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Abstract

Soloviev L.D. Quark Masses in a Relativistic Confinement Model: IHEP Preprint 97-7. –
Protvino, 1997. – p. 9, refs.: 10.

We consider a relativistic quantum model of confined massive quark and antiquark which
describes leading Regge trajectories of mesons. A comparison with experimental meson masses
makes it possible to determine the quark masses (in MeV) ms = 228±5, mc = 1340±50, mb =
4550 ± 100. We have used these numbers to calculate other meson masses in agreement with
experiment.
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rASSMOTRENA RELQTIWISTSKAQ KWANTOWAQ MODELX KONFAJNMENTA MASSIWNOGO KWARKA I AN-
TIKWARKA, OPISYWA@]AQ GLAWNYE REDVEWSKIE TRAEKTORII MEZONOW. sRAWNENIE MODELI S

“KSPERIMENTOM POZWOLILO OPREDELITX MASSY KWARKOW (W m“W) ms = 228± 5, mc = 1340± 50,
mb = 4550± 100. iSPOLXZOWANIE “TIH MASS DLQ WYˆISLENIQ MASS MEZONOW PRIWODIT K HORO-
[EMU SOGLASI@ S “KSPERIMENTOM.
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It has been believed for a long time that properties of quarks confined in a meson
are closely related to those of the relativistic string with Nambu-Goto self-interaction [1].
However, the anomaly in the quantized string theory in 4-dimensional space-time turned
the main development of the string theory from hadron models to other directions [1].
Nevertheless, the hadron theory can try to use some simple particular configurations
of the string for an approximate description of the hadrons if these configurations admit
relativistic quantization. If the approximate hadron model obtained in this way appears to
be acceptable for experiment, one can try the next, more complicated string configuration,
having in mind that at some step the whole notion of string may fail, especially when
more experimental information about hadron daughter trajectories are available.

The simplest string configuration, a straight-line string, was quantized in [2,3] in accord
with the Poincaré invariance and in good agreement with the spectrum of the light-quark
mesons lying on the leading Regge trajectory. The next approximation was to take into
account the masses of the quarks attached to the ends of the string. This has been done
in [4-7] with different assumptions, the common assumption being vanishing of the quark
velocity along the string.

In this paper we get rid of this assumption [10]. We consider the Nambu-Goto straight-
line string with point-like massive quarks attached to its ends. This is an extended
relativistic object called a rotator for which the explicitly relativistic description intro-
duces auxiliary variables resulting in a symmetry of the rotator Lagrangian. The rotator
Hamiltonian is given by an implicit function which can be calculated numerically. For
important particular cases (light or heavy quarks) series expansions for the Hamiltonian
are obtained. Quantization of this system preserving the Poincaré invariance gives me-
son states with different spins lying on a Regge trajectory which depends on the quark
masses. A comparison with experiment allows one to estimate the s-, c- and b-quark
masses while the u- and d-quark masses are zero within error bars. As a check we have
used the obtained quark masses to calculate the ss̄-, cc̄- and bb̄-meson masses (not used
in the input) in agreement with experiment.

We consider mesons with non-zero spins. Spin-zero-states demand special considera-
tion because more complicated mechanisms may be involved in their formation.
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So, let us consider a simplest extended relativistic object – a straight-line

x(τ, σ) = r(τ ) + f(τ, σ)q(τ ), (1)

where r is a 4-vector corresponding to a point on the straight-line, q is an affine 4-vector
of its direction, f is a scalar monotonic function of σ labelling points on the line and τ
is a scalar evolution parameter. We shall not fix the coordinates fi(τ ) = f(τ, σi(τ )) of
the end points of the string considering them as dynamical variables to be determined
from extremum of an action. Then the explicit Poincaré covariance of (1) introduces
superfluous variables not necessary for the description of the straight-line as a physical
object, so that theory in terms of (1) must be invariant under a group of three sets of
τ -dependent transformations (gauge transformations)

1) shift of r along q:
r→ r + f(τ )q, (2)

2) multiplication of q by an arbitrary scalar function:

q → g(τ )q, and (3)

3) reparametrization of τ , which means that the Lagrangian must satisfy the condition

L(h(τ )ż, h(τ )(h(τ )ż)•) = h(τ )L(ż, z̈), (4)

where ż and z̈ mean every τ -derivative in the Lagrangian.
This symmetry implies that the phase-space variables of our system obey three con-

straints which are in involution with respect to their Poisson brackets, the canonical
Hamiltonian is zero and the total Hamiltonian is a linear combination of the constraint
functions.

An important consequence of this symmetry comes from the observation that a shift of
the end-point coordinates fi → fi+ a or their velocities is equivalent to a transformation
(2). The solutions of our problem do not depend on a and ȧ and without loss of generality
we can use Lagrangians satisfying these conditions explicitly:

∑
Lfi = 0,

∑
Lḟi = 0. (5)

Here and below
∑

corresponds to summation over i = 1, 2 and a variable as an index
denotes the partial derivative with respect to this variable.

Invariants of a symmetry play an important role in the description of a symmetric
system. In our case they are orthonormal vectors along the line direction, velocity of the
line rotation and velocity of its movement as a whole

n = cq, v1 = b−1ṅ, v0 = (ṙ2⊥)
−1/2ṙ⊥, (6)

where
c = (−q2)−1/2, b = (−ṅ2)1/2 (7)
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and
ṙk⊥ = (gkl + nknl + v1kv1l)ṙl. (8)

The angular velocity b is invariant under (2) and (3) and transforms as the Lagrangian
under (4). The scalar invariant of the symmetry is

l = b−1(ṙ2⊥)
1/2. (9)

We shall label points on the string with respect to the instant center of its rotation z

f = z + y, (10)

z = b−1ṙv1 (11)

(velocity of the point r + zn, orthogonal to q, is orthogonal to v1 ). The length of the
rotator at fixed τ is |y2 − y1|. From ẋ2i ≥ 0 it follows that |yi| ≤ l.

The Lagrangian of our model is a sum of the Nambu-Goto Lagrangian for an open
string and two Lagrangians for free point-like particles with masses m1 and m2 and ve-
locities of the ends of the string

L = −a
∫ σ2

σ1

g1/2dσ −
1

2

∑
(
1

bei
ẋ2i + beim

2
i ), (12)

where g = (ẋx′)2 − ẋ2x′2 is minus determinant of the induced metric of the string world-
sheet, ẋi = dx(τ, σi(τ ))/dτ, i = 1, 2 are velocities of the string ends and ei are Lagrange
multipliers determined from the condition Lei = 0. Using the notations introduced above
we can rewright (12) for the straight-line string (1,10) in the form

L = −bF, (13)

where F is a gauge and Poincaré invariant function

F = a
∫ y2

y1

(l2 − x2)1/2 +
1

2

∑
(e−1i (l2 − y2i −w2i ) + eim

2
i ), (14)

wi = b−1(ẏi + ż − ṙn). (15)

Let us denote
y1 = −y/2 + d, y2 = y/2 + d, (16)

where y = y2 − y1 and d = (y1 + y2)/2. Then the first condition (5)

∑
Fyi = 0 (17)

makes it possible to express d through y and l (and ei). The second condition (5) deter-
mines ḋ. Putting ḋ into (14) we get

F = a
∫ y2

y1

(l2 − x2)dx+
1

2
[
∑

(e−1i (l2 − y2i ) + eim
2
i ) −

b−2

e1 + e2
ẏ2]. (18)
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If y depends on τ, ẏ 	= 0, then there exists a gauge (a parametrization) in which

y = k1τ + k2, (19)

where k1,2 do not depend on τ . They must ensure the extremum of F

∂F/∂ki = 0. (20)

Since
∂F/∂ki =

∑
j

Fyjyjki + Fki (21)

and

yjk1 = (−1)j
τ

2
+ dk1 , yjk2 = (−1)j

1

2
+ dk2 , (22)

then because of (17)

∂F/∂k1 = (Fy2 − Fy1)
τ

2
−

b−2

e1 + e2
k1, (23)

∂F/∂k2 = (Fy2 − Fy1)
1

2
. (24)

This means that
k1 = 0, (25)

or y does not depend on τ ,

F = a
∫ y2

y1

(l2 − x2)1/2dx+
1

2

∑
(e−1i (l2 − y2i ) + eim

2
i ) (26)

and from (17) and (24)
Fyi = 0, i = 1, 2. (27)

Putting ei satisfying Fei = 0 into (26) we get

F = a
∫ y2

y1

(l2 − x2)1/2dx+
∑

mi(l
2 − y2i )

1/2 (28)

with yi satisfying (27), so that

(−1)iyi = (l2 + (mi/2a)
2)1/2 − (mi/2a). (29)

Calculating the momenta p and π canonically conjugate to r and q

p = −∂L/∂ṙ, π = −∂L/∂q̇ (30)

we get three constraints φi = 0, i = 1, 2, 3, where the constraint functions are

φ1 = pq, φ2 = πq, (31)

φ3 = L−K. (32)
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Here
L = ((q2 − (qp)2/p2)π2)1/2 (33)

is the magnitude of the conserved orbital spin

Lµ = εµνρσp
νMρσ/2m, (34)

where
Mµν = r[µpν] + q[µπν] (35)

is the angular momentum tensor. K is a function of m = (p2)1/2, implicitly given by the
equations

K = lFl − F, (36)

Fl = m. (37)

The rotator Hamiltonian is a linear combination of the constraint functions

H =
∑

i=1,2,3

ciφi. (38)

It determines the dynamical equations for any variable X

Ẋ = {X,H}, (39)

φi = 0 after calculating the brackets and the non-zero Poisson brackets are

{pµ, rν} = {qµ, πν} = gµν . (40)

We can choose gauge conditions to fix ci in (38), or we can describe our symmetrical
system by invariants of the symmetry

p, r0 = r + (pπ)q/p2, v = (−q2p)
−1/2qp, L (41)

(qµp = (gµν−pµpν/p2)qν) which have zero Poisson brackets with φ1,2. To have zero brackets
of the external coordinate of the rotation center r0 with the internal coordinates v and L
we introduce four orthonormal vectors eα, α = 0, 1, 2, 3

e0 = p/m, eαeβ = gαβ (42)

and define new variables

na = −eav, La = −eaL, a = 1, 2, 3, (43)

z = r0 +
1

2
εabceaν

∂eνb
∂p

Lc. (44)

The non-zero Poisson brackets of the new variables are

{pk, zl} = gkl, {La, Lb} = εabcL
c, {La, nb} = εabcn

c. (45)
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The constraint function φ3 in the new variables is

φ3 = ((La)2)1/2 −K(m) (46)

and the solution of the dynamical equations (38) has the form

z = z0 + lV p/m, (47)

n = n0 cos V − n1 sinV, (48)

V =
∫
c3dτ. (49)

ŒFrom (47) the laboratory time of the rotation center

t = z0 − z00 = lV p0/m (50)

and the space coordinates of this point

za = za0 + pat/p0 (51)

correspond to its movement in the laboratory with constant velocity pa/p0. The direction
of the rotator rotates with constant angular velocity

ω =
m

p0l
, (52)

where l = l(m) from (37).
The canonical quantization can now be performed quite easily. We replace our vari-

ables by operators and their Poisson brackets (45) by commutators. The constraint equa-
tion now holds for the wave function

[((La)2)1/2 −K(m)− a0]ψ = 0, (53)

where in the operator form of (46) we have added a constant a0 of order h̄, which can
always be done and in our case helps make the model better at small L’s. So our model
has two free constants, a and a0, the latter being of phenomenological nature.

Our quantum system is relativistic because the quantization procedure transforms the
classical Poisson brackets of pµ and Mνσ into commutators without any change in their
form, so that the Pioncaré algebra is fully preserved.

Quark spins are important especially for small L. They were taken into account in [6,7]
where the spinless-particle Lagrangians in eq.(12) were replaced by those of Berezin and
Marinov [8], with the result that for the leading Regge trajectories one can simply replace
the orbital spin L in (53) by the total meson spin J . For the physical eigenstates this
gives

(J(J + 1))1/2 = K(m) + a0, (54)

where we consider J = 1, 2, ..., while J = 0 demands special consideration.
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The function K(m) is given by eqs.(28,29,36,37). We must solve eq.(37) to find l as
a function of m and put this function into (36). This can be done numerically for any
quark masses. For important particular cases K can be expanded into series. For light
quarks

yi = πmi/m� 1 (55)

K(m) =
m2

2πa
[1−

4

3π

∑
y
3/2
i (1−

3

20
yi) +

1

(3π)2
(
∑

y
3/2
i )2 +O(y

7/2
i )]. (56)

For heavy quarks
D = m−m1 −m2 � mi (57)

K(m) =
1

a
(
2

3
D)3/2ν−1/21 (1 +

7

36

ν3

ν21
D+ O((

D

mi

)2)), (58)

νn =
∑

m−ni . (59)

For light and heavy quarks

d = m−m2, y1 =
πm1

2d
� 1, x2 =

2d

πm2
� 1, (60)

K(m) =
d2

πa

[
1−

8

3π
y
3/2
1 −

2

π
x2 +

9

π2
x22 − (

54

π3
−

7

6π
)x32 + (

270

π4
−

35

2π2
)x42+

+ O(y
5/2
1 ) +O(y

3/2
1 x2) +O(x52)

]
. (61)

We see that the slope of the trajectory for mesons formed by a heavy and light quark
(antiquark) is twice as large as for light-quark mesons.

Applying eq.(54) to the leading ρ - and K�-trajectories we have

K(mρJ) = K(mK�J), (62)

or, neglecting the u- and d-quark masses

ms

mK�J

=
1

π
z
2/3
J (1 +

1

10
z
2/3
J +

1

18π
zJ +O(z

4/3
J )), (63)

zJ =
3π

4
(1−

m2ρJ
m2K�J

). (64)

Using the experimental data from [9] and putting into (63) for J = 1 mρ = 768.5 (all
masses are in MeV) and mK� = 891.6 we get the strange-quark mass ms = 220. In the
same way, for J = 2 (ma2 = 1318.1, mK�2

= 1425.4) we get ms = 234. For J = 3
(mρ3 = 1691, mK�3

= 1770 ± 10) ms = 204 ± 18. The error in the last number comes
mainly from that of the K�

3 -mass. We conclude that

ms = 228± 5 MeV (65)
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is a reasonable estimate for the strange quark mass. The error of 2% corresponds to the
accuracy of calculations and, partly, to the accuracy of the model.

To check this result we can use it to calculate masses m of mesons consisting of ss̄.
For J = 1 we get m = 1030 (mφ = 1019), for J = 2 m = 1480 (mf ′2

= 1525 ± 5) and for
J = 3 m = 1850 (mφ3 = 1854 ± 7), which can be compared with experimental masses in
brackets, the biggest deviation of 3% being for J = 2.

In eq.(62) we assumed that the constant a0 is the same for the u-, d- and s-quarks.
We shall see that this is correct up to 2%. We get the following values for the model
parameters

a = .176, 2πa ≡ α′−1 = 1.11 GeV 2, (66)

a0(q) = .88, (67)

where q stands for light quarks. The parameter (67) corresponds to the intercept param-
eter (of J with the K = 0 axis) J0(q) = .51.

For the c-quark from (54)

K(mJ/ψ) = K(mD�) =
√
2− a0(c), (68)

which allows one to calculate the c-quark mass through those of J/ψ and mD� and to
estimate a0(c):

mc = 1340, (69)

a0(c) = .72. (70)

The corresponding value of intercept is J0(c) = .38.
As a check we have calculated the cc̄-meson mass for J = 2 to be 3430, which is 4%

smaller than the experimental mass 3556 of χc2(1P ).
Quite similar, for the b-quark

K(mΥ) = K(mB�) =
√
2− a0(b) (71)

and
mb = 4550, (72)

a0(b) = .40, (73)

the intercept being J0(b) = .14.
The bb̄-meson with J = 2 has mass 9670, which is 2% smaller than the experimental

mass 9913 of χb2(1P ).
From eqs.(67,70,73) we see that a0 decreases with quark masses. Approximating this

dependence by a linear one
a0(q) = .88− .38mq/mb (74)

we see that for the u-, d- and s-quarks it remains the same within 2%.
In conclusion let us discuss, which quark masses correspond to our model. It is a

quantum mechanical model of free quarks bound in mesons. If it describes an experiment
and if we believe that QCD with usual perturbative renormalization procedure summed
to all orders also describes experimental meson spectra, then our quark masses are the
current masses entering as parameters the QCD Lagrangian.

The author is grateful to V.A.Petrov, Yu.F.Pirogov and A.V.Razumov for dicussions.
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