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Abstract

Kim Dae Kwan, Klimenko K.G. Finite Density Effect in the Gross-Neveu Model on a Weakly

Curved Surfaces: IHEP Preprint 97-71. – Protvino, 1997. – p. 11, figs. 3, refs.: 25.

The three-dimensional Gross-Neveu model in R1 × M2 spacetime, where M2 is a weakly

curved two dimensional surface, is investigated, using an effective potential at a finite curvature
R and nonzero chemical potential µ. The critical values of (R, µ) are derived, such that a system

undergoes the first order phase transition from the phase with broken chiral invariance to the
symmetric phase. The fermion density is found to be of nonanalytic behaviour at the critical
value of the chemical potential.
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Introduction

In recent years four-fermion field theories in (2+1)-dimensional Minkowski spacetime,
which are known as Gross-Neveu (GN) models [1], are under extensive investigation for
purely theoretical motivation and also due to their applications to planar condensed mat-
ter physics. Such theories possess many desirable properties: the renormalizability in 1/N
expansion, dynamical breaking of chiral symmetry and generation of fermion mass for a
large coupling constant as in QCD [2], the analogy to the BCS theory of superconductivity
in two spatial dimensions and the possibility to describe a new phenomenon of high tem-
perature superconductivity [3], the reduction to the S = 1/2 quantum antiferromagnet
Heisenberg model in the continuum limit [4] and so on. Main features of these models,
obtained by large N expansion technique, are confirmed within the framework of other
nonperturbative approarches [5].

Since there are no closed physical systems in nature, the influence of different external
factors on the vacuum of the simplest GN model was considered. In [6] some critical
phenomena of this theory were studied at nonzero temperature T and chemical potential µ.

Recently, on the same foundation a new property of external (chromo-)magnetic field
H to promote the dynamical chiral symmetry breaking has been discovered [7]. (At
present it is the well-known effect of dynamical chiral symmetry breaking catalyst by
external magnetic field [8], which is under intensive consideration [9].) The role of T, H
as well as of µ, H in the formation of a ground state of the GN model was also clarified [10].

The study of dynamical symmetry breaking in spacetimes with curvature and non-
trivial topology is also of great importance, since in the early universe the gravity was
sufficiently strong and one should take it into account. A copious literature on this sub-
ject is available (see the review [11]). The effect of curvature and nontrivial topology
on the chiral symmetry breaking in four-fermion models was first discussed in [12,13].
The curvature-induced first order phase transition from a chirally symmetric to a chi-
rally nonsymmetric phase was shown to exist in those models in the linear curvature
approximation. It turns out that in specific spacetimes such as Einstein universe [14]
and maximally symmetric spacetimes [15] the above-mentioned models can be solved ex-
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actly in the leading order of large N expansion technique. Finally, dynamical symmetry
breaking in the external gravitational and magnetic fields was considered [16].

It is well-known that low dimensional four-fermion field theories, especially the (2+1)-
dimensional GN model, in curved spacetimes [13,17,18,19] and in the nonsimply connected
spacetimes [20,21] may be very useful for the investigation of physical processes in thin
films and in the materials with layer structure. The matter is that an external stress, ap-
plied to the planar system, can change the topology and curvature of a surface. A great
amount of observable physical phenomena are due to nonzero particle density (supercon-
ductivity, quantum Hall effect, etc.). So, here the influence of both chemical potential
and curvature of space on the phase structure of (2+1)-dimensional GN model is studied.
Especially, we shall consider R1 ×M2 spacetime to clarify our discussion. Here M2 is an
arbitrary weakly curved noncompact two dimensional spatial surface.

In Section 1 we evaluate the one-loop effective potential in R1 × M2 spacetime at
nonzero chemical potential. In this we suppose that surface M2 curves slowly, so we keep
only terms independent of curvature R and terms linear in R. Section 2 gives a detailed
analysis of the effective potential, which shows the existence of a phase transition restoring
the chiral symmetry of the system while the curvature R and chemical potential µ are
varied. Finally, we summarize our results in Section 3.

1. Effective potential in R1 ×M 2 spacetime at µ �= 0

The four-fermion model in the R1 ×M2 spacetime, where M2 is the two dimensional
weakly curved space, is described by the action [11,13,18]

S =
∫
d3x
√
−g

[
iψ̄jγ

µ(x)∇µψj +
λ2

2N
(ψ̄jψj)

2

]
, (1)

where g is the determinant of the spacetime metric gµν , ∇µ is the covariant derivative
and the summation over j is implied (j = 1, 2, .., N). Here fermion fields ψj are taken in
the reducible four dimensional representation of SL(2, C). For this case the algebra of
the γ-matrices is presented in [2]. This action has the discrete chiral symmetry,

ψ → γ5ψ. (2)

As a result, the chiral symmetry is maintained at any order of ordinary perturbation
theory. However, as is evident from different nonperturbative approaches [1,2,5] the sym-
metry may be broken dynamically for large values of coupling constant λ. To see the
nonperturbative features such as spontaneous symmetry breaking and dynamical mass
generation in the present model, it is convenient to rewrite the above action in an equiv-
alent form [1] by introducing the auxiliary field σ(x),

S =
∫
d3x
√
−g

[
iψ̄jγ

µ(x)∇µψj − σψ̄jψj −
N

2λ2
σ2
]
. (3)

This expression suggests explicitly that the vacuum expectation value of σ field plays the
role of mass for the fermions. In order to find the effective potential in the theory with the
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action of Eq. (1), we follow [12,13] where this quantity was considered in a weak curvature
approximation. First of all let us integrate over the fermion fields in Eq. (3) and evaluate
an effective action Seff (σ) describing the self-interaction of σ field:

exp(iNSeff(σ)) =
∫
DψDψ̄ exp[iS(ψ, ψ̄, σ)]. (4)

Here we use the 1/N expansion which is the fermion-loop expansion. In the mean-field
approximation, where the σ(x) field is assumed to be constant, and to the leading order in
the large N , one can obtain the one-loop effective potential U(σ) from the action Seff (σ):

U(σ) =
σ2

2λ2
+ i tr〈x| ln(iγµ(x)∇µ − σ) |x〉, (5)

where tr is over indices other than spacetime indices. Using the Green function GF (x, y; σ)
defined by the relation

GF (x, y; σ) ≡ 〈x|(iγ
µ∇µ − σ)

−1|y〉, (6)

we rewrite Eq. (5) as follows:

U(σ) =
σ2

2λ2
− i tr lnGF (x, x; σ). (7)

The logarithm can be eliminated from this equation by introducing the parameter s:

ln
[
K − σ

K

]
= −

∫ σ
0
ds

1

K − s
, (8)

where an operator K is given as iγµ(x)∇µ in the present case. Therefore, Eq. (7) is
rewritten in the following form:

U(σ) =
σ2

2λ2
− i tr

∫ σ
0
ds
∫

d3k

(2π)3
GF (k; s), (9)

where the momentum-space Green function GF (k; s) has been used.
Now one can introduce the Riemann normal coordinate [22] with origin at any point in

the spacetime. In this local coordinate system we use the weak curvature approximation
for the Green function GF (k; s):

GF (k; s) =
γaka + s

k2 − s2
−
R

12

γaka + s

(k2 − s2)2
+

2

3
Rµνk

µkν
(γaka + s)

(k2 − s2)3

−
1

2
γaJ cdRcdaµk

µ 1

(k2 − s2)2
, (10)

where Jab = 1
4
[γa, γb], and the Latin and Greek indices refer to a local orthonormal frame

and general coordinate system, respectively. Eq. (10) is the linear approximation for
the Green function GF (k; s) in the curvature R [11,12,13]. According to the well-known
method developed in [23], one should neglect any terms involving derivatives higher than
those of the second order in the metric tensor expansion to obtain Eq. (11).
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Fig. 1. The contour C in the complex k0

plane.

Now let us consider the effect of nonzero
chemical potential µ on the system. It is com-
mon knowledge that the fermion-number den-
sity is directly related to the chemical po-
tential µ. Mathematically, the presence of
nonzero chemical potential is realised by shift-
ing the energy levels k0 in the propagator
GF (k; s) by the amount of µ [24]. Thus, we
are to evaluate the effective potential U(σ) in
Eq. (9) under effects of both R and µ. Using
the contour integration method [24], we can
perform the integration over momentum kµ.
Denote I1 as the integral of the first term in
GF (k; s) over k and s. Its calculation proceeds
as follows: first, the procedure of integration
over k0, denoted as I ′1, gives the result:

I ′1(k, s) ≡ tr
∫ dk0

2π

γ0(k0 + µ) + γ
iki + s

(k0 + µ)2 − E2k

=
2

π

∫ i∞
−i∞

s dz

z2 − E2k
+

2

π

∮
C

s dz

z2 − E2k

=
2

π

∫ i∞
−i∞

s dz

z2 − E2k
+

2is

Ek
θ(µ− Ek). (11)

Here, E2k ≡ k
2 + s2, the contour C is given in Fig. 1, and the unit step function θ(x) =

1 for x > 0, θ(x) = 0 for x < 0 has been used. Thus, we get

I1 ≡ −i
∫ σ
0
ds
∫

d2k

(2π)2
I ′1(k, s)

= σ2
[
σ

3π
−

Λ

π2

]
+ θ(µ− σ)

[
µ

2π
σ2 −

1

3π
σ3
]
+ θ(σ − µ)

µ3

6
, (12)

where Λ is the cutoff parameter. Here and in what follows, we can confine ourselves to
the σ ≥ 0 region due to a reflection symmetry σ ↔ −σ of the effective potential U(σ).
However, note that this symmetry is broken when the system selects one of the two ground
states. In a similar way one finds the contributions I2, I3, I4 of the remaining terms of
GF (k; s) to potential (10):

I2 =
R

24π

[
−σ + θ(µ− σ)(σ −

1

2µ
σ2) + θ(σ − µ)

µ

2

]
,

I3 =
1

12π

[
R σ − R00[θ(µ− σ)(σ −

1

2µ
σ2) + θ(σ − µ)

µ

2
]

]
,

=
1

12π
R σ,

I4 = 0. (13)
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We confine ourselves to the R00 = 0 case without losing the generality of our discussion.
So, in the third line of Eq. (13), we have set R00 = 0. However, the fourth line of Eq.(13)
is due to a relation tr[γiγjγk] = 0.

At this stage it is convenient to introduce the mass parameter M instead of the
coupling constant λ by the following way [2]:

1

λ2
≡ 4

∫ Λ d3kE
(2π)3

1

k2E +M2

=
2

π2
Λ−

1

π
M. (14)

So, we shall consider the case λ > λc only, where λ
−2
c ≡ 4

∫ Λ d3kE(2π)−3k−2E . Summing
up all terms Ii in Eq. (12) and (13) and inserting the above equation into Eq. (9), one
sees that the two Λ-dependent terms cancel out, and thus the finite effective potential to
one-loop order is obtained. Then, the µ- and R-dependent one-loop contributions U1Rµ(σ)
to the potential U(σ) are completely separated from the Minkowski-space result:

U(σ) = UF (σ) + U
1
Rµ(σ), (15)

where UF (σ) is the effective potential of the original theory in the flat Minkowski space-
time. Here

UF (σ) =
σ2

3π

[
σ −

3

2
M

]
,

U1Rµ(σ) =
R

24π
σ +

1

π
θ(µ− σ)

[
(µ −

2

3
σ)
σ2

2
+
R

24
(σ −

σ2

2µ
)

]

+
1

6π
θ(σ − µ)

[
µ(µ2 +

R

8
)
]
. (16)

In this expression one can find the following two facts. Firstly, U1Rµ(σ) is finite and,
as R, µ → 0, U1Rµ(σ) vanishes. Thus, the renormalisation procedure is identical to the
case of Minkowski spacetime. Secondly, in the limit µ,R → 0, U(σ) is reduced to the
Minkowski-space effective potential UF (σ).

It is well established that there are two distinct phases in the three-dimensional GN
model [1,2,7]. For a weak coupling phase with the coupling λ < λc, we have 〈σ〉 = 0.
Thus, the fermions are massless and the chiral symmetry remains intact. However, for
the strong coupling phase λ > λc, σ field has nonzero vacuum expectation value 〈σ〉 =M
, so the chiral symmetry Eq. (1) is dynamically broken and fermions acquire the mass,
which is equal to the mass parameter M from Eq. (14).

For simplicity of our analysis in the next sections, we shall introduce the following
rescaled dimensionless quantities defined as Ũ(x) ≡ πU(σ)/µ3, R̃ ≡ R/µ2, x ≡ σ/µ, and
µ̄ ≡ µ/M. In terms of these quantities, Eq. (15) is rewritten in the much simpler form:

Ũ (x) =


 (1− 1

µ̄
− R̃
24
)x
2

2
+ R̃x
12
, for x < 1

(x− 3
2µ̄
)x
2

3
+ R̃x
24

+ 1
6
(1 + R̃

8
), for x ≥ 1,

(17)
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where Ũ(x) is a continuous function at x = 1. We also wish to find the induced fermion
mass 〈σ〉 as a function of curvature R and chemical potential µ. Then, the gap equation
for the fermion mass can be obtained by taking the derivative of the effective potential
Ũ(x) with respect to x, and so we obtain

0 =


 (1− 1

µ̄
− R̃
24
)x+ R̃

12
, for x < 1

x2 − x
µ̄
+ R̃
24
, for x ≥ 1.

(18)

2. Restoration of chiral symmetry

Now we shall analyze in detail the effective potential of Eq. (17) in order to investigate
the phase structure of the model in the (R, µ) plane. The fermion mass 〈σ〉 will be derived
which depends on R and µ and the nature of the phase transitions will be discussed. For
clarity, we shall consider three distinct cases: µ �= 0 and R = 0, then R �= 0 and µ = 0,
and finally R �= 0 and µ �= 0.

A. The case µ �= 0 and R = 0

Let us first examine the effect of nonzero chemical potential on the system. In the
limit R→ 0, the effective potential Eq. (17) is reduced to a simple form:

Ũ (x) =


 (1− 1

µ̄
)x
2

2
, for x < 1

(x− 3
2µ̄
)x
2

3
+ 1
6
, for x ≥ 1.

(19)

To see a phase transition as µ̄ increases from a broken phase to a symmetric one, it is
necessary to examine the behavior of Ũ(x) as a function of µ̄. It is possible to find the
following two properties of Ũ(x). For µ̄ > 1, Ũ(x) is a monotonically increasing function
of x, and so the global minimum of Ũ(x) occurs at x = 0. While for µ̄ < 1, Ũ(x) has a
global minimum at x = 1/µ̄ with the value:

Ũ

(
x =

1

µ̄

)
= −

1

6

(1− µ̄3)

µ̄3
. (20)

These facts indicate that the system undergoes a phase transition from the 〈σ〉 =M state
to the 〈σ〉 = 0 state at the critical value µc of the chemical potential, given as

µc =M. (21)

Solving the gap equation for the induced fermion mass, Eq. (18) with R = 0, one can find
that

〈σ〉 =M (22)

below µc, and 〈σ〉 = 0 above µc. Except when µ = µc, the order parameter 〈σ〉 does not
depend on the value of µ. That is, the value of order parameter 〈σ〉, which minimizes the
potential, jumps discontinuously from σ =M to σ = 0 at the transition point µc. Hence,
at the point µ = µc we have a first order phase transition from a massive chirally broken
phase to a massless chirally invariant phase of the model.
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B. The case R �= 0 and µ = 0

In this case only the effect of curvature on the system will be considered. In the limit
µ→ 0, the general effective potential of Eq. (17) has the following form:

U(σ) = UF (σ) + U
1
R(σ)

=
σ2

3π

(
σ −

3

2
M
)
+

R

24π
σ. (23)

This expression coincides with that obtained in [14,18]. From Eq. (23) one can see that
in the region of small values of σ the dominant contribution to U(σ) comes from the R-
dependent linear term in σ. Thus, there is a potential barrier between σ = 0 and second
local minimum of U(σ). As a result, it turns out that with the curvature R increase the
discontinuous phase transition occurs from a chirally broken phase to a symmetric one.
The critical value of the curvature Rc, at which a first order phase transition occurs, is
defined by the following two conditions:

U ′(σ0) = 0 and U(σ0) = 0, (24)

where σ0 denotes the second nonzero local minimum of the potential. Furthermore, one
can find that only for R > Rc the minimum of the potential at the symmetric point σ = 0
is lower than the asymmetric local minimum at a nonzero σ0. From the gap equation (18)
with µ = 0, one can evaluate the local minimum of the potential σ0,

σ0 =
M

2


1 +

√
1−

1

6

R

M2


 , (25)

which at the same time equals the fermion mass 〈σ〉, induced under the influence of
curvature R for R < Rc only. Thus, applying the critical condition of Eq. (24) to the
effective potential of Eq. (23), one can obtain the critical curvature

Rc = 4.5M2. (26)

The phase transition under the influence of R is a first-order one since it occurs discontin-
uously. The same result for the Rc in (2+1)-dimensional GN model in arbitrary weakly
curved spacetime was obtained in [11,18].

C. The case R �= 0 and µ �= 0

In the given Subsection we are going to explore a general case wherein the system
is specified by the curvature and finite chemical potential. To investigate the vacuum
structure of the system when R and µ are varied, one must first examine the behavior
of the potential Ũ(x) as a function of R and µ. It is very helpful to sketch qualitatively
the effective potential Ũ(x) from Eq. (17). For µ̄ > 1 (µ > M) the global minimum of
Ũ(x) occurs only at x = 0. While for µ̄ < 1 (µ < M), the global minimum of Ũ(x) lies
certainly at nonzero point. Therefore, when µ̄ < 1, it turns out that the system undergoes
a phase transition from the 〈σ〉 �= 0 vacuum state to the 〈σ〉 = 0 state at a certain critical
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curvature R̃c depending on µ. Using a much detailed analysis of the effective potential
Ũ(x) in Eq. (17), one can see that until the system approaches the critical point with
the increase of curvature, the second local minimum of Ũ(x) occurs only in the region
x > 1. Therefore, in the procedure of determining the critical value of the curvature R̃c,
the effective potential needs to be considered only in the x > 1 region in Eq. (17).

In this case we can obtain the critical curvature Rc also using the condition given in
Eq. (24), with the only change σ0 → x0, where x0 denotes the second local minimum
of the potential. That is, in the present case the phase transition under investigation is
also a first-order one. As can be easily checked from the gap equation (18), the second
minimum lies at the point

x0 =
1

2µ̄


1 +

√
1−

R̃µ̄2

6


 . (27)

Thus, the critical condition of Eq. (24) with this value for x0 leads to the self-consistent
relation on the critical curvature R̃c:

16x30 −
24x20
µ̄

+ (2x0 + 1)R̃c + 8 = 0, (28)

where x0 has the value given in Eq. (27), with R̃ replaced by R̃c.

Fig. 2. The critical curvature Rc/M
2 as a

function of nonzero chemical potential
µ/M . In region B, chiral symmetry is
broken and fermions acquire dynami-
cal masses, while in S, the symmetry
is restored by the curvature effect, and
fermions become massless.

Fig. 3. The effective potential πU(σ)/M3 as a
function of σ/M at the fixed value of
µ/M = 1/2. Four interesting cases of
R̄, where R̄ ≡ R/M2, are considered,
and the critical curvature R̄c is then nu-
merically obtained: R̄c = 2.96.
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The numerical solutions of Eq. (28) are illustrated in Fig. 2. Note, that with µ→ 0, the
Rc approaches 4.5M

2 and with R→ 0, the µc approaches M . These limiting cases have
been already discussed in the previous Subsections. Eq. (27) suggests that the induced
fermion mass 〈σ〉, with 〈σ〉 = µx0, does depend on the curvature R only. That is, 〈σ〉
does not depend on µ, and thus it has the same expression as in Eq. (25). In Fig. 3, the
effective potentials are given for four distinct values of R at fixed µ = M

2
.

3. Summary and Discussion

In the present paper we have derived the effective potential of the three-dimensional
Gross-Neveu model in the curved spacetime of the form R1 ×M2 and with taking into
account the chemical potential µ as well. Then, the critical curvature Rc at which dy-
namical symmetry breaking disappears, was determined in terms of the induced fermion
mass M in the limit R, µ→ 0 and at nonzero chemical potential µ, as given in Fig. 2.

In Subsections A and C it was shown that at fixed curvature R < Rc a critical value
of chemical potential µc(R) was available. In this critical point the system undergoes a
chiral phase transition of the first order. We also observed that the order parameter 〈σ〉
of the phase transition, corresponding to the minimum of the potential, did not depend
on the value of µ, except at the critical value µ = µc, even though the phase transition
was induced by the chemical potential. This phenomenon is connected with the fact that
the composed field σ ∼ ψ̄ψ is a real field and carries no charge. It was observed also in
two-dimensional GN model in R1 × S1 spacetime [21], however, in that model there is
another massive phase, in which fermion mass is µ-dependent quantity.

Furthermore, analysing Eq. (21) one can come across an interesting fact. Let us sup-
pose that particle density N(µ) of the system is not zero. In this case, by the analogy with
the condensed matter physics, the chemical potential corresponds to the Fermi energy,
that must be greater than the minimal energy of one fermion, i.e. µ >< σ >. Hence,
at µ < µc = M there is a massive phase of the theory (< σ >= M), at which N(µ)
equals zero. At µ > µc =M the symmetric phase of the model is arranged. Here fermion
density in the vacuum is not zero, and at the critical point µ =M , the function N(µ) is a
discontinuous one. Recently, a similar nonanalytic behaviour of Chern-Simons coefficient
in the presence of chemical potential has been found in a (2+1)-dimensional QED [25].

In Subsection B we have shown that Rc = 4.5M2 at µ = 0. This can be roughly seen
from the following two facts. Firstly, on dimensional grounds the critical curvature Rc
must be proportional to the square of some quantity with the dimension of mass. Secondly,
the effective potential for the composite σ field in Eq. (23) has two parameters R and M ,
and so, the remaining parameter apart from R in this theory is M . Note, that our value
for Rc is found in a weak curvature limit, and thus its more accurate value can be obtained
by considering higher order corrections to scalar curvature R. However, in such improved
schemes, it is expected that the system still shows the same qualitative properties as those
found in the previous Sections, including the occurrence of a first order phase transition.
(In [18] some speculations about the validity of the weak curvature expansion for large
values of R are presented.)
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Finally, one may consider the case of negative curvature since this method has the
advantage of being applicable to any metric. Then, Eq. (25) indicates that under the
effect of negative curvature R the minimum of the potential is located farther from the
origin than without the curvature effect. Therefore, in this case the symmetry restoring
phase transition does not happen.

We hope that the above results may be useful for condensed matter physics and for
astrophisical applications, especially for the description of different phenomena in the core
of neutron stars as well.

We are grateful to Prof. S.D.Odintsov and Dr. P.A.Saponov for reading the manuscript
and some critical remarks as well as to Prof. V.P. Gusynin for useful comments. D.K. Kim
thanks Prof. K.-S. Soh, Prof. C.K. Kim and Prof. J.H. Yee for helpful discussions.
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