечений D-мезонов (т.е. $\frac{d\sigma}{dx}$) и асимметрии A(x).

На рис. 3. представлено описание диф
ференциального распределения $\frac{d\sigma}{dx}$ для реакции

$$\pi^- N \rightarrow (D + \bar{D}) X.$$

просуммированное по всем типам D-мезонов при энергии $E_{\pi} = 250$ ГэВ. Как видно из рисунка, наша модель (модифицированная фрагментация плюс рекомбинация) удовлетворительно воспроизводит экспериментальные данные. Заметим, что хотя рекомбинационный вклад в полное сечение довольно мал ($\leq 10\%$), его вклад существенен при больших x (см. рис. 3). Как видно из этого же рисунка, учет только модифицированного фрагментационного вклада не позволяет описать поведение инклюзивного спектра во всей кинематической области.

Рис. 3. Дифференциальные распределения $\frac{d\sigma}{dx}$ при $E_{\pi} = 250$ ГэВ. Экспериментальные данные из [10]. Точечная и пунктирная кривые соответствуют рекомбинационному и фрагментационному вкладам. Сплошная кривая — их сумма. Сечение в мкб.

Описание соответствующей асимметрии (эффект лидирования) представлено на рис. 4. Как видно, и в этом случае рассмотренная модель позволяет воспроизвести данные эксперимента [10,11]. Подчеркнем еще раз, что "жесткая" фрагментация (т.е. $\vec{p}_D = \vec{p}_c$) позволяет описывать дифференциальный спектр во всей кинематической области, однако не воспроизводит *x*-зависимость асимметрии.

Рис. 4. Описание асимметрии A(x) в $\pi^- p$ столкновениях [10, 11] в механизме модифицированной фрагментации (т.е. по формуле (19) с функцией фрагментации из (18)).

В табл. 1 мы приводим сравнение предсказаний нашей модели с экспериментальными данными по интегральным выходам очарованных мезонов и с предсказаниями модели Лунд [12] (экспериментальные результаты и предсказания модели Лунд взяты из работы [13]).

 Таблица 1.
 Отношение интегральных (при x > 0) выходов очарованных мезонов в рассмотренной модели, соответствующие экспериментальные значения [13] и предсказания модели Лунд (взятые из работы [13]).

	$\frac{D^+ + D^-}{D^0 + \bar{D}^0}$	$\frac{D_s^+ + D_s^-}{D^0 + \bar{D}^0 + D^+ + D^-}$	$\frac{D^-}{D^+}$	$\frac{D^0}{\overline{D}^0}$
Модель	0.332	0.102	1.16	1.0
Эксперимент	0.416 ± 0.016	0.129 ± 0.012	1.35 ± 0.05	0.93 ± 0.03
Лунд	0.472	0.077	2.25	1.09

Как видно из табл. 1, наши вычисления значений отношений сечений образования D-мезонов согласуются с результатами эксперимента в пределах экспериментальных ошибок. Это достигается учетом двух типов адронизации очарованных c-кварков, поведение которых определяется двумя параметрами R_0 и M_0 , а также функциями распределения партонов в начальных адронах.

Критической проверкой рассмотренной модели является сравнение теоретических предсказаний с экспериментальными результатами в $K^{\pm}-$ и Σ^{-} -пучках. В этих адронах распределение валентных кварков существенно отличается от аналогичных распределений в $\pi^{\pm}-$ и *p*-пучках (см. ниже). Как следствие, должны различаться и вклады от рекомбинационного механизма в инклюзивные спектры очарованных адронов.

3. Рождение очарования в пучках заряженных K^{\pm} -мезонов

С точки зрения партонной модели, отличие K^{\pm} -мезонов от π^{\pm} -мезонов состоит не только в замене валентного d-кварка на странный валентный s-кварк. В K^{\pm} -мезоне должны также существенно измениться вид функций распределения валентных кварков.

Простейшая (без учета нарушения скейлинга) параметризация функций распределения валентного кварка q_1 в мезоне $M(q_1\bar{q}_2)$ с валентными кварками q_1 и \bar{q}_2 имеет вид

$$V_{q_1}^{M(q_1\bar{q}_2)}(x) = \frac{\Gamma(2+\gamma_0 - \alpha_1 - \alpha_2)}{\Gamma(1-\alpha_1)\Gamma(1+\gamma_0 - \alpha_2)} x^{-\alpha_1} (1-x)^{\gamma_0 - \alpha_2},$$
(21)

где α_i — пересечение ведущей редже-траектории кварка q_i , а γ_0 — некоторый параметр. В этом выражении коэффициент определяется условием нормировки

$$\int_0^1 V^M_q(x) dx = 1.$$

Выбор параметра γ_0 в (21) определяется асимптотикой поведения структурных функций при $x \to 1$. Правила кваркового счета предсказывают значение

$$\gamma_0 - \alpha_2 = 1.$$

Для *п*-мезона из известной асимптотики

$$V^{\pi}(x)|_{x \to 1} \sim \frac{1}{\sqrt{x}}(1-x)^{1}$$

следует, что $\gamma_0 = \frac{3}{2}$. Учитывая, что $\alpha_u = \alpha_d = 1/2$, а $\alpha_s \approx 0$ (см. (8)), мы получаем следующие распределения валентных u- и s-кварков в K^{\pm} -мезоне:

$$V_u^K \sim \frac{1}{\sqrt{x}} (1-x)^{3/2},$$
 (22)

$$V_s^K \sim (1-x)^1.$$
 (23)

Из вида распределений (22) и (23) видно, что валентный *s*-кварк в *K*-мезоне более "жесткий", чем *u*-кварк:

$$< x_{s_v}^K > = 0.33, < x_{u_v}^K > = 0.166$$

Заметим, что в выбранной нами параметризации структурных функций К-мезона суммарный импульс, уносимый валентными кварками, равен

$$\langle x_v^K \rangle = \langle x_{s_v}^K \rangle + \langle x_{u_v}^K \rangle = 0.5,$$
 (24)

что следует сравнить с аналогичным значением для π -мезона:

$$\langle x_v^{\pi} \rangle = \langle x_{d_v}^{\pi} \rangle + \langle x_{u_v}^{\pi} \rangle = 0.4.$$
 (25)

Мы предполагаем далее, что форма распределений глюонов в π^{\pm} – и K^{\pm} –мезонах одинакова. Аргументом в пользу этого является выполненный ранее анализ эволюции структурных функций π^{\pm} – и K^{\pm} –мезонов, стартующей с различных распределений валентных кварков [14]. Другими аргументами в пользу такого предположения является одинаковая форма спектров очарованных мезонов, образованных в π^{\pm} – и K^{\pm} –пучках [10].

Как отмечалось выше, форма распределений остальных морских партонов в K^{\pm} -мезоне совпадает с видом соответствующих распределений партонов в π^{\pm} -мезонах:

$$f_{sea}^K(x) = \epsilon f_{sea}^\pi(x),$$

где $\epsilon \approx 0.8$ учитывает изменение по отношению к π^{\pm} -мезону доли импульса, уносимого валентными кварками в *K*-мезоне:

$$\epsilon = \frac{1 - \langle x_v^K \rangle}{1 - \langle x_v^\pi \rangle} \approx 0.8.$$

Как следствие разных распределений (22) и (23) мы должны ожидать различных распределений по фейнмановской переменной x для $D(c\bar{u})$ – и $D_s(c\bar{s})$ –мезонов, рожденных (с учетом рекомбинации с валентными кварками) в пучках K^{\pm} –мезонов. Необходимые для таких вычислений двухчастичные распределения партонов в K– мезоне легко получить с помощью уравнения (21). Их явный вид приведен в приложении 2.

На рис. 5 приведены предсказания нашей модели эффекта лидирования в пучке K^- -мезонов при энергии $E^K = 250$ ГэВ. Как и следовало ожидать, в рассмотренной модели предсказывается различное поведение x-зависимости асимметрии для D- и D_s -мезонов. Для странноочарованных D_s -мезонов эффект лидирования более заметен, чем для обычных очарованных мезонов. Наблюдение такого отличия послужило бы хорошим подтверждением рассмотренной модели.

Рис. 5. Поведение асимметрии A(x) в K^-p -столкновениях в механизме модифицированной фрагментации при $E_K = 250$ ГэВ. Кривые на рисунке соответствуют отношениям: 1) D_s мезонов, 2) всех очарованных $D+D_s$ -мезонов, 3) D_s ко всем очарованным $D+D_s$ -мезонам.

К сожалению, в эксперименте измерена только величина интегральной асимметрии [15]

$$A_K^{exp}(D_s) = 0.25 \pm 0.11, \tag{26}$$

что следует сравнить с нашим предсказанием

$$A_K^{theor}(D_s) = 0.29.$$
 (27)

Как видно, наша теоретическая оценка согласуется с экспериментальным значением.

Заключение

Представленная нами "улучшенная" модель адронизации очарованных кварков позволяет непротиворечиво воспроизвести особенности инклюзивных дифференциальных спектров D-мезонов, рождающихся в $\pi^- p$ -столкновениях. Дальнейший прогресс в понимании механизмов адронизации тяжелых кварков мы видим в рассмотрении процессов рождения очарованных частиц в K- и Σ -столкновениях. Это обусловлено, в частности, другими партонными распределениями валентных кварков в K и Σ по сравнению с π - и p-пучками. Следующим этапом такого исследования является рассмотрение процесса образования очарованных барионов, в рождении которых существенна роль дикварков из начальных адронов.

В заключение авторы выражают благодарность В.Г. Картвелишвили, В.В. Киселеву, М. Мангано и Е.А. Чудакову за плодотворные обсуждения.

Наша работа частично поддержана Российским фондом фундаментальных исследований (гранты №96-02-18216 и №96-15-96575).

Список литературы

- [1] Mangano M., Nason P. and Ridolfi G. // Nucl. Phys. 1993. B405, p. 507.
- [2] Лиходед А.К. и Слабоспицкий С.Р. // ЯФ. 1997. **60**, р. 1097.
- [3] Картвелишвили В.Г., Лиходед А.К., Слабоспицкий С.Р. // ЯФ. 1980. 32, р. 236;
 Картвелишвили В.Г., Лиходед А.К., Слабоспицкий С.Р. // ЯФ. 1981. 33, р. 832;
 Лиходед А.К., Слабоспицкий С.Р., Суслов М.В. // ЯФ. 1983. 38, р. 727.
- [4] Коллиз П. Введение в реджевскую теорию и физику высоких энергий. М.: Атомиздат, 1980.
- [5] Kartvelishvili V.G., Likhoded A.K., and Petrov V.A. // Phys. Lett. 1978. B78, p. 615.

- [6] Peterson C., Schlatter D., Schmitt I., and Zerwas P. // Phys. Rev. 1983. D27, p. 105.
- [7] Montanet L. et al. (Review of Particle Properties). // Phys. Rev. 1994. D50, Part II, p. 1.
- [8] CLEO Collaboration. Bortoletto D. et al., // Phys. Rev. 1988. D37, p. 1719;
- [9] OPAL Collaboration. Akers R. et al. // Z.Phys. 1995. C67, p. 27; OPAL Collaboration. Ackerstaff K. et al. // CERN-PPE/97-093. 1997. hepex/9708021; ALEPH Collaboration. Buskulic D. et al. // Z.Phys. 1994. C62, p. 1.
- [10] E769 Collaboration. Alves G.A. et al. // Phys. Rev. Lett. 1996. 77, p. 2392.
- [11] WA82 Collaboration. Adamovich M. et al. // Phys. Lett. 1993. B305, p. 402;
 E769 Collaboration. Alves G.A. et al. // Phys. Rev. Lett. 1994. 72, p. 812;
 E791 Collaboration. Aitala E.M. et al. // Phys. Lett. 1996. B371, p. 157.
- [12] Bengtsson H.-U. and Sjöstrand T. // Comput. Phys. Commun. 1978. 46, p. 43; Sjöstrand T. and Bengtsson H.-U. // Comput. Phys. Commun. 1987. 43, p. 367.
- [13] Beatrice Collaboration. Adamovich M. et al. // Nucl. Phys. 1997. B495, p. 3.
- [14] Batunin A.V., Likhoded A.K. and Kiselev V.V. // *AΦ*. 1989. **49**, p. 554.
- [15] E769 Collaboration. Alves G.A. et al. // Phys. Rev. Lett. 1996. 77, p. 2388.

Рукопись поступила 8 октября 1997 г.

Приложение 1.

Для того чтобы получить параметризацию $\alpha(M_{c\bar{c}})$, учитывающую условия (18), т.е. $\alpha(2m_c) = \infty$ и $\alpha(M_0) = \alpha_c$, мы рассмотрим выражение для первого момента μ от функции фрагментации $D^{MF}(z, M_{c\bar{c}})$ из (17):

$$\mu(M_{c\bar{c}}) \equiv \int_0^1 z D(z, M_{c\bar{c}}) dz = \frac{1 - \alpha(M_{c\bar{c}})}{3 - \alpha(M_{c\bar{c}})}$$

Искомое выражение для $\alpha(M_{c\bar{c}})$ равно

$$\alpha(M_{c\bar{c}}) = \frac{1 - 3\mu(M_{c\bar{c}})}{1 - \mu(M_{c\bar{c}})}.$$

Для $\mu(M_{c\bar{c}})$ мы полагаем следующую зависимость (типа КХД):

$$\mu(M_{c\bar{c}}) = \left(\frac{\ln(\frac{M_{c\bar{c}}}{2m_c}q_0)}{\ln q_0}\right)^d,$$

где $d \approx 0.464$ — параметр, аналогичный аномальной размерности.

Новый параметр q₀ выражается через M₀ следующим образом:

$$q_0 = \left(\frac{M_0}{2m_c}\right)^{\frac{\nu}{1-\nu}},$$

где

$$\nu = \mu(M_0)^{-\frac{1}{d}}$$
 и $\mu(M_0) = \frac{1 - \alpha_c}{3 - \alpha_c}$.

Приложение 2.

В этом приложении для полноты изложения мы приведем явный вид двухчастичных распределений $f_{Vi}^h(x_V, x_1)$ в π^{\pm} – и K^{\pm} -мезонах. Отметим, что двухчастичное (так же, как и одночастичное) распределение партонов не вычисляется теоретически. Поэтому мы воспользуемся простейшим феноменологическим выражением, которое должно учитывать сохранение полного импульса, правильно воспроизводить $(1 - x_1)^n$ -зависимость зависимость распределения морских партонов, а также условие нормировки (подробнее см. [3]):

$$\int_0^{(1-x_1)} f_{Vi}^h(x_V, x_1) dx_V = f_i^h(x_1),$$

где $f_i^h(x_1)$ — одночастичное распределение партона i в адроне h.

Для случая двух валентных кварков такое распределение имеет вид [3]

$$f_{VV}(x_1, x_2) = \frac{\Gamma(2 + \gamma_0 - \alpha_1 - \alpha_2)}{\Gamma(1 - \alpha_1)\Gamma(1 - \alpha_2)\Gamma(\gamma_0)} x_1^{-\alpha_1} x_2^{-\alpha_2} (1 - x_1 - x_2)^{\gamma_0 - 1}.$$

В случае одного валентного и одного морского партона соответствующее распределение равно

$$f_{Vj}(x_v, x_j) = N_j \frac{\Gamma(2 + n_v - \alpha_v)}{\Gamma(1 - \alpha_v)\Gamma(1 + n_v)} x_v^{-\alpha_v} x_j^{-1} (1 - x_v - x_j)^{n_v} (1 - x_j)^k,$$

где N_j — соответствующая нормировка распределения морского партона, $n_v = \gamma_0 - \alpha_1 - \alpha_2 + \alpha_v$ и $k = n_j - 1 - \gamma_0 + \alpha_1 + \alpha_2$.

Численные значения параметров функций $f_{Vj}(x_1, x_2)$ для π - и K-мезонов приведены в табл. 2.

π^{\pm} –мезон	A	α_1	α_2	n_v	k
партоны					
$u_v d_v$	0.477	0.5	0.5	0.5	0
$u_v g$	1.50	0.5	1.0	1.0	1.5
$u_v(u,d)_{sea}$	0.090	0.5	1.0	1.0	3.5
$u_v s_{sea}$	0.045	0.5	1.0	1.0	3.5
K^{\pm} –мезон	A	α_1	α_2	n_v	k
партоны					
$u_v s_v$	1.27	0.5	0.0	0.5	0
$u_v g$	1.34	0.5	1.0	1.0	1.5
$s_v g$	3.22	0.0	1.0	1.5	1.5
$u_v(u,d)_{sea}$	0.08	0.5	1.0	1.0	3.5
$u_v s_{sea}$	0.04	0.5	1.0	1.0	3.5
$s_v(u,d)_{sea}$	0.192	0.0	1.0	1.5	3.5
$s_v s_{sea}$	0.096	0.0	1.0	1.5	3.5

<u>Таблица 2.</u> Численные значения параметров функций $f_{Vj}(x_1, x_2) = A x_1^{-\alpha_1} x_2^{-\alpha_2}$ $(1 - x_1 - x_2)^n (1 - x_2)^k.$

А.К.Лиходед, С.Р.Слабоспицкий.

О механизме фрагментации очарованных с-кварков в адронных столкновениях.

Оригинал-макет подготовлен с помощью системы ІАТ_ЕХ. Редактор Н.В.Ежела. Технический редактор Н.В.Орлова. Подписано к печати 13.10.97. Формат 60 × 84/8. Офсетная печать. Печ.л. 1,87. Уч.-изд.л. 1,44. Тираж 150. Заказ 8. Индекс 3649. ЛР №020498 17.04.97.

ГНЦ РФ Институт физики высоких энергий 142284, Протвино Московской обл.

Индекс 3649

 Π Р Е П Р И Н Т 97–66, И Φ В Э, 1997