

ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ ФЕДЕРАЦИИ

ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

ИФВЭ 97-79 ОЭФ

## В.Ф. Образцов<sup>1</sup>, С.Р. Слабоспицкий<sup>2</sup>, О.П. Ющенко<sup>3</sup>

# ПОИСК АНОМАЛЬНОГО ВЗАИМОДЕЙСТВИЯ t-КВАРКОВ НА КОЛЛАЙДЕРЕ LEP-2

Направлено в ЯФ

<sup>1</sup>E-mail: OBRAZTSOVmx.ihep.su

<sup>2</sup>E-mail: SLABOSPITSKYmx.ihep.su

<sup>3</sup>E-mail: YUSHCHENKO@mx.ihep.su

Протвино 1997

#### Аннотация

Образцов В.Ф., Слабоспицкий С.Р., Ющенко О.П. Поиск аномального взаимодействия *t*-кварков на коллайдере LEP-2: Препринт ИФВЭ 97-79. – Протвино, 1997. – 11 с., 5 рис., библиогр.: 10.

В работе показано, что поиск событий  $e^+e^- \rightarrow t\bar{q}$  ( $\bar{q} = \bar{c}, \bar{u}$ ) на коллайдере LEP-2 позволит улучшить современные ограничения на константы аномального взаимодействия tкварков за счет нейтральных токов с нарушением аромата.

#### Abstract

Obraztsov V.F., Slabospitsky S.R., Yuschenko O.P. Search for Anomalous Top-Quark Interaction at LEP-2 Collider: IHEP Preprint 97–79. – Protvino, 1997. – p. 11, figs. 5, refs.: 10.

We show, that search for  $e^+e^- \rightarrow t\bar{q}$  ( $\bar{q} = \bar{c}, \bar{u}$ ) ebents at LEP-2 collider provide to improve significantly the moder constraints on coupling constants if anomalous *t*-quark interaction via flavor-changing neutral currents.

> Сосударственный научный центр Российской Федерации
>  Институт физики высоких энергий, 1997

### Введение

Открытие t-кварков на коллайдере FNAL [1] открывает новые экспериментальные возможности в поисках выхода за рамки стандартной модели (СМ). Одним из направлений таких исследований является поиск редких распадов t-кварка. В частности, весьма интересным является поиск распадов топ кварков за счет нейтральных токов с нарушением аромата (FCNC-распады) [2]:

$$t \rightarrow \gamma(g, Z) + c(u). \tag{1}$$

В СМ на древесном уровне отсутствуют вершины, отвечающие таким FCNCраспадам. Только учет "петлевых" вкладов делает возможными процессы (1), что приводит к очень небольшим вероятностям таких распадов [3]:

Br
$$(t \to (\gamma, g, Z) + c(u)) < 10^{-10}$$
. (2)

Во многих расширениях СМ происходит аномально большое усиление таких процессов. Поэтому наблюдение FCNC–распадов *t*–кварка явным образом свидетельстовало бы о нарушении предсказаний СМ (см. работы [2,4,5,6]).

Поиск распадов (1) проводился сотрудничеством CDF на коллайдере FNAL в  $\bar{p}p$ -столкновениях при энергии  $\sqrt{s} = 1,8$  ТэВ в реакции рождения топ кварков

$$\bar{p}p \rightarrow \bar{t}tX.$$
 (3)

Этим сотрудничеством получены следующие верхние ограничения на вероятности распадов  $t \to \gamma c(u)$  и  $t \to Zc(u)$  [7]:

$$Br(t \to c\gamma) + Br(t \to u\gamma) < 3.2\% \quad (95\% \text{ CL}), \tag{4}$$

$$Br(t \to cZ) + Br(t \to uZ) < 33\% \quad (95\% \text{ CL}).$$
(5)

Такие "слабые" ограничения (в  $\sim 10^8$  раз превышающие предсказания CM [3]) естественно объясняются небольшой набранной статистикой событий с рождением

*t*-кварков ( $N_{\bar{t}t} \sim 10^2$ ). В будущем сеансе коллайдера FNAL ожидается существенное увеличение статистики ( $N_{\bar{t}t} \sim 10^3 \div 10^4$  [8]), что позволит улучшить оценки (4) и (5) (см. подробнее работы [5,8]).

В нашей работе мы обсудим возможности получения аналогичных ограничений на константы аномального взаимодействия t-кварка из данных  $e^+e^-$ -коллайдера LEP-2. А именно, мы рассмотрим процесс одиночного образования t-кварка в результате FCNC-взаимодействий

$$e^+ e^- \rightarrow \gamma^*(Z^*) \rightarrow t \ \bar{c}(\bar{u}).$$
 (6)

Заметим, что такой процесс (6) рассматривался ранее (см., например, [9]). Однако в этих работах изучалось проявление такого аномального взаимодействия при энергиях будущего  $e^+e^-$ -коллайдера ( $\sqrt{s} \sim 500$  ГэВ), а детальное исследование реакции (6) при энергиях LEP-2 коллайдера не проводилось.

Начиная с лета 1997 г.,  $e^+e^-$ -коллайдер LEP-2 работает при энергии  $\sqrt{s}$  = 184 ГэВ. При такой полной энергии  $e^+e^-$ -аннигиляции кинематически возможно образование одиночных *t*-кварков в реакции (6). Следовательно, поиск таких процессов становится вполне разумной задачей.

В нашей работе мы рассматриваем следующую задачу: какие ограничения на аномальные константы FCNC–взаимодействий t–кварка можно извлечь из данных коллайдера LEP-2? Мы покажем, что при планируемой светимости  $\mathcal{L}_{e^+e^-} \sim$ 100 пкб<sup>-1</sup> возможно существенно улучшить современные ограничения на величины аномальных констант, следующие из оценок (4) и (5).

Статья организована следующим образом. Аномальное FCNC–взаимодействие *t*– кварков рассматривается в разделе 1. Оценки выходов *t*–кварков и ограничения на аномальные константы приводятся в разделе 2. Дифференциальные распределения по энергии и углам вылета конечных частиц в реакции (6) рассматриваются в разделе 3. Основные результаты и выводы приведены в заключении.

## 1. Вершины $\gamma \bar{t}c$ и $Z\bar{t}c$

Приведем явный вид аномальных вершин нейтральных токов с нарушением аромата  $V_0 \bar{t}c$  и  $V_0 \bar{t}u$ , где  $V_0$  обозначает фотон или Z-бозон. Для определенности мы рассмотрим взаимодействие  $V_0 \bar{t}c$ . Переход t-кварка в u-кварк описывается аналогично.

Следуя работе [4], вершины нейтральных токов  $t\to c\gamma$  и  $t\to cZ$  запишем в виде

$$\Gamma^{\gamma}_{\mu} = \kappa_{\gamma} \frac{e e_q}{\Lambda} \sigma_{\mu\nu} \left( g_1 P_l + g_2 P_r \right) q^{\nu}, \tag{7}$$

$$\Gamma_{\mu}^{Z} = \kappa_{Z} \frac{e}{\sin 2\vartheta_{W}} \gamma_{\mu} \left( z_{1} P_{l} + z_{2} P_{r} \right), \qquad (8)$$

 $\Lambda$  — масштабный параметр, отвечающий новой физике; e — электрический заряд;  $e_q = 2/3$  — заряд t-кварка;  $\vartheta_W$  — угол Вайнберга;  $\sigma^{\mu\nu} = \frac{1}{2}(\gamma^{\mu}\gamma^{\nu} - \gamma^{\nu}\gamma^{\mu}); P_{\frac{l}{r}} =$   $\frac{1}{2}(1\pm\gamma^5); \kappa_{\gamma}$  и  $\kappa_z$  — аномальные константы для тока с фотоном ( $\kappa_{\gamma}$ ) и Z-бозоном ( $\kappa_z$ ) соответственно;  $g_1, g_2, z_1, z_2$  — относительные значения "левых" и "правых" компонент, причем

$$g_1^2 + g_2^2 = 1, \quad z_1^2 + z_2^2 = 1.$$
 (9)

Мы полагали, что  $\text{Im}\kappa_{gamma} = \text{Im}\kappa_z = \text{Im}g_i = \text{Im}z_i = 0$  (см. работы [4,5]).

Так как во всех выражениях масштабный параметр  $\Lambda$  входит в комбинации  $\gamma_i$   $\Lambda$ , то для определенности мы полагаем, что

$$\Lambda = m_t.$$

Используя выражения для вершин (7) и (8), для ширин соответствующих распадов, имеем (см. также [5])

$$\Gamma(t \to c\gamma) = \kappa_{\gamma}^2 \frac{\alpha e_q^2}{4} \left(\frac{m_t^2}{\Lambda^2}\right) m_t, \qquad (10)$$

$$\Gamma(t \to cZ) = \kappa_z^2 \frac{\alpha}{8\sin^2 2\vartheta_W M_Z^2} m_t^3 \left(1 - \frac{M_Z^2}{m_t^2}\right)^2 \left(1 + 2\frac{M_Z^2}{m_t^2}\right),$$
(11)

где  $\alpha$  — постоянная тонкой структуры,  $M_Z$  — масса Z-бозона.

В выражениях (10) и (11) мы полагали массу легкого кварка (c или u) равной нулю,  $m_c = m_u = 0$ , что вполне допустимо, так как  $m_q \ll m_t$ . Во всех вычислениях мы полагали также, что

$$m_t = 175 \ \Gamma \mathfrak{sB},\tag{12}$$

что согласуется с последними экспериментальными данными [10]:

$$D\emptyset \quad m_t = 173.3 \pm 5.6 \, (stat.) \pm 6.2 \, (syst.) \quad \Gamma \ni B/c^2, \\ CDF \quad m_t = 175.9 \pm 4.8 \, (stat.) \pm 4.9 \, (syst.) \quad \Gamma \ni B/c^2.$$

С помощью выражений (10) и (11) из экспериментальных ограничений (4) и (5) легко получить ограничения на соответствующие аномальные константы  $\kappa_{\gamma}$  и  $\kappa_{z}$  (при  $m_{t} = 175$  ГэВ):

$$\kappa_{\gamma}^2 < 0.176$$
 при  $\Lambda = m_t,$  (13)

$$\kappa_z^2 < 0.533.$$
 (14)

## 2. Рождение $t\bar{q}$ в $e^+e^-$ -аннигиляции

Используя выражения для аномальных вершин (7) и (8), легко получить выражение, описывающее полное сечение реакции рождения t- и  $\bar{c}(\bar{u})$ -кварков в реакции (6) (при  $m_c = 0$ ),

$$\sigma(e^{+}e^{-} \rightarrow t\bar{c}) = \frac{\pi\alpha^{2}}{s} \left(1 - \frac{m_{t}^{2}}{s}\right)^{2} \left[\frac{m_{t}^{2}}{\Lambda^{2}}\kappa_{\gamma}^{2}\frac{s}{m_{t}^{2}}\left(1 + \frac{2m_{t}^{2}}{s}\right) + \frac{\kappa_{z}^{2}(1 + a_{w}^{2})(2 + \frac{m_{t}^{2}}{s})}{4\sin^{4}2\vartheta_{W}(1 - \frac{M_{Z}^{2}}{s})^{2}} + 3\left(\frac{m_{t}}{\Lambda}\right)\frac{a_{w}\kappa_{\gamma}\kappa_{z}(g_{1}z_{1} + g_{2}z_{2})}{\sin^{2}2\vartheta_{W}(1 - \frac{M_{Z}^{2}}{s})}\right],$$
(15)

где  $a_w = 1 - 4\sin^2 \vartheta_W$ , остальные параметры определены выше. В этом выражении первое слагаемое ( $\sim \kappa_{\gamma}^2$ ) отвечает аннигиляции через фотон, второе ( $\sim \kappa_z^2$ ) — аннигиляции через Z бозон– и третье ( $\sim \kappa_{\gamma}\kappa_z$ ) — интерференции этих двух вкладов.

Как и следовало ожидать, поведение сечения одиночного образования *t*-кварков носит явно пороговый характер (см. (15)):

$$\sigma(e^+e^- \to t\bar{c}) \propto \left(1 - \frac{m_t^2}{s}\right)^2$$

Поэтому при вычислении сечения процесса (6) в околопороговой области (т.е. при  $\sqrt{s} \simeq m_t$ ) необходимо учитывать конечные ширины *t*-кварков и *W*-бозона. Другими словами, при энергии  $\sqrt{s} \simeq m_t$  следует учитывать рождение виртуального  $t^*$ -кварка с последующим его распадом на виртуальный  $W^*$ -бозон:

$$e^+ e^- \rightarrow \bar{c}(\bar{u}) t^* (\rightarrow b W^* (\rightarrow l\nu(q\bar{q}'))).$$
 (16)

Выражение для матричного элемента такого процесса довольно громоздкое и мы его не приводим.



Рис. 1. Сечение реакции  $e^+e^-$ аннигиляции при энергии LEP-2 коллайдера в пару  $t\bar{c}(\bar{u})$  в реакции (6) — сплошная кривая, и в реакции (16) — штрихивая кривая. При вычислениях использивались значения аномальных констант из (13) и (14).  $\sqrt{s}$  в ГэВ, сечение — в пикобарнах. На рис. 1 приведено поведение сечений процессов (6) и (16) в зависимости от  $\sqrt{s}$ . Как видно из этого рисунка, эффект конечных ширин *t*-кварка и *W*-бозона проявляется при  $\sqrt{s} \leq m_t$ . При более высоких энергиях  $e^+e^-$ -аннигиляции различие в сечениях становится несущественным. Так как мы исследуем процесс (6) при  $\sqrt{s} \geq 184$  ГэВ, то основные особенности реакции одиночного рождения *t*-кварков за счет FCNC-взаимодействий можно понять из анализа выражения (15) для сечения процесса (6).

# 3. Полное сечение рождения $t\bar{c}$ в $e^+e^-$ -аннигиляции и ограничения на величины аномальных констант

На рис. 2 представлено поведение сечения процесса  $e^+e^- \rightarrow t\bar{c}$  в зависимости от  $\sqrt{s}$ . Отдельно представлены вклады, отвечающие обмену виртуальным  $Z^$ бозоном, виртуальным фотоном, и их интерференция. Приведенные оценки сечения получены при значениях аномальных констант ( $\kappa_{\gamma}$  и  $\kappa_z$ ), отвечающих их "верхним" значениям (см. (13) и (14)). Как видно из этого рисунка, при таком выборе значений констант подавляющий вклад в сечение процесса (6) при  $\sqrt{s} \leq 400$  ГэВ вносит обмен с виртуальным  $Z^*$ -бозоном. Отметим разное энергетическое поведение вкладов с обменом фотоном и Z-бозоном. Из-за аномального взаимодействия с фотоном ( $\sim \sigma^{\mu\nu}$ ) этот влад не падает с ростом полной энергии взаимодействий. Действительно, из выражения (15) следует, что

$$\sigma(e^+e^- \to \gamma^*) \propto \left(1 - \frac{m_t^2}{s}\right)^2,$$
  
$$\sigma(e^+e^- \to Z^*) \propto \frac{1}{s} \left(1 - \frac{m_t^2}{s}\right)^2.$$

Рис. 2. Поведение сечения реакции  $e^+e^- \rightarrow t\bar{c}$  в зависимости от  $\sqrt{s}$  (сплошная кривая). Штриховая, пунктирная и штрихпунктирная кривые отвечают вкладам аннигиляции через фотон, Z-бозон и их интерференции.



При энергии  $\sqrt{s} = 184$  ГэВ, что соответствует энергии работы коллайдера LEP-2 в текущем сеансе, величина сечения реакции (6) (просуммированная по t и  $\bar{t}$ , а также по u- и  $\bar{u}$ -кваркам) равна

$$\sigma(e^+e^- \to t\bar{c} + t\bar{u} + \bar{t}c + \bar{t}u) = 0,15 \quad \text{пкб},\tag{17}$$

что при полной светимости,  $\mathcal{L}_{int} = 70$  пкб<sup>-1</sup> отвечает следующему числу событий с одиночным образованием t-кварков:

$$N_t = 10, 5, N_h(W \to 2jet) = 7, 1, N_l(W \to e^{\pm}\nu + \mu^{\pm}\nu) = 2, 3.$$
(18)

Здесь  $N_h$  и  $N_l$  обозначают число событий с распадами топ-кварка по чисто адронному и лептонному  $(e + \mu)$ -каналам. Эти, а также все последующие оценки получены в предположении 100%-ой эффективности регистрации адронных струй и лептонов. Мы также пренебрегали возможным вкладом от фоновых событий.

Рассмотрим теперь, какие ограничения "сверху" на значения аномальных констант  $\kappa_{\gamma}$  и  $\kappa_z$  можно ожидать из данных LEP-2. Для этого, в частности, необходимо потребовать максимально большого отрицательного вклада интерференционного члена в сечение (15), что отвечает минимальному значению соответствующего сечения. Как видно из выражения (15), это достигается при следующих условиях на относительные константы  $g_i$  и  $z_i$ :

$$g_1 z_2 = g_1 z_2 < 0. (19)$$

Отсюда следует, что  $g_1 z_1 + g_2 z_2 = 1$ . Следовательно, сечение (15) становится функцией двух параметров  $\kappa_{\gamma}$  и  $\kappa_z$ .

Учитывая различные обозначения и нормировки, используемые в литературе, полученные ограничения на аномальные константы мы представили в виде ограничений на соответствующие вероятности распадов  $t \to c(u)\gamma$  и  $t \to c(u)Z$ . Анализ был проделан для  $\sqrt{s} = 184$  ГэВ, а также для других значений полной энергии  $e^+e^-$ -аннигиляции коллайдера LEP-2 и сответствующих полных светимостей:

Полученные ограничения (при 95%-ом уровне достоверности) на  $Br(t \to c(u)\gamma)$  и  $Br(t \to c(u)Z)$  представлены на рис. 3. Мы также учли возможность суммирования статистики со всех четырех экспериментов (ALEPH, DELPHI, L3 и OPAL) коллайдера LEP-2. Соответствующие ограничения на этом рисунке показаны пунктирными кривыми.



Рис. 3. Верхние ограничения (при 95%-ом уровне достоверности) на вероятности распадов  $t \rightarrow (c + u)Z$  и  $t \rightarrow (c + u)\gamma$  при различных значениях полной энергии и светимости  $e^+e^-$ -аннигиляции (sqrts = 184 ГэВ и L = 70 пкб<sup>-1</sup>, sqrts = 192 ГэВ и L = 200 пкб<sup>-1</sup>, а также sqrts = 200 ГэВ и L = 100 пкб<sup>-1</sup>). Пунктирные кривые получены в предположении суммарной статистики всех четырех экспериментов на коллайдере LEP-2 (т.е. L(184) = 280 пкб<sup>-1</sup>, (192) = 800 пкб<sup>-1</sup> и L(200) = 400 пкб<sup>-1</sup>).

Заметим, что так как вклад от аннигиляции через фотон довольно мал (см. рис. 2), то при  $\sqrt{s} = 184$  ГэВ и полной светимости 100 пкб<sup>-1</sup> практически невозможно улучшить оценку (4), полученную сотрудничеством CDF. В то же время ограничения на вероятость распада *t*-кварка на *Z*-бозон могут быть улучшены в  $\sim 2$  раза:

$$\sqrt{s} = 184 \ \Gamma \mathfrak{g} B \Rightarrow \begin{cases} Br(t \to (c+u) \ \gamma) \leq 3.2\% \ (95\% \ C.L.), \\ Br(t \to (c+u) \ Z) \leq 18\% \ (95\% \ C.L.). \end{cases}$$
(20)

Увеличение полной энергии и светимости  $e^+e^-$ -аннигиляции позволит существенно улучшить современные ограничения (4) и (5) на соответствующие вероятности распада *t*-кварка как на *Z*-бозон, так и на фотон (ниже мы приводим значения при учете суммарной статистики со всех четырех экспериментов):

$$\sqrt{s} = 192(200) \ \Gamma \ni B \ \Rightarrow \begin{cases} Br(t \to (c+u) \ \gamma) &\leq 0.3\% \ (95\% \ C.L.), \\ Br(t \to (c+u) \ Z) &\leq 1\% \ (95\% \ C.L.). \end{cases}$$
(21)

Как показывает проделанный анализ, даже в текущем се<br/>ансе  $e^+e^-$ -коллайдера LEP-2 возможно улучшить ограничения на параметры аномального FCNCвзаимодействия t-кварков. Заметим также, что для получения оценок типа (21) в будущем сеансе коллайдера FNAL требуется довольно большая светимость,  $\mathcal{L}_{FNAL} \geq 1 \div 10 \ \phi 6^{-1}$  (см. подробнее [5,8]).

## 4. Дифференциальные распределения

Близость к порогу рождения t-кварков при энергии LEP-2 коллайдера (т.е.  $\sqrt{s} \le 200 \, \Gamma$ эВ) приводит к практически фиксированным значениям энергии конечных t, c(u)-, b-кварков и W-бозона в реакции (16):

$$E_t \simeq \frac{s+m_t^2-m_c^2}{2\sqrt{s}} \simeq m_t,$$

$$E_{c(u)} \simeq \frac{s-m_t^2+m_c^2}{2\sqrt{s}} \simeq \sqrt{s} - m_t,$$

$$E_b \simeq \frac{m_t^2-m_W^2+m_b^2}{2m_t},$$

$$E_W \simeq \frac{m_t^2+m_W^2-m_b^2}{2m_t}.$$
(22)

Соответствующие дифференциальные распределения по энергии конечных частиц в реакции (16) представлены на рис. 4. Заметим, что рассматриваемое одиночное рождение t-кварков приводит к весьма характерной топологии событий, резко отличающейся от соответствующей топологии возможного фонового процесса образования пары  $W^+W^-$ -бозонов:



$$e^+ e^- \rightarrow W^+ W^- \rightarrow 4jet.$$
 (23)

ис. 4. Распределения по энергиям конечных частиц в реакции (16). Кривые "q-jet" отвечают струям от распада W-бозона. Энергия струй  $E_{jet}$  — в ГэВ, сечение  $(1/\sigma)d\sigma/dE_{jet}$  — в ГэВ<sup>-1</sup>.

В рассматриваемой нами реакции (16) две струи обладают практически фиксированными энергиями. Например при  $\sqrt{s} = 184$  ГэВ

$$E_b \sim 70$$
 ГэВ и  $E_c \sim 10$  ГэВ.

Такое характерное поведение энергетических распределений очарованных и прелестных струй заметно отличается от соответствующих распределений в фоновом процессе (23)).

Подчеркнем еще раз, что распределение по энергии струй фактически определяется кинематикой процесса рождения пары  $t\bar{c}(\bar{u})$ -кварков и очень слабо зависит от параметров модели FCNC-взаимодействий t-кварка.

С другой стороны, угловые распределения конечных частиц в реакции (16) существенно зависят от параметров модели. Это легко увидеть из выражения для дифференциального сечения  $d\sigma/d\cos\vartheta$  для процесса (6) рождения t-и  $\bar{c}$ -кварков:

$$\frac{d\sigma(e^+e^- \to t\bar{c})}{d\cos\vartheta} = \frac{3\pi\alpha^2}{8\ s} \left(1 - \frac{m_t^2}{s}\right)^2 \left[\chi_\gamma + \chi_z + \chi_{int}\right],\tag{24}$$

где  $\vartheta$  — угол вылета t кварка по отношению к начальному электрону в с.ц.м. Слагаемые, отвечающие аннигиляции через фотон  $(\chi_{\gamma})$ , Z-бозон  $(\chi_z)$  и их интерференции  $(\chi_{int})$ , имеют вид

$$\chi_{\gamma} = 2\frac{m_t^2}{\Lambda^2}\kappa_{\gamma}^2 e_q^2 \frac{s}{m_t^2} \left(1 + \frac{2m_t^2}{s}\right)(1 - \lambda\cos^2\vartheta), \qquad (25)$$

$$\chi_z = \frac{\kappa_z^2}{2\sin^4 2\vartheta_W \left(1 - \frac{M_Z^2}{s}\right)^2} \tag{26}$$

$$\times \left[ (1+a_w^2)(2+\frac{m_t^2}{s})(1+\lambda\cos^2\vartheta) - 4a_w(z_1^2-z_2^2)\cos\vartheta \right],$$

$$\chi_{int} = 4e_q \kappa_\gamma \kappa_z \left(\frac{m_t}{\Lambda}\right) \frac{a_w(g_1 z_1 + g_2 z_2) - (g_1 z_1 - g_2 z_2)\cos\vartheta}{\sin^2 2\vartheta_W \left(1-\frac{M_Z^2}{s}\right)},$$

$$(27)$$

где  $\lambda = (1 - m_t^2/s)/(1 + m_t^2/s).$ 

Учитывая, что при энергиях коллайдера LEP-2 параметр  $\lambda \ll 1$ , то из приведенных выражений для  $d\sigma/d\cos\vartheta$  видно, что вклады в аннигиляцию через фотон или Z-бозон слабо зависят от  $\cos\vartheta$  (см. (25) и (26)). А вот угловая зависимость интерференционного вклада (~  $(g_1z_1 - g_2z_2)\cos\vartheta$ ) во многом определяется выбором параметров модели. Например, при  $g_1z_1 = -g_2z_2$  такая зависимость максимальна, а при  $g_1z_1 = +g_2z_2$  этот вклад вообще не зависит от от  $\cos\vartheta$  (см. (27)).

Соответствующие угловые распределения при двух выборах параметров модели

$$g_1 z_1 = -g_2 z_2$$
 и  $g_1 z_1 = +g_2 z_2$ 

представлены на рис. 5. Из этого рисунка видна явная зависимость угловых распределений от параметров модели. Это обстоятельство может помочь при получении более детальных ограничений на различные параметры аномального FCNC– взаимодействия *t*-кварков.



Рис. 5. Поведение угловых распределений  $d\sigma/\cos\vartheta$  (в произвольных единицах) конечных частиц в реакции (16). Кривые "q-jet" отвечают струям от распада *W*-бозона. Кривые получены при двух выборах параметров модели. Выбору  $g_1z_2 = -g_2z_1$  соответствуют сплошные кривые, а  $g_1z_2 = +g_2z_1$  — пунктирные кривые.

#### Заключение

В настоящей работе проанализирована возможность изучения (получение ограничений) аномальных взаимодействий t-кварков в нейтральных токах с нарушением аромата при энергиях  $e^+e^-$ -коллайдера LEP-2.

Мы анализировали события только с рождением одиночных *t*-кварков, полностью пренебрегая возможным вкладом от фоновых процессов. Нами показно, что результаты текущего сеанса коллайдера LEP-2 при энергии  $\sqrt{s} = 184$  ГэВ и при полной светимости  $\mathcal{L} \simeq 70$  пкб<sup>-1</sup> позволят в несколько раз улучшить современные ограничения на параметры аномального FCNC-взаимодействия *t*-кварков. При увеличении полной энергии до  $\sqrt{s} = 192(200)$  ГэВ и интегральной светимости до  $\mathcal{L} \simeq 100(200)$  пкб<sup>-1</sup> соответствующие ограничения на аномальные константы могут быть сравнимыми с теми, что ожидают получить в будущем сеансе коллайдера FNAL.

Показано, что конечные состояния в реакции  $e^+e^- \rightarrow \bar{c}t \rightarrow 4jet$  обладают характерной кинематикой: две струи имеют практически фиксированные энергии. Такая топология резко отличается от соответствующей топологии фоновых событий с рождением четырех струй. При этом такая кинематика событий практически не

зависит от параметров модели. В то же время угловые распределения конечных частиц в изученной реакции одиночного рождения *t*-кварков существенно зависят от выбора параметров модели. Это обстоятельство, в свою очередь, может помочь получить более детальные ограничения на значения констант аномального взаимодействия *t*-кварков.

В заключение авторы выражают искреннюю признательность Б.А. Арбузову, А.Г. Мягкову и М.М. Шапкину за полезные обсуждения.

Наша работа частично поддержана Российским фондом фундаментальных исследований (грант 96–15–96575).

## Список литературы

- CDF Collaboration, Abe F. et al. // Phys. Rev. Lett. 1995, 74, p. 2626;
   DØ Collaboration, Abachi S. et al. // Phys. Rev. Lett. 1995, 74, p. 2632.
- [2] Parke S. FERMILAB-Pub-94/322-T, 1994.
- [3] Grzadkowski B., Gunion J.F. and Krawczyk P. // Phys. Lett. 1991, B268, p.106;
  Eilam G., Hewett J.L, and Soni A. // Phys. Rev. 1991, D44, p.1473;
  Luke M. and Savage M.J. // Phys. Lett. 1993, B307, p.387;
  Couture G., Hamzaoui C., and Kønig H. // Phys. Rev. 1995, D52, p.1713.
- [4] Peccei R.D. and Zhang X. // Nucl. Phys. 1990, B337, p.269.
- [5] Han T., Peccei R.D., and Zhang X. // Nucl. Phys. 1995, **B454**, p.527.
- [6] Arbuzov B.A. Phys. Lett. 1995, **B353**, p.532.
- [7] CDF Collaboration, Abe, F. et al. // FERMILAB-Pub-97/270-E, 1997.
- [8] Frey R. et al. FERMILAB-Conf-97/085, 1997.
- [9] Atwood D., Reina L. and Soni A. // Phys. Rev. 1996, D53, p.1199.;
- [10] DØ Collaboration, Abachi S. et al. // Phys. Rev. Lett. 1997, 79, p.1197;
   DØ Collaboration, Abbott B. et al. // FERMILAB-Pub-97/172-E, 1997;
   CDF Collaboration, Abe, F. et al. // FERMILAB-Pub-97/284-E, 1997.

Рукопись поступила 10 декабря 1997 г.

В.Ф. Образцов и др. Поиск аномального взаимодействия *t*-кварков на коллайдере LEP-2.

Оригинал-макет подготовлен с помощью системы ІАТ<sub>Е</sub>Х. Редактор Н.В.Ежела. Технический редактор Н.В. Орлова

Подписано к печати 22.12.97. Формат 60 × 84/8. Офсетная печать. Печ.л. 1,37. Уч.-изд.л. 1,05. Тираж 150. Заказ 92. Индекс 3649. ЛР №020498 17.04.97.

ГНЦ РФ Институт физики высоких энергий 142284, Протвино Московской обл.

Индекс 3649

 $\Pi P Е П P И Н Т 97-79,$   $И \Phi В Э,$  1997