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Abstract
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Charge density distributions and voltage signals, which are induced in a resistive plate cham-
ber (RPC) with an avalanche fast component, were simulated for different RPC design. The

simulation data have allowed one to understand what factors have more essential influence on
the value of the induced charge and voltage signal in a RPC.
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Introduction

For calculations we used the surface charges method (SCM) that is described in [1].
In Section 1 we derive the analytical expressions for the charges, which are induced in

metallic planes by the point charge and charged dipole.
In Section 2 we confirm the correctness of applied SCM calculation procedure by the

direct comparison of calculated results with analytical predictions.
In Section 3 we consider the field distortion in an avalanche region and estimate the

maximal dead region for 2 mm gap RPC, working in an avalanche mode.
In Section 4 we consider the influence of broken foil coating and external ground

planes on the value of induced charge for the particle, that goes through the gap between
read-out strips.

In Section 5 we study the dependence of induced charge value in the pick-up and neigh-
bouring read-out strips on an avalanche position for unbroken and broken foil coatings
and different strip widths.

In Section 6 we consider the voltage signal dependence on electrode thickness, permit-
tivity and the distance between ground and strip plane.

The basic RPC scheme under consideration has transverse dimension 50×50 cm2 and
2 mm gap. In sections 2÷6 we work with 50 pC avalanche. This value in 2 mm gap
RPC is close to streamer–avalanche boundary (αg ∼ 20) for the exponential discharge
process Qgap=qee

αg (qe is the electron charge, α is the Tounsend coefficient, g is the gas
gap value).

1. Charges induced by point charge and charged dipole

1.1. Point charge near metallic plane

Let the point charge Q0 be placed at a distance h from the infinite metallic foil plane
(Fig.1a), which is under the ground potential. Let r be the distance along the plane
surface from the centre of symmetry of the picture up to the plane point, where we are
interested in the field value. In such terms the spacial distance R from the charge Q0
up to plane point is determined R=

√
r2 + h2. Charge Q0 induces in the metallic foil a
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definite charge density distribution σ(r) to provide zero field in the opposite (relative to
charge position) side of the plane. For this side we can write down the condition of zero
normal field component for an arbitrary plane point as:

σ(r)

2ε0
+

Q0

4πε0
·

h

(
√
r2 + h2)3

= 0 (1)

and solve this equation relative to unknown function σ(r)

σ(r) = −
Q0

2π
·

h

(
√
r2 + h2)3

. (2)

Integral over a whole plane surface

∞∫

0

σ(r)2πrdr = −Q0 (3)

gives the total induced charge, which is equal, in absolute value, to initiating charge Q0
and has the opposite sign.

1.2. Charged dipole near metallic plane

Using the superposition principle for the set of point charges Qi with coordinates xi,yi
and distances hi up to the metallic, plane we expect the following induced charge density
distribution:

σ(x, y) = −
1

2π
·
∑
i

Qi · hi

(
√
(x− xi)2 + (y − yi)2 + h2i )

3
. (4)

For the charged dipole (Fig.1a) with transverse orientation of the electric dipole mo-
ment relative to metallic plane, we have the following induced charge density distribution:

σ(r) =
Q0

2π
· (

h−

(
√
r2 + h2−)3

−
h+

(
√
r2 + h2+)

3
). (5)

Here h− and h+ are the distances of the negative and positive charges up to the plane
(h− < h+) respectively, Q0 is the value of dipole charge.

When dipole arm �=h+–h− is much less in comparison with a distance from the dipole
centre up to the plane h=0.5·(h++h−), formula (5) transforms into expression:

σ(r) =
� ·Q0
2π

·
2h2 − r2

(
√
r2 + h2)5

. (6)

An integrated induced charge value both for expression (5) and for (6) is equal to zero.

1.3. Point charge between two metallic planes

For the point charge Q0 between two infinite metallic planes (Fig.1b), the induced
charges Q1 and Q2 in the planes can be estimated by the following way. We require the
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potentials in points A and B be equal to zero and solve the task under condition H	h to
replace the smeared induced charges in the planes by equivalent point charges Q1 and Q2.

Then

PA =
Q1

H
+

Q2

H + h
+

Q0

H + h1
= 0, (7)

PB =
Q1

H + h
+

Q2

H
+

Q0

H + h2
= 0,

or

Q1 +
H

H + h
·Q2 = −

H

H + h1
·Q0, (8)

H

H + h
·Q1 +Q2 = −

H

H + h2
·Q0.

From the condition H	h we have H
H+h

≈ 1– h
H
and the final system of linear equations

Q1 + (1−
h

H
) ·Q2 = −(1−

h1

H
) ·Q0, (9)

(1−
h

H
) ·Q1 +Q2 = −(1−

h2

H
) ·Q0

has the solution

Q1 = −
h2

h
·Q0, (10)

Q2 = −
h1

h
·Q0.

We see that the total induced charge in both the planes is again equal, in an absolute
value, to initiating charge Q0 and has the opposite sign.

1.4. Charged dipole between two metallic planes

To estimate the value of induced charge Qind(Fig.1c) from the charged dipole, which
is placed between two metallic planes, we can using the same procedure as in Section 1.3.
We again require for the potential at a large distance (R	h) be equal to zero.

P =
1

4πε0
· (
( �Mind · �R1)

R31
+
( �M0 · �R2)

R32
) =

1

4πε0
· (Mind ·

cosϕ1

R21
−M0 ·

cosϕ2

R22
) = 0. (11)

Here Mind=h·Qind and M0=�·Q0 are the electric dipole moments.
It is clear that for a large distance R an angle ϕ1 is close to ϕ2 (we label this angle

as ϕ) and denominators Rn1 in expression (11) are close to denominators Rn2 . And we can
write

P =
1

4πε0
· (Mind −M0) ·

cosϕ

R2
= 0. (12)
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The above equation is satisfied, when

Qind =
�

h
·Q0. (13)

If the dipole is located in gas gap (g), which is separated from metallic planes by
dielectric plates with permittivity (ε) and thickness (t), then instead of vacuum distance
h we take an equivalent dielectric distance h′=g+2· t

ε
and the value of induced charge now

is:
Qind =

�

h′
·Q0 =

�

g + 2 t
ε

·Q0. (14)

This formula can be derived in other ways (see, for example [2]).

Fig. 1. Schemes for explanation of induced charge from point charge and charge dipole.
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1.5. Induced charge density distribution from point charge and charged
dipole for their position between two metallic planes

The method for the solving of this task is based on the consequent mirror reflection
of the initial set of the charges and planes relative to one of the external planes (Fig.1d).
This consequent reflection allows one to exclude a plane and the task becomes equivalent
to that considered in Section 1.2.

Fig.1d shows, for example, how the initial task with the point charge between two
planes (left part of the picture) transforms into the task for an infinite set of the point
charges near one plane (right part of the picture).

According to Fig.1d and formula (4) the unknown charge density distribution σ(r) in
the plane with a distance hp up to the point charge is

σ(r) = −
Q0

2π
·
∞∑
k=0

(
2hk + hp

(r2 + (2hk + hp)2)
3
2

−
2h(k + 1) − hp

(r2 + (2h(k + 1) − hp)2)
3
2

). (15)

For the upper plane hp=h1, for the lower plane hp=h2.
For an acceptable accuracy there is no necessity to realize an infinite sum. To provide

the accuracy no worse, for example, than δ, we can restrict the sum up to N, which is
defined from the condition

r2 + (2h − hp)
2

r2 + (2h(N + 1)− hp)2
≤ δ2 (16)

and add to the sum an additional member

−
Q0

2π
·

2h(N + 1)

(r2 + 4h2(N + 1)2)
3
2

, (17)

which takes into account the influence of the last-mentioned unbalanced N plane, replaced
by the equivalent point charge Q0.

Thus, the following expression with the finite summarizing

σ(r) = −
Q0

2π
·
N∑
k=0

(
2hk + hp

(r2 + (2hk + hp)2)
3
2

−
2h(k + 1) − hp

(r2 + (2h(k + 1) − hp)2)
3
2

)−

−
Q0
2π
·

2h(N + 1)

(r2 + 4h2(N + 1)2)
3
2

(18)

allows one to get the required accuracy for the induced charge density distribution.
The correctness of mirror reflection method is confirmed, in particular, in the task:

the long charged wire between two planes. Exact analytical solution [3] for the induced
charge density distribution in the planes is

σ(r) = −
τ

2h
·

sin(π hp
h
)

cosh(π r
h
) − cos(π hp

h
)
. (19)
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Here σ(r) is the surface charge density in the radial (transverse to the wire) direction, τ
is the linear charge density of the wire, hp is a distance from the wire up to the plane,
where we are interested in the induced charge density distribution.

According to the mirror reflection method, the induced charge density distribution
from the wire is determined as:

σ(r) = −
τ

π
·
N∑
k=0

(
2hk + hp

r2 + (2hk + hp)2
−

2h(k + 1) − hp

r2 + (2h(k + 1)− hp)2
)−

−
τ

π
·

2h(N + 1)

r2 + 4h2(N + 1)2
. (20)

This expression with accuracy ∼0.01% agrees with analytical formula (19), when N is
estimated from condition (16) with δ=0.01.

To get the induced charge density distribution from M point charges Qi (and, in
particular, from the charged dipole), we can again apply the superposition principle

σ(x, y) = −
M∑
i=1

Qi

2π
· (
N∑
k=0

(
2hk + hi

(r2i + (2hk + hi)2)
3
2

−
2h(k + 1) − hi

(r2i + (2h(k + 1) − hi)2)
3
2

))−

−
M∑
i=1

Qi

2π
·

2h(N + 1)

(r2i + 4h2(N + 1)2)
3
2

. (21)

Here r2i = (x−xi)
2+(y− yi)

2 and hi is a distance from the charge Qi up to the plane
with the induced charge density distribution in question. The value N is the same for all
charges Qi and is defined from condition (16) and for the charge, which gives the maximal
value N.

The method of mirror reflection doesn’t allow one to get the induced charge density
distribution in the presence of dielectric plates (actual RPC), because mirror reflection
doesn’t exclude the internal bakelite-gas surfaces with unknown distribution of polarized
charge. Therefore, for an actual RPC we apply SCM calculation procedure, which is
preliminary testified by comparison with the known analytical solutions.

In contrast to parallel external supplied field, the field from an avalanche (point type
object) gives An unbalanced polarized charge in A flat dielectric. To keep zero balance
for polarized charges, it was necessary to use additional equations in the calculational
procedure

∫

S

σp(s)ds = 0 (22)

for each dielectric plate. Here σp(s) is the dielectric surface polarized charge density.

2. Comparison of SCM calculations with analytical predictions

First of all, the correctness of SCM calculation procedure was testified by classical
task: linear capacitance(F/m) of two long parallel metallic rods (see Fig.2a). An analytical
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expression for linear capacitance [4] is written in Fig.2a. We apply positive(+1V) potential
to the left rod and keep the right rod under the ground potential. Then, we calculate by
the SCM procedure the surface charge density distribution (Fig.2b), which provides these
potentials for the rods. Calculations are made for three distances between the rods: 1 mm,
1 cm and 10 cm. Then, when we know the charge density distribution, we have a possibility
to define the linear charge densities for both rods. And for the known potentials the linear
capacitance is defined by the classical expression for the capacitance C=0.5·(∆Q/∆U).
Here ∆Q is the algebraic difference between linear charge densities(C/m) of the left and
right rods and ∆U is the respective algebraic difference between the potentials.

The dependence of calculated surface charge density on the azimuthal angle ϕ for the
left rod is presented in Fig.2b. The right rod repeats the charge density distribution of
the left rod, but with less amplitude and with opposite sign. In Fig.2b we also write
linear charge densities for both rods (left table) and compare the calculated (Ccalc) linear
capacitance with the exact analytical (Can) solution (right table). As one can see, the
agreement is good.

The left table in Fig.2b contains useful information. If we compare charge values of the
rods for different distances between them, we find that, in absolute value, these charges
will be equal to one another only at zero distance between the rods. Thus, the symmetry of
free charges (Q1+Q2=0) for two objects under different potentials is possible either for the
symmetry potentials (U1+U2=0) or for the arbitrary potentials but zero distance between
objects. Polarized (in dielectric surface) charges every time have symmetry, because the
total polarized charge of dielectric object is every time equal to zero. It explains, why the
surface charge density for polarized charges is defined only by the potential difference and
doesn’t depend on the absolute value of the potentials, but surface charge density for free
charges is defined by the values of supplied potentials. More simply: free charges “feel”
both the potential and the potential gradient, polarized charges “feel” only the potential
gradient.

In Fig.3a the negative point charge 50 pC is placed at a distance 2 mm from the metallic
plane. The total induced charge value according to (3) is about 100% of initiating point
charge. The numerical SCM calculation is in a good (∼0.3%) agreement with analytical
solution (2). The fact that the induced charge Qind is somewhat less than initiating charge
Q0 is explained by the finite area of the metallic plane, which is realized in the calculation.
The equality can be only for an infinite dimension of the plane.

For the negative point charge 50 pC, which is located between two strip planes at a
distance h1=2 mm from the upper plane and h2=4 mm from the lower plane, the result of
numerical SCM calculation is presented in Fig.3b. Variation of the point charge position
between two planes shows that the induced charge values in the planes with the accuracy
no worse than 3% correspond to (10). The shape of calculated distributions with accuracy
no worse than 0.5% is in agreement with analytical expression (18).

For the charged dipole (�=100 µm, Q0=50 pC), that is placed at a distance 2 mm from
the metallic plane, the result of SCM calculation (Fig.3c) is in a good (∼0.1%) agreement
with analytical predictions (5) and (6). The total induced charge, as expected, is about
zero. On a large scale, the induced charge density behaviour is shown in Fig.3c (tail).
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Fig.3d shows the calculation of induced charge density distribution from 50 pC charged
dipole, that is placed between two metallic planes at a distance 2 mm from the upper
plane and 4 mm from the lower plane. Variation of the dipole position shows that the
induced charge values in both the planes practically don’t depend on the dipole position
and for a vacuum approach (ε=1) can be estimated by expression (13) with � = 1

α
. The

shape of distributions for both planes with accuracy ∼0.2% agrees with (21). On a large
scale, the induced charge density distribution is shown in Fig.3d (tail).

Fig. 2. Surface charge density distribution and capacitance for two long rods. Comparison

SCM with analytical solution.
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Fig. 3. Charge density induced from 50pC point charge and charged dipole.

An attempt to estimate the induced charge value by the well-known formula Qind =
1
αg
· Q0, where g=2 mm is the gas gap value, gives 5.1%. This value is very far from

being 1.67% (SCM calculation, Fig.3d) and from 1.7% (formula (13) with the distance
between strip planes h=6 mm). Thus, for a vacuum approach (ε=1) estimation (13)
is more correct. This estimation directly follows from (10) for induced charge from the
two opposite sign point charges, which are combined in the charged dipole with an arm
� = ∆h1 = ∆h2 =

1
α
.

The dependences of the induced charge value both on electrode permittivity and thick-
ness for 2 mm gap RPC are shown in Fig.4. Solid lines are for the induced charge in anode
strip plane, dashed lines are for the induced charge in the cathode strip plane. We explain
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the vertical shift between solid and dashed lines by asymmetric position of an avalanche
relative to strip planes and finite transverse RPC dimension, which is realized in the
calculations.

When the electrode thickness is reduced to zero, all the lines independently of the value
of permittivity meet in one point. When the electrode thickness increases, the induced
charge decreases down to zero. The value of induced charge grows with the increase of
ε, but in the limit (infinite ε) has the plateau 4.8% for t=1 mm and 4.5% for t=5 mm,
which is due to the full ε–conductivity of electrodes. For the actual RPC composition (2
mm gap and 2 mm electrodes), the value of induced charge varies from 1.7% at ε=1 up
to 3.7% at ε=5.

All the dependences in Fig.4 with the accuracy no worse than 6% agree with (14).
The fact that the value of induced charge at the infinite ε is not equal exactly to 5.1%

according to (14) we explain by the finite transverse RPC dimension that is realized in
the calculations.

Fig. 4. Induced charge in dependence on electrode permittivity (ε) and thickness (t). Gap (g)
is fixed 2mm.

10



3. Electric field in avalanche region

Fig.5 shows the distortion of 10 kV supplied field by the fast component of 50 pC
avalanche in 2 mm gap RPC with 2 mm bakelite plates (permittivity ε=4). The SCM
procedure takes into account the presence of both volume and surface currents. Volume
and surface resistivities for bakelite and gas are taken from [1].

To make an avalanche charge distribution closer to the realistic one, we realized the
following spacial avalanche configuration (see Fig.5a).

Negative avalanche head (labeled in Fig.5a by symbols ”–”) is presented as disk with
the Gauss radial distribution of the charge

dQ

dr
=

Q0

δ
√
2π
· e−

r2

2δ2 . (23)

Here δ is the dispersion of distribution, Q0 is the total charge in the given disk.
The value of dispersion δ can be estimated from the assumption that in the first

approximation the charged dipole from an avalanche (at the moment, when positive ions
reach the cathode) can be presented as a round plate capacitance with gap g=2 mm and
unknown radius δ

C =
1

2
·
(Q+ −Q−)

∆U
=
|Q|

|U |
=

ε0S

g
=

ε0πδ
2

g
. (24)

From formula (24) for 50 pC avalanche and 10 kV voltage, we get δ=0.6 mm. The
same estimation follows from the conception of saturated charge density, which requires
for any discharge process the transported charge density of electrons to be not higher
than the surface charge density of free charges (44 pC/mm2), which is provided by 10
kV voltage at bakelite-gas boundary. Let the electrons transported by an avalanche head
to the anode, be presented simply as the negative disk with the constant charge density.
Then, according to the conception of saturated charge density for 50 pC avalanche, we
write

50pC

πδ2
= 44

pC

mm2
(25)

and again δ=0.6 mm.
Positive ions (labeled in Fig.5a by symbols ”+”) are presented as four separate disks

also with the Gauss radial distribution of the charge. Ions multiplicity in each positive
disk varies exponentially in the direction of avalanche motion. Dispersion for the Gauss
charge distribution in each disk has linear variation from minimal value 0.12 mm for the
first positive disk up to 0.6 mm for the last negative disk. The radius of each charged
disk in Fig.5a is shown as one standard deviation for the Gauss charge distribution in the
given disk. Position of each positive disk is defined from the coordinate averaging with
exponential probability function. Thus, in 2 mm gap in the direction of an avalanche
motion the coordinates of positive disks are 0.4, 0.9, 1.4 and 1.9 mm. The negative disk
has coordinate 2 mm. The positive disks contain (respectively to exponential discharge
process) the following charge values: 2·10−5, 3·10−3, 0.37 and 49.6 pC.

Fig.5a shows the field behaviour in the region of 50 pC avalanche. We see that in
the RPC gap electric strength lines are practically parallel as before. Variation is present
only for the absolute field value.
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Potentials at different levels in the gas gap are shown in Fig.5b. Along the upper
bakelite-gas surface in the transverse direction at a distance ∼ 1 mm from an avalanche
axis the field is sufficiently (96%) close to the operating voltage. In the vertical direction
at a distance ∼ 0.5 mm from the upper bakelite-gas surface, the field is also (96%) close
to plateau voltage value for the given level.

Thus, the region, where the field drop is higher than 4% in comparison with the
operating voltage, in the horizontal direction is about 2 mm, in the vertical direction near
the anode plate is about 0.5 mm. Note once again, that the estimations above were made
for the fast component of the exponential discharge process.

Fig. 5. Distortion of 10kV supplied field by 50pC avalanche.
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4. Influence of gap in foil coating and external ground plane on

the value of induced charge

Fig. 6. Induced charge as function of gap in foil and distance between ground and strip planes.

The next step was to understand the influence of foil-uncoated region and additional
external ground planes on the value of induced charge.

For this purpose we varied the value of uncoated with foil gap in anode strip plane
and the distance between ground and strip plane (see scheme in Fig.6a). The maximal
influence of the ground plane on the value of induced charge in the anode plane is ex-
pected, when the particle goes through the gap in foil coating. Therefore, the avalanche
was placed exactly against the centre of the gap in foil coating (see Fig.6a). Electrode
thickness (2 mm) and gas gap (2 mm) were fixed. Calculations were made for two elec-
trode permittivities: ε=2 (Fig.6a) and ε=4 (Fig.6b). Ground planes were separated from
strip planes by the matter with ε=1.
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Solid lines in Fig.6 show the induced charge in the anode plane, dashed lines show the
induced charge in the ground plane, that is nearest to anode. In the ground plane, that
is nearest to cathode, the induced charge value for this scheme is every time practically
zero. In the cathode strip plane the induced charge has the opposite sign and in the
absolute value is practically equal to the total charge, that is induced in the anode strip
and ground planes.

As expected, the value of induced charge in the anode strip plane falls and in the
nearest ground plane grows, when the gap in foil increases and the distance between
ground and strip plane decreases.

If we compare the dependences in Fig.6a and Fig.6b, we’ll find that the influence of
the ground plane is higher, when the electrode permittivity is less.

5. Charges induced in read-out strips. Static solution
5.1. Unbroken foil coating

For 50×50 cm2 RPC with 2 mm gas gap and electrode thickness 2 mm the dependence
of induced charge in the pick-up and in the neighbouring read-out strip on an avalanche
position for an unbroken foil coating was calculated for two electrode permittivities. The
former (Fig.7) for ε=1, the latter (Fig.8) for ε=4. It was specially done to demonstrate
that the different electrode permittivities give the different values of induced charges in
anode and cathode strips (compare Fig.7 and Fig.8). Pick-up read-out strip in the pictures
is labeled as 1, neighbouring read-out strip is labeled as 2. For the anode plane the value
of induced charge in strip is normalized on the positive value of an avalanche charge. For
the cathode plane the normalization is made on the negative value of an avalanche charge.

Tiny strips provide the unbroken foil coating, but have no direct contact with read-out
strips. Overall period (tiny strip width + read-out strip width) is the constant 30 mm
value. The tiny strip width varies from 0 up to 8 mm, read-out strip width varies from
30 mm down 22 mm, respectively.

It is necessary to point that the induced charges in the anode and cathode read-out
strips in Figs. have no direct correlation at the given avalanche position. The dependences
are simply presented in Figs. with the same coordinate scale to show the difference of the
induced charge values and to compare the behaviour of the induced charges in anode and
cathode read-out strips. If we call neighbouring read-out strip 2 as the right neighbouring
one, then the dependence of induced charge in the left neighbouring strip can be obtained
by simple mirror reflection (Y-coordinate) of the dependence for the right neighbouring
strip relative to the central point of pick-up strip 1.

When an avalanche position varies along Y direction during one period (30 mm),
the value of induced charges in read-out strips 1 and 2 also varies. These variations are
shown in Figs. by solid lines for read-out strips 1 and 2 in anode strip plane and by dashed
lines for read-out strips 1 and 2 in cathode strip plane. A vertical dotted line shows the
mathematical boundary between the tiny and read-out strip. The value of induced charge
in a whole strip plane is shown by a horizontal thick line.

The main reason of Fig.7 (vacuum solution) is to demonstrate a very important role
of electrode permittivity and below we are discussing only Fig.8.
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Fig. 7. Read–out strip charges in dependence on avalanche position. Unbroken foil coating.
Electrode ε=1.
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Fig. 8. Read–out strip charges in dependence on avalanche position. Unbroken foil coating.

Electrode ε=4.
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When an avalanche position is against the pick-up strip, most of the total induced
charge is concentrated in pick-up strip both for anode and for cathode plane. For uni-
form particles flux, the average induced charge in anode pick-up strip is about 90% in
comparison with average induced charge in cathode pick-up strip. The relation of average
induced charge in the neighbouring strip to average induced charge in pick-up strip for
anode plane is about 9%, for cathode plane is about 7%. In addition, for cathode plane
the induced charge in the neighbouring strip has an opposite sign versus the charge sign
in the pick-up strip.

It is necessary to note that in contrast to the total induced charge, when the anode
plane has somewhat higher value of induced charge in comparison with the cathode plane
(see Fig.4), an anode pick-up strip has a lower value of induced charge in comparison
with the cathode pick-up strip. The explanation to this feature is as follows: For each
particular RPC (gas gap, electrode thickness and permittivity) the induced charge density
distribution in a whole strip plane has varying with radius (varying amplitude, dispersion
and sign) shape. The induced charge value in each strip is defined by the integral over the
strip area, that overlaps with a particular fragment of the total charge density distribution.
Therefore, the dependence on the given parameter for the induced charge in a separate
strip does not follow obligatorily the dependence for the induced charge in a whole plane.

The induced charge value in the pick-up strip falls quickly, when an avalanche position
shifts to the region of the tiny strip. For the tiny strip width, that is equal or higher than
2 mm, the signal from the particle passing through the tiny strip is small.

5.2. Broken foil coating

Fig.9 shows the value of induced charges in read-out strips for the broken foil coating.
Horizontal thick lines show the value of induced charge in a whole plane for the unbroken
foil coating.

The relation between average induced charges in anode and cathode pick-up strips and
the relation between average induced charges in the neighbouring and pick-up strip are
approximately the same as for the unbroken foil coating. In comparison with the unbroken
foil coating, we here observe a more significant induced charge from the particles that pass
through the gap between read-out strips.

If we add external ground planes, we get the result, that is median between the results
of Section 5.1 and 5.2, because the unbroken foil coating is equivalent to zero distance
between external ground planes and strip planes and the broken foil coating is equivalent
to infinite distance.

The main conclusion that follows from Sections 4, 5.1 and 5.2 is the following: The
maximal efficiency for particles detection is reached for the narrow gap between strips
both for broken and unbroken foil coating.
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Fig. 9. Read–out strip charges in dependence on avalanche position. Broken foil coating. Elec-
trode ε=4.

5.3. Different strip widths

Fig.10 shows the induced charge in read-out strips versus an avalanche position for
different strip widths and for unbroken foil coating. The tiny strip has zero width.

This Fig. shows that for the chosen RPC composition (gas gap 2 mm, electrode
thickness 2 mm and electrode permittivity ε=4) the minimal strip width must be about
40 mm. This width, on the one side, provides practically the same induced charge in
anode and cathode pick-up strips, on the another side, the value of induced charge in
pick-up strip in both the planes is practically plateau, when an avalanche position varies
from the left strip edge to the right strip edge. Hence, this minimal strip width provides
a sufficient efficiency for particles detection.
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Fig. 10. Read–out strip charges in dependence on avalanche position for different strip width.

Electrode ε=4.

6. Voltage signals. Dynamic solution

For the calculation of voltage signal in the separate strip, we apply two additional
conditions, which characterize a quick dynamic process.

The first condition is the law of charge conservation during the signal spread along
the strip. It means that during the time

∆t =
√
ε ·

�

c
(26)
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(here ε is the electrode permittivity, c is the light velocity, � is the signal way in the strip)
the total free charge in the given strip is the constant value, that was before the discharge
process. And the following condition for every strip

∫

S

σf (s)ds = Qfixed (27)

(here σf(s) is the surface free charge density) is added to the system of equations that are
used for field calculation in [1].

The induced charge density in the pick-up region is varying in time value and to provide
the law of charge conservation (27) in the quick dynamic process, an additional (second)
condition is applied: Running along the strip the potential waves and, respectively, charge
clusters. From a physical point of view, it means that all the strip surface, excluding the
region of running wave, has the potential that was before the discharge process. Since we
don’t initiate a potential in the region of running waves, we lose part of equations, but to
keep equality between the number of equations and unknowns, we add equations (27).

Because the length of running wave is defined by the discharge process time, it is
necessary to get an estimate for the wave length to apply in calculations.

According to [2], the total charge in the gap as function of time is determined by the
expression:

Q(t) = en(g − vt)eαvt+ env

t∫

0

eαvτdτ = en(g − vt)eαvt +
en

α
(eαvt − 1). (28)

Here e is the electron charge, n is the average density of primary electrons along the track,
g is the gap value, v is the drift velocity, α is the Tounsend coefficient.

Applying formula (14), we estimate the induced charge value

q(t) =
en

α(g + 2d
ε
)
· ((g − vt)eαvt+

1

α
(eαvt − 1)). (29)

Here d is the electrode thickness. Then, we take the first derivative over the time and
determine as in [2] an induced current in the strip

i(t) =
env

g + 2d
ε

(g − vt)eαvt. (30)

Fig.11a shows the behaviour in time of induced current and induced charge for the
following parameters: n=5 mm−1, gap is 2 mm, the time of the quick discharge process
is 20 nsec (v=0.1 mm/nsec), α=9.78 mm−1.

We see that the time wave length of the current signal is about 3 nsec for 20 nsec
process. The ∆t interval shown by arrows in Fig.11a, consists of two standard deviations
the for current signal distribution.

We take, for simplicity, the 30 cm cluster length. For electrode permittivity ε=5, this
length is equivalent to ∆t=

√
ε·(�/c)=2.25 nsec time wave length, that is of the same order

as the estimated above.
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Fig.11b shows the surface charge density and potential distributions in the anode
strip at a moment, when the running waves pass half the way along the strip. Because
of the large difference in charge densities in the pick-up and cluster region, we apply
the logarithmic function of charge density to a vertical scale. The vertical scale for the
potential distribution is in arbitrary units. We write only the amplitude value for the
potential difference in the region of cluster.

The result of Fig.11b is calculated for the following RPC parameters: avalanche 50 pC,
gap 2 mm, electrode thickness 2 mm, permittivity ε=5, distance between ground and strip
plane 3 mm, permittivity for the material between ground and strip plane ε=1. For charge
density distribution, we couldn’t apply satisfactory spline procedure and points in the plot
are simply connected by straight lines.

Fig. 11. Induced current and charge as function of time (a). Running potential waves and

charge clusters in anode strip (b).
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The dependences of voltage signal on electrode thickness, permittivity and distance
between ground and strip plane are presented in Fig.12.

Fig. 12. Voltage signal in dependence on electrode thickness (t), permittivity (ε) and distance

(d) between strip and ground planes.

If we compare the upper dependences (for scheme A) with the analogous dependences
for induced charges (see Fig.4), we’ll find a qualitative agreement between them. Both
the induced charge and voltage signal grow with permittivity and fall, when electrode
thickness increases. If we look at induced charges in pick-up strips (see Fig.8 and Fig.9),
we find that the induced charge in cathode pick-up strip is higher in comparison with the
induced charge in anode pick-up strip. The same result we have and for voltage signals
(Fig.12). For ε=1, we have the contrary relation: Voltage signal in the cathode strip is
somewhat less in comparison with voltage signal in the anode strip. But the same result
we have and for the induced charges (see Fig.7). Thus, for the scheme without ground
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planes, the voltage signal and induced charge in pick-up strips have a similar behaviour
relative to the variation of electrode thickness and permittivity.

When we add ground planes (Fig.12, scheme B), a definite part of electromagnetic
energy goes to form a running wave in the ground plane to provide zero potential after
the ground plane. Therefore, the voltage signal in the strip plane is less and falls with
the decrease of distance between the ground and strip plane.

A different result for static and dynamic solution we have for the neighbouring strip in
the cathode plane. Static solution for ε>1 (Figs.8,9,10) gives a negative sign of induced
charge in the neighbouring strip over the charge sign in the pick-up strip. Dynamic
solution (Table.1, first line) gives the same sign of voltage signal both in the pick-up and
in the neighbouring strip. A possible explanation is that with static solution the charge
density distribution is defined mostly by an avalanche, but with dynamic solution, when
the running clusters are sufficiently far from an avalanche, the values of charges in the
clusters depend essentially on strip-strip capacitance coupling.

In Table 1 the voltage signals in the pick-up (left-hand values) and in the neighbouring
(right-hand values) strips for anode and cathode planes versus the distance between the
ground and strip plane are given for scheme B in Fig.12 with electrode permittivity ε=5.

Table 1. Voltage signals in anode and cathode strips.

Distance Signals in Signals in
between strip anode strips cathode strips
and ground (mV) (mV)

plane

d=∞ –38.00/–3.50 +41.11/+2.64

d=5mm –27.97/–0.92 +30.36/+0.17

d=3mm –22.82/–0.61 +24.78/–0.01

d=1mm -11.75/–0.23 +12.77/–0.09

We see that the decrease of distance between the ground and strip plane gives a more
quick fall in voltage signal of the neighbouring strip in comparison with the respective fall
in the pick-up strip.

For the same RPC scheme, the values of charges in the clusters (total charge of the
left and right cluster) are given in Table 2. For the finite distances, we present two sets
of the charges. The upper set is for the charges of clusters in the strips, the lower set is
for the charges of respective clusters in the ground planes.

For the central track position relative to the pick-up strip axis, the value of induced
charge in the pick-up strip doesn’t practically depend on the distance between ground
and strip plane (see Table 2) and can be estimated by expression (14). Every running
charge cluster contains half the induced charge in the given strip.

According to Table 1 data, the voltage signal decreases with the distance between the
ground and strip plane. According to Table 2 data, this falling is due to the growth (in
the nearest ground plane) of the cluster with the opposite charge sign. In the limit (very
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small distance between ground and strip plane) we have two closely running clusters with
equal charge but of the opposite sign, and their total potential is respectively equal to
zero.

Table 2. Charges of clusters in anode, cathode strips and ground planes.

Distance Clusters in Clusters in
between strip anode strips cathode strips

and ground and ground and ground
plane plane (pC) plane (pC)

d=∞ –1.71/–0.07 +1.86/–0.03

d=5mm –1.71/–0.05 +1.86/–0.04
+0.58/+0.06 –0.63/–0.03

d=3mm –1.71/–0.05 +1.86/–0.04

+0.80/+0.05 –0.86/–0.01

d=1mm –1.71/–0.05 +1.86/–0.04
+1.24/+0.05 –1.35/+0.01

For a while, we have no possibility to realize in dynamics the correct simulation of
the task: The influence of a tiny strip on voltage signals in the strips. But it is clear
that the tiny strip as well as the ground plane, on the one side, absorbs part of the
voltage signal from the pick-up strip, on the other side, works as a screen between the
pick-up and neighbouring strip and, respectively, decreases a signal in the neighbouring
strip. The screening effect from the tiny strip is confirmed in the static task: Charge
density distribution due to capacitance coupling (see Fig.13). Here the pick-up strip in
the anode plane has the constant (positive potential), all other objects are under the
ground potential. One set of numbers corresponds to the variant without tiny strips,
another set of numbers (in brackets) corresponds to the variant with tiny strips. We see
that the value of charge in the neighbouring strip falls approximately twice if we add 300
µm tiny strip.

Conclusion

1. The region with field drop higher than 4% of the plateau field, that arises in 2
mm gap RPC under the action of an avalanche fast component, is about 2 mm in the
transverse direction and is about 0.5 mm in the vertical direction near the anode plate.

2. The value of induced charge and voltage signal grows with electrode permittivity
and falls, when the electrode thickness increases.

3. The external ground planes absorb a noticeable part of the total induced charge,
when the particle passes through the gap between read-out strips and when the distance
between ground and strip planes is small.

4. The maximal efficiency for particles detection is reached for the narrow gap between
read-out strips for both broken and unbroken foil coating.

5. The decrease of distance between ground and strip planes gives quicker fall in
the voltage signal of the neighbouring strip in comparison with the respective fall in the
pick-up strip.
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Fig. 13. Charge density distribution due to capacitance coupling. Charge density in arbitrary
scale.
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