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The classical relativistic equations of motion for the system of particles with retarded interac-

tions are completed by the equations for the evolution of the state of the mediator of interactions
(of reduced field). Various forces (principle, decay, and echo forces) corresponding to different
physical assumptions about the field behaviour are considered. The structure of the principle

forces corresponding to the nonrelativistic potential is found. The structure and stabilizing role
of the decay forces dependent on the the state of the reduced field is considered. For the case of

two particles, the dependence of the decay rate of the reduced field on the strength of the decay
forces is found in the adiabatic approximation. It is shown, that with a certain choice of the

decay forces, the stable orbital motion and elastic scattering of particles is possible at arbitrary
relative velocities. The examples of the exact and numerical solutions of the equations of motion

with retarded interactions are given.
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rELQTIWISTSKIE KLASSIˆESKIE URAWNENIQ DWIVENIQ SISTEMY ˆASTIC S ZAPAZDYWA@]IMI

WZAIMODEJSTWIQMI DOPOLNENY URAWNENIQMI “WOL@CII SOSTOQNIQ MEDIATORA WZAIMODEJSTWIQ

(REDUCIROWANNOGO POLQ). rASSMOTRENY RAZLIˆNYE SILY (GLAWNYE, RASPADNYE I “HO SILY),
SOOTWETSTWU@]IE RAZLIˆNYM FIZIˆESKIM PREDPOLOVENIQM O POWEDENII POLQ. wYWEDENA

STRUKTURA GLAWNYH SIL, SOOTWETSTWU@]IH NERELQTIWISTSKOMU POTENCIALU. rASSMOTRENA

STRUKTURA I STABILIZIRU@]AQ ROLX RASPADNYH SIL, ZAWISQ]IH OT SOSTOQNIQ REDUCIROWAN-

NOGO POLQ. dLQ SLUˆAQ DWUH ˆASTIC, ZAWISIMOSTX SKOROSTI RASPADA REDUCIROWANNOGO POLQ

OT WELIˆINY RASPADNYH SIL NAJDENA W ADIABATIˆESKOM PRIBLIVENII. pOKAZANO, ˆTO PRI

OPREDELENNOM WYBORE RASPADNYH SIL, STABILXNOE ORBITALXNOE DWIVENIE I UPRUGOE RASSE-

QNIE ˆASTIC QWLQETSQ WOZMOVNYM PRI L@BYH OTNOSITELXNYH SKOROSTQH. dANY PRIMERY

TOˆNOGO I ˆISLENNYH RE[ENIJ URAWNENIJ DWIVENIQ S ZAPAZDYWA]IMI WZAIMODEJSTWIQMI.
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1. Introduction

There it little doubt now that interactions between any separated physical objects
are always transmitted (mediated) by some continuous mediators: by elastic medea in
the nonrelativistic case or by fields and field-like objects (e.g. metric tensor in GR) in
the relativistic case. In both cases, the interaction transfer between distant objects takes
some time and the energy-momenta lost by one object reaches the other object with
some retardation: with acoustic delay caused by the limited speed of sound in the elastic
medium, or with relativistic retardation caused by the limited speed of light. While the
energy-momenta are en-route, they are stored by the mediator of interactions.

The standard approach to formulation of mechanical problems with distant interacting
objects usually suggests the dilemma: either to consider the transmitter of interactions in
its full details with explicit description of the excitation and propagation of corresponding
waves, or to neglect the retardation effects and the inertial properties of the transmitter
completely. In the first extreme, one may be helped by the acoustics and the field theory,
in the second extreme, by the apparatus of the Hamiltonian or Lagrangian formalisms.

However, there is a large intermediate area of problems, where the retardation of
interactions and the inertia of the mediator cannot be neglected, and the formulation
and solution of the full-detail wave-propagation task is too difficult or impossible. It
is necessary to develop the methods of the formulation, analysis, and solution of the
mechanical problems, where the retardation is essential and the explicit consideration of
waves should be avoided.

In case of the relativistic processes with strongly interacting particles, the need for
such methods is especially acute, since the very existence of the classical analogues of the
corresponding quantum fields (e.g. of the quantum quark-gluonic field) is still problematic.

As the answer to this and similar needs, the construction of the various relativistic
many-times (MT) models [1-5] and direct interaction (RDI) theories, classical and quan-
tum [6-24], and of predictive mechanics [27-30], was undertaken.
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The considered relativistic MT models start from general explicitly Poincare-invariant
Newton-type equations of motion, but then, for various reasons, sacrifice the relativistic
causality in favour of possibility of the Lagrangian and Hamiltonian formulations with
corresponding conservation laws and in favour of getting the closed-orbit solutions. They
generally lead to integral conservation laws, in particular, to conservation laws [5] involving
integration over time to +∞, which are essentially post-mortem relations. The inertial
properties of the mediating field (”inertia of interactions”) is not considered explicitly,
though may be taken into account indirectly by its inclusion into the expression for the
canonical momenta.

RDI theories take into account the inertia of the mediator and the relativistic relation
between energy and mass. They are able to describe elastic scattering and the orbital
motion. The common idea of all RDI theories is to replace the actual retarded interactions
by some ”equivalent” instant interaction compatible with the structure of the Poincare
group and able to give the same scattering and stationary states predictions as the field
theory. In most of these theories, the interaction is fixed by one scalar function interpreted
as the full (rest) mass of the particle system. In some versions (based on the Pfaff equations
[15]), a second scalar function is present in interaction terms.

The structure of the Poincare group permits different ways to separate the internal
motion, to introduce interaction terms, and to select the foliation of the space-time.
These ways, called the forms of the relativistic dynamics [6,7,8,12,14,19,24], correspond to
different physical assumptions about the inertial properties of the mediator of interactions.
For example, the point form of dynamics corresponds to the assumption that the mediator
has the 4-momentum, but has no spin (i.e. no momenta corresponding to the spatial
and the Lorentz rotations). The instant form of dynamics means that the mediator
has the energy and the momenta corresponding to the Lorentz rotations, and has no
other momenta. These and other forms of dynamics were found to be equivalent [14]
in the sense that, for the same interactions fixed by expressions for the total mass, they
predict the same scattering crossections and the bound state energies in the quantum case.
(By means of the Lorentz-invariant classical limit [18], the similar statements about the
canonical scattering transformations and mass/period ratios for finite motion solutions
can be obtained for the classical case.)

The main difficulty of the RDI theories is that they give the trajectories of particles
in some phase spaces, but not in the physical Minkowski space M4 with unambiguously
measurable coordinates. It was first noticed in the Hamiltonian formulation, where the
famous ”no-interaction” theorem [8,26] excluded the coincidence between the canonical
coordinates q and the Minkowski space coordinates x. The absence of coincidence itself is
not a major problem since some functions X of the canonical variables Q=(p,q) and of the
evolution parameter T may be found that are transformed as points x of the Minkowski
space, and one may try to interpret these functions as space-time coordinates of particles
[20-25]. The real physical problem is that in case of several interacting particles the
interaction terms cannot be expressed through the differences of coordinates X, so the
strength of forces between particles cannot correspond to particle closeness in M4. In
these conditions, it is difficult to understand how coordinates X can be measured, and, if
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measured, why the results of measurements by means of different probing particles will
be the same. This makes the choice between different possible definitions of X uncertain
and their interpretation ambiguous. The definition of interaction with an external field
given in M4 becomes a problem as well.

These difficulties may look differently in different formulations of RDI theories, but
everywhere the definition of measurable coordinates X and of interaction with external
fields are a problem. Since the origin of these problems is the violation of relativistic
causality [31], some reflection of these problems should be expected in other approaches
disregarding the causality. Especially serious these problems become in case of many
particles, when the system closed (in the terminology of Havas) contains subsystems
which are open with respect to interactions with the rest of particles.

These difficulties limit the domain of reliable practical applicability of the RDI theories
and other approaches, disregarding the relativistic causality, to the estimation of time-
independent values like S-matrix elements and the energies of the bound states (and of
their classical analogues) and make these approaches inadequate when external fields are
present.

In the present paper, we consider a causal version of relativistic MT mechanics (with
retarded interactions only) and develop it making a step toward a field theory by introduc-
ing into the equations of particle motion a new mediator of interactions, having, besides
inertia, some field properties. The introduced mediator of interactions is able, like fields,
to pass interactions with causal retardation, but is, like the potential, unable to excite its
internal degrees of freedom. Such mediator can be considered as a very simplified model
of a field, so we will call it a reduced field (RF). While acting on particles, RF is accumu-
lating from particles and passing to particles, besides the energy, all kinds of linear and
angular momenta, so its state may be described by the set of 10 values corresponding to
10 generators of the Poincare group.

With respect to its inertial properties, RF is similar to the most general mediators of
the RDI theories. However, the forces, produced by RF, unlike forces of RDI theories,
depend on retarded positions, velocities, and, possibly, accelerations of particles, as the
Lienard-Wiechert forces do in the electromagnetic theory. Besides the dependence on the
particle coordinates and velocities, the RF forces, generally, depend on 10 values describing
the state of RF. The last dependence is essential for the existence of models describing
elastic scattering and periodic (precessing) orbital motion of strongly interacting particles.

The relativistic classical mechanics with retarded interactions transmitted by RF is a
many-time theory of the Newtonian type. However, the introduction of the description
of the state of RF and the completion of the equations of motion by the equations for
RF evolution, eliminates the difficulties with the energy-momenta conservation laws and
makes the theory logically closed. The respecting of the causality principle removes any
problems with the measurability and interpretation of the X coordinates. In this respect,
the mechanics with RFs is as fundamental as the nonrelativistic Hamiltonian mechanics,
but is more general and more accurate at high velocities. It is formally independent from
the classical and quantum field theory, though systematically uses the field picture as the
source of inspiration.
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The properties of RF and of mediators of other classical theories can be illustrated by
table:

Mediators: Potential Rel. potential Reduced field . . . Field

energy Yes Yes Yes Yes Yes
momenta No Yes Yes Yes Yes
retardation No No Yes Yes Yes
excitations No No No . . . Yes

The dots here stand for the mediators intermediate between RF and a field and de-
scribing explicitly some of the field excitations.

The main advantage of the explicit use of retarded arguments in the interaction terms
is the possibility to formulate equations of motion in terms of the physical (measurable)
Minkowski space coordinates and combine freely the interparticle interactions with the
interactions of particles with external fields given in the Minkowski space. The main
disadvantage of such theory is that it falls outside the well-developed Hamiltonian and
Lagrangian formalisms in their usual forms (its possible relations with various generaliza-
tions [32-35] of these formalisms remain unclear). Due to this circumstance the standard
methods of quantization based on the Hamiltonian and the Lagrangian formulations do
not work for RF and, at present, we may consider the classical version of the RF theory
only.

The equations of motion in case of retarded interactions belong to the domain of the
theory of differential equations with deviated arguments [36-38]. The solutions of such
equations show, generally, more complicated behaviour than the solutions of the equations
without retardation. They often demonstrate various instabilities similar to instabilities
known in the theory of automatic regulation with retarded feedback. One of the causes of
possible instabilities of solutions is the absence of an explicit lower bound of the energy
of RF. To obtain physically interesting models with stable particle motion, one has to
choose carefully the magnitude and direction of forces and their dependence on the state
of RF. The first concern of the RF theory is the description of the family of forces leading
to stable solutions.

In [39], the linear motion of two particles interacting via RF was analyzed and it
was shown that certain choice of the dependence of forces on the state of RF makes the
scattering elastic at arbitrary high energies.

In the present paper, we, besides the general introduction into the mechanics with
RFs, analyze the planar motion of two particles interacting with retardation and construct
retarded forces leading to an elastic scattering of the particles, and to stable orbital motion
in case of attraction. The main attention in the paper will be paid to the correspondence
between the structure of forces and the physical intuitive picture of particles interacting
through fields coating the particles.
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NOTATIONS
x = (t,x), p = (p0,p) denote the coordinate and momentum of the particle, m = |p|

is its mass, h = p/m is its 4-velocity. τ denotes the proper time: dτ = dt/h0. Derivatives
with respect to τ are denoted by dot. The scalar products x · p will imply the metric
g=diag(1,-1,-1,-1). Vector Ri = −Rj = xi − xj, H = hi + hj .

The index ret means the value at the retarded position xretj (xi) of particle j with respect
to the position of particle i. Rri = xi − xretj is the null vector: (Rr)2 = 0. Index r means
that one of the arguments of a two-argument quantity is retarded.

Scalar Ti = Rri · hi is called the retardation time, scalar Di = Rri · h
ret
j plays role of a

distance between particles i, j in the rest frame of particle j.
s = x∧p means the antisymmetric tensor (spin) with elements sab = xapb−xbpa. The

scalar product of vector y and tensor s means y · s = −s · y = y · x p− y · px.

2. Equations of motion

The state of the system of particles and of RFs is fixed by the coordinates and momenta
of particles x, p and by the states U of RFs.

We consider the simplest possible case, when particles are unchangeable and have no
self-interactions. Then the masses of particles are constant and the state U of each reduced
field may be fixed by its 4-momentum Q and spin S describing the internal rotational
state of RF. Antisymmetric tensor S has 6 independent elements, so the state U has 10
independent components. RF is not a particle and has no x-coordinates.

Like the nonrelativistic potential which may describe paired, triple, or multiparticle
interactions, vanishing when any of the particles in the subset is far away and depending,
correspondingly, of two, three, or more particle coordinates, RF may as well describe
paired, triple, and so on, interactions and depend on two or more points xi, or, since
points xi are functions of times τi, depend of two or more times τi.

We will define Q, S through functionals q, s describing the momentum and angular
momentum contributions to RF from each particle and depending on one time τ only. (In
general case, when the self-interactions are admitted, the values q, s may get the physical
status of states of RFs responsible for the self-interactions. Here we use them as auxiliary
quantities.) We put

Qij...(τi, τj, . . .) = qi,...(τi) + qj,...(τj) + . . . ,

Sij...(τi, τj, . . .) = sij...(τi, τj, . . .)−Xij... ∧ Qij...,

where
sij...(τi, τj , . . .) = si,...(τi) + sj,...(τj) + . . .

and Xij... = X(τi, τj, . . .) is some collective (”center of mass”) coordinate of the subset of
particles ij . . .. The subtraction of term X ∧ Q makes tensor S translationally invariant.

In case of paired interactions, RF states U depend on two times and values Q, S are

Qij = qi,j + qj,i,
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Sij = si,j + sj,i −Xij ∧Qij.

In this case, the equations of motion of particles i = (1, . . . , N) and RFs are

dxi = dτipi/mi, (1)

dpi = dτi(Fi +
∑
j

Fij), (2)

dqi,j = −dτiFij, (3)

dsi,j = −dτixi ∧ Fij, (4)

where one-index force Fi describes interaction with an external field and two-indeces forces
Fij describe interactions through reduced fields. Force Fi depends on xi, pi only and does
not contribute directly to the momentum and spin of RFs.

In case of multiparticle forces, the equations of motion are similar, only the simple
index j is replaced by appropriate collective index J = (j, . . .).

Unlike the Hamiltonian theory, the forces F in this theory are not defined as the
gradients of the mediator energy, but, conversely, the differentials of the state U are
defined through the forces which should be specified as functions of x, p, U respecting the
causality principle.

This principle, generally, allows the dependence of force Fij on any functional of the
present trajectory xi(told), told ≤ t, and of retarded parts of other trajectories xj(told):
told ≤ tret, (xi−xj(told))

2 ≤ 0. In particular, the forces may depend on the last RF state
Uij(τi, τ

ret
j ) or on an earlier RF state Uij(τ

r
i , τ

ret
j ), where τ ri < τi and is defined through

other variables in some Lorentz-invariant way. Typically, the forces have form

Fij = Fij(xi, pi, x
ret
j , pretj , ṗretj , p̈retj , Uij(τi, τ

ret
j ), Uij(τ

r
i , τ

ret
j ), . . .).

If we had admitted the self-interactions of particles, the forces would depend on the
functionals q, s separately. In the simplest case considered in this paper, the dependence
of forces on RF states is restricted to the dependence on U only.

Equations of motion (1-3) do not depend on the assumption that particles are un-
changeable. This assumption puts the resrtriction on forces: to keep the masses m con-
stant, all forces should be orthogonal to p:

p · F = 0. (5)

The initial data for the equations of motion should include the pieces of trajectories of
particles and of evolution of states U (or functionals q, s) during some period in the past.
This period should be long enough to contain all the retarded moments τ retj (xi) for all the
present points xi. The initial trajectories and RF states need not satisfy any equations
and may be arbitrary. The freedom of their choice physically corresponds to the freedom
of choice of forces from external fields in the past.

The equations of motion are stating that, if some energy-momentum or angular mo-
mentum is given to particles by RF forces, the same amount of energy-momenta is taken
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from RFs. So, if we define the total energy-momenta and the total angular momentum
of the isolated system of particles and of RF as

Ptotal =
∑
i

pi +
∑
ij

Qij,

stotal =
∑
i

xi ∧ pi +
∑
ij

si,j

their conservation is a trivial consequence of the equations of motion. Indeed, in the
absence of an external field the differential of the total 4-momentum obviously vanishes

dPtotal =
∑
i

dpi +
∑
ij

dqi,j = 0.

Since (due to identity dx∧p = 0) the differential of the angular momentum of the particle
is

d(xi ∧ pi) = xi ∧ dpi = xi ∧
∑
j

Fijdτj ,

the differential of the total angular momentum vanishes as well

dstotal = d(
∑
i

xi ∧ pi) +
∑
ij

dsi,j = 0.

In particular, if we consider the collision of particles and the reduced field is the same
before and after the collision (Qinitial = Qfinal, sinitial = sfinal), the energy-momenta of the
particle system is conserved in the collision. (If Qinitial = 0, angular momentum sinitial of
RF may be replaced by its spin Sinitial.)

In exceptional cases, when both the energy and the squared mass of the difference
∆U = Ufinal − Uinitial are positive, one may try to interpret ∆U as the energy-momenta
of the radiated field. It can be done, for example, for the electromagnetic interaction
described by the Lienard-Wiechert forces with the radiation friction term (compare the
method of calculating the radiation in [42]). But usually, the nonzero value of ∆U has
no clear interpretation and indicates that the reduced field description of the mediator
of interaction is inadequate and that more detailed description of the mediating field,
including its excitation and radiation properties, is needed.

The condition ∆U = 0 of elastic scattering limits the domain of complete logical
consistency of the mechanics with RFs. For this reason, the existence of the family of
forces, for which ∆U is exactly zero in a wide region of relative velocities of particles, is
a crucial question of the theory. In this paper, we explicitly construct a large family of
such forces, exploiting the possible dependence of forces on the state U .

The description of RF by quantities U does not tell how the field is distributed in
space, it only tells how much energy-momenta the field contains. In this respect, it is
similar to the nonrelativistic potential which tells how much energy the field has, but not
where in the space it is. However, the dependence of forces on the state U indirectly
indicates, how close to the particles RF is accumulated.
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The equations of motion are time-asymmetrical, and so are the solutions of these
equations. The equations of motion are asynchronous. They can be integrated for each
particle i together with relevant functionals qi,..., si,... independently of other particles
and of other functionals while the retarded moments τ ret(xi) are contained in the known
parts of trajectories. In these respects, the solutions of retarded equations of motion are
qualitatively different from the solutions in the Hamiltonian theory. However, certain
choice of dependence of forces on U may make solutions rather close to those of the
Hamiltonian theory at low velocities.

Though the equations of motion are asynchronous, one may as well consider proper
times τ as functions of some common evolution parameter t and solve equations syn-
chronously, if it is convenient. The solution is identically the same in both cases.

The choice of evolution parameter is, generally, subject only to the condition that all
vectors xi(τi(t))−xj(τj(t)) are always space-like. Let us consider ”synchronized” equations
of motion.

Denoting the evolution parameter by t and the time derivative d/dt by prime, we may
write equations of motion as

x′i = τ ′ihi,

p′i = τ ′i (Fi +
∑
j

Fij),

q′i,j = −τ
′
iFij,

s′i,j = −τ
′
ixi ∧ Fij.

From these equations one can extract equations for the full state of RF. Summing the
equations of motion for q, we obtain

Q′ = −F+, (6)

where
F+ = Fiτi

′ + Fjτj
′

is a sum of forces at time t.
The definition of RF spin depends on the choice of collective coordinate X.... Let

Xij = (xi + xj)/2. Then, the time derivative of RF spin for two particles takes form

S ′ij = −[Ri ∧ F
− + (hiτi

′ + hjτj
′) ∧Q]/2, (7)

where
F− = (Fijτi

′ − Fjiτj
′).

Generally, equations (6-7) are coupled with equations for differences qi,j− qj,i entering
force F−, if forces depend on U . This coupling may be eliminated, if the correspondence
between two arguments of Uij(τ

r
i , τ

ret
j ) is reciprocal:

xri = φ(xretj ), xretj = φ(xri ).
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Then both forces Fij, Fji will depend on the states on the same family of hyperplanes and
the differences qi,j − qj,i will drop out from force F−.

The correspondence (synchronization) φ between two arguments of U must be unam-
biguous, monotonous in time, and Lorentz-invariant. It should, for good convergence to
the nonrelativistic limit, place the particles as symmetrical as possible in each other field,
that is to make the distances Di, Dj close to each other and the retardation times Ti, Tj
close to each other. In [39], the exact equality of retardation times Ti, Tj was used as
synchronization condition of after-scattering trajectories. In case of large accelerations,
such condition is ambiguous. We will use another condition

Ri ·R
r
i = Rj · R

r
j (8)

satisfying all the above requirements in the general case. Differentiating (8), we get the
relation between τ ′i , τ

′
j:

τ ′iKi = τ ′jKj, (9)

where
Ki = hi · (R

r
i +Rrj) +Ri · (hi − hretj dτ retj /dτi).

The derivative dτ retj /dτi can be found by differentiating (R
r
i )
2 = 0. It gives

dτ retj /dτi = Ti/Di.

In the choice of evolution parameter t, it is advantageous (though not obligatory) to
define it to have the same value for points xri , x

ret
j . In case of synchronization (8), evolution

parameter t, according (9), may be defined by

dt = kdτiKi,

where k is a scale factor. Since at small accelerationsKi is close to Ti+Tj, it is convenient
to put k = 1/(Ti + Tj), what finally gives

t =
∫ Kidτi

(Ti + Tj)
. (10)

Then, when accelerations are small, τ ′i ≈ τ ′j ≈ 1, (xi − xj) · H ≈ 0. In such cases,
more simple synchronization

(xi − xj) ·H = 0 (11)

may be used.

3. Forces and the Field Picture

The freedom of the choice of forces F from RFs is larger than the freedom of the choice
of the interaction potential in the nonrelativistic Hamiltonian or Lagrangian mechanics
and in RDI theories. But the subset of ”good” forces leading to physically reasonable
solutions of equations of motion is relatively narrow and its selection is less easy than
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selection of ”good” Hamiltonians. To find the simplest families of ”good” forces, we will
appeal to the naive physical field picture of interacting particles.

We may imagine particles as some fields with singularities moving with accelerations,
if the stable (symmetrical) configuration of the field near a singularity is perturbed by
proximity of other singularities. In some approximation, the field with several singular-
ities may be represented as the sum of unperturbed fields of separate singularities and
some (nonlinear) corrections. The separate singularities with their unperturbed fields are
described in equations of motion as particles in states x, p. The energy-momenta of the
interference terms and of the field corrections are described by the state U of RF. In case
of two particles, RF energy-momenta is just the difference between the initial energy-
momenta of the field of two infinitely far separated singularities, and the energy-momenta
of the field with two singularities at finite distance. In case of more particles, the partial
contributions of different fields and forces are singled out as separate RFs.

Clearly, the separation of the field into ”particles” with constant masses and some
perturbation used as a ”mediator of interaction”, implied in all classical theories, is con-
ventional and is not always justified. In particular, it is not quite adequate when the
energy of RF is negative and comparable with the masses of (free) particles. We keep to
the assumption m =const for simplicity of equations.

When particles are far separated, the perturbation of their fields are small, and the
force acting on particle i from the side of particle j is proportional to the unperturbed field
of particle j at point xi. This force depends on the positions and velocities of particles,
but does not depend on the state U of RF, or on accelerations. It usually dominates,
especially at low velocities. We shall call it a primary force and denote F P . The Coulomb
force is an example of a nonrelativistic limit of a primary force.

When particles are close and move fast, the perturbation of their fields creates ad-
ditional forces. These forces are more complicated than F P and may depend (besides
positions and velocities) on accelerations of particles and on the state of RF. There are
three simplest possibilities.

1) The field perturbations may fly away as a radiation and carry away their energy-
momenta. Then they may produce forces only at the moment when the radiation wave
passes the particle. The amplitude of the wave from particle j and the corresponding
force acting on particle i should depend on the acceleration of particle j, and, hence,
on the force acting on particle j. Other words, the force acting on one particle creates,
after a proper retardation, the force acting on other particle. We shall call such forces
echo forces and denote them FE . The part of the Lienard-Wiechert force proportional
to acceleration is an example of an echo force. (Interactions, dependent on accelerations,
were considered in the Lagrangian formulation as well [35]).

2) The field perturbations may accumulate somewhere near the particles. Since they
may not accumulate indefinitely, and since the perturbed field configurations are generally
unstable, they should return their energy-momenta back to the particles by means of some
forces. This process can be interpreted as a decay of field distortions. We shall call the
corresponding forces decay forces and denote them FD. Decay forces should depend on
the state U of RF.
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3) The field perturbations may accumulate somewhere near the particles, but before
their dissipation in space near the particles the perturbation wave may reach the second
particle and pass essential part of its momenta to that particle. It may happen, if the field
of two particles concentrates near a line connecting particles and behaves as an elastic
string. The wave along a string may create relatively strong echo force FE , dependent
both on the accelerations of particles and on the state of RF.

In the next three sections, we shall construct the simplest forces F P , FD, FE having the
properties suggested by the field picture. Combining these forces, one may build models of
relativistic physical systems of interacting particles with desired behaviour, in particular,
systems with elastic scattering and with finite motion. The exact account of electro-
magnetic interactions (by means of the Lienard-Wiechert forces) can by made as well.

4. Primary forces

Let us suppose that the field belonging to a particle and moving with it becomes
spherically symmetric for the isolated particle and rotationally symmetric around the line
connecting the pair of interacting particles, if the particles are at rest long enough. Then,
the force in the static case is central and can be written as f = Rv,(|R|)/|R|, where v,

means the derivative of function v with respect to its argument. Arbitrary scalar function
v is the static potential related with the field.

In the theory with causal retardation, the field may not change immediately every-
where, when particles accelerate. Let particle i be at point xi and particle j be moving.
If particle j accelerates, its field at point xi continues to move during the retardation
time T in the direction of velocity hretj , which the particle j had in its retarded position
xretj (xi). Hence the force, acting on particle i at point xi is directed not toward point x

ret
j ,

but toward the extrapolated position

xextj = xretj + hretj
T

Crij
,

where particle j would arrive at time t if it were moving without acceleration. In the last
expression, Crij = hi · hretj is the ratio of the differentials of the time in the rest frame of
particle i (where T is defined) and of the time in the rest frame of particle j. So, the force
acting on particle i has not the direction R = xi − xretj , but the direction

Rexti = xi − xextj .

It is easy to check, that hi ·Rext = 0 as it is required by the condition of constant particle
mass: p · F = 0.

As an illustration of this, let us take the Lienard-Wiechert force FEM = eih · F , where
ei is the charge and F is the tensor of the electromagnetic field

F = ejR
r ∧ (h ∧Rr[Rr · ḣret − 1]/D − ḣret)/D2,

where D = (xi − xretj ) · h
ret
j .
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The primary force (containing no accelerations), is

F PEM = −eiejh · (R
r ∧ hret)/D3 = Rexteiejh · h

ret/D3

and is directed just along the vector Rext. The ”echo” part of the Lienard-Wiechert
force which is proportional to acceleration and produced by the wave of the synchrotron
radiation, has different direction dependent on the distance.

Consider now the relation of the force F P with the relativistic generalization of the
static potential. The relativistic invariance leaves a large freedom in the choice of such
generalization. However, the above assumption that each particle drags its own field
means that the strength of the force acting on particle i from the field of particle j should
depend on distance Di = (xi − xretj ) · h

ret
j in the rest frame of the field.

Making the simplest assumption that the energy increment dτiF
P
i ·h

ret
j of particle i in

the rest frame of particle j depends only on the increment of distance D (and does not
depend otherwise on velocity hi of particle i), we come to relation

F Pi · h
ret
j = − ¯̇vi, (12)

where the bar means that, according to the definition of the primary force, the terms with
accelerations ḣ, ḣret are omitted:

¯̇vi =
¯̇Div
, = (Crij − Ti/Di)v

,. (13)

Since F P = Rextφ, where φ is a scalar function, from (12) and relation Rext · hret =
D − T/Cr, we obtain

F Pi = −R
ext
i

Crij
D

v,. (14)

Returning to the primary electromagnetic force F PEM, one may see that

v,EM = −eiej/D
2, vEM = eiej/D,

as it could be expected.
Primary forces of the form (14) make it possible to introduce 4-vector Q̂ related with

potential v and describing the adiabatic approximation of the RF energy-momentum Q.
Unlike vector Q, dependent on the history of motion, vector Q̂ is defined as a function of
particles variables only. In this respect, it resembles relativistic interaction Hamiltonians
in RDI theories. The main assumed property of Q̂ is that

Q̂′=
a.a.

Q′, (15)

where prime means the derivative with respect to some evolution parameter, ”a.a.” means
the adiabatic approximation (omission of acceleration terms), and where only the primary
forces are taken into account.

Condition (15) permits different specific definitions of Q̂ depending on the assumptions
about the particle fields. The simplest assumption that the fields of two particles are
similar corresponds to

Q̂ = Hvλ,
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where λ is a normalization factor depending only on hi, hj, and the correspondence be-
tween the points of two trajectories is given by a symmetric condition (8).

Synchronization (8) leads, in a.a., to equalities

τ ′i = τ ′j = 1, Di = Dj, Ti = Tj, Crij = Crji, Rexti +Rextj = H
2

H2
(D − T/Cr).

This and expression (14) for forces convert equation (6) into

Q′ = Hv,
2

H2
(Cr − T/D).

Comparing Q′ with Q̂′=
a.a.

Hv,(Cr − T/D)λ, we finally obtain

Q̂ = Hv
2

H2
.

Evidently, the energy component Q̂0 → v in the low velocity limit. So, if the solutions
of equations of motion will be stable and Q will remain close to Q̂, we will, with primary
forces (14), come to the usual potential interaction in the nonrelativistic limit.

Static potential may be used as well to define an approximation of spin

Ŝ =
∫
x1 ∧ q̂1dτ1 +

∫
x2 ∧ q̂2dτ2 −

x1 + x2

2
∧ Q̂,

where q̂ = −R
ext

r
v and r = Rext · H = D − T/Cr. Spin Ŝ, generally, is not an adiabatic

approximation of S, since vectors q̂, generally, are not adiabatic approximations of q
(though always q̂i + q̂j = Q̂).

However, in the planar case, Ŝ ′=
a.a.

S ′. Indeed, in this case in the absence of accelerations
trajectories intersect and vector Rext does not change its direction with time, so the
normalized vector R

ext

r
remains constant. Hence, the time derivative of R

ext

r
is proportional

to accelerations and vanishes in the adiabatic approximation. So, in this case,

q̂′=
a.a.
−

Rext

r
v′ = −τ ′

Rext

D
Crv, = q′

and Ŝ becomes an adiabatic approximation of spin S.

5. Echo force

The echo forces, by definition, depend on the (retarded) accelerations of particles
Aret = F ret/m. Such force may become important, if the mediating field concentrates
near the straight line connecting the particles and ties particles together as a light elastic
string. The simplest field mechanism of an echo force is just a recoil wave along a string
which reaches with a retardation the other end and passes part of its energy-momentum
to the other particle. The maximum force transferable in such a way is the part of Aret
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orthogonal to p: FEmax = Aret − hh · Aret. Generally, the efficiency of the momentum
transfer between the wave and a particle may be less than one, so

FE = aE(Aret − hh · Aret),

where coefficient 0 ≤ aE ≤ 1 may depend on the angles between h,Rr and Rr , hret.
The simplest echo forces increase, generally, the difference between the action and

reaction, increase the accumulation of the momenta of RF ( especially, of the spin of RF),
and make the motion of particles less stable. It is possible to construct formally more
complicated echo forces, dependent on the sum of retarded values of accelerations of two
particles and on the mentioned angles, which have the opposite effect. However, it is
difficult to understand what processes in the mediating field could lead to such forces, so
we will not consider them here.

6. Decay force

The retardation of interactions leads to accumulation of values U , especially of spin
components. The accumulation of RF occurs since the sum of spatial parts of forces
acting on two particles is not zero and the forces are not directed along a line connecting
the particles (the newtonian principle ”action equals reaction” is violated by retardation).
However small, such accumulation would exclude solutions with periodic orbital motion
even at low velocities.

The considerable accumulation of RF may lead to pathological results. In particular,
the RF energy Q0 may tend to −∞ giving the positive infinite energy-momentum to par-
ticles, and may remain negative, when particles separate and cease to interact. Solutions
with large RF may have strange attractors or become fully chaotic.

The accumulation of values U can be limited by decay forces FD depending on the
state U of RF. The paper [39] demonstrated that in case of motion along a line the
appropriate decay forces linear in U can make RF to vanish with time and make the
scattering elastic at arbitrary high collision energy. In this paper, we will consider similar
decay forces for more complicated case of planar motion. We will introduce more general
decay forces, that are making the state U to tend to some ”equilibrium” value V , where
V = (V q, V s) is some (10 component) function of particle variables. One may interpret
the difference U = U − V as some dynamically created distortion or excitation of the
static fields and a slow process of diminishing of U as a decay of this excitation.

Function V may be arbitrary. For example, one may set the ”equilibrium” value equal
to the adiabatic one V = Û = (Q̂, Ŝ).

Let us consider equations of motion for RF distortion U . Subtracting V ′ from both
sides of equations (6)-(7) (and omitting obvious index ij of S), one gets similar equations

Q′ = −(fijτ
′
i + fjiτ

′
j), (16)

S ′ = −[Ri ∧ (fijτ
′
i − fjiτ

′
j) +H ∧Q]/2 (17)

where f is the remaining force.
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In case of choice V = Û , the remaining force is f = F − F P = F + Rexti Crijv
,/D and

does not contain most of the principle force. It can be written as f = fA + FD, where
force fA is proportional to accelerations and vanishes in adiabatic approximation and FD

is a decay force depending on the state of RF.
In case of choice V = 0, force f = F and the full RF is considered as a distortion:

U = U .
We will consider analytically only the decay forces linear in distortion U . Such decay

forces may be symbolically written as FD = B U (ret), where B is a linear operator trans-
forming the complex U of 4-vector and of tensor into 4-vector FD and index (ret) means
that some of the arguments of the state U are retarded.

Then equations (16-17) will be linear in U and may be symbolically written as

U ′ = AB U (ret) + AfA, (18)

where A is a linear operator transforming 4-vector fA into the complex U of 4-vector and
of tensor.

Since operator (matrix) B maps the space of larger dimension to space of smaller
dimension, operator (matrix) AB cannot be diagonal, and equations in system (18) are
always coupled. To simplify their analysis we will use the freedom in the choice of force
FD = B U (ret) so as to make equations as little coupled as possible.

First of all, we will use (moving) orthogonal tripod H = hi + hj, h = hi − hj, y,
where y is a space-like vector orthogonal to H, h, normalized by y2 = −1, and lying in
the plane of motion. In addition to these vectors, it is convenient to define vectors

h̄i = (Chi − hj)/n, h̄j = (Chj − hi)/n

where C = hi · hj and n = C2 − 1, which are orthogonal, respectively, to hi, hj and
normalized so that hj · h̄i = hi · h̄j = 1, and to define their combinations

H̄ = h̄i + h̄j, h̄ = h̄i − h̄j

with properties
H̄ ·H = 1, h̄ · h = −1, H̄ · h = h̄ ·H = 0.

Then, like it was done in [39], we will pass from vector Q and tensor S to scalars

QH = Q ·H, Qh = Q · h, Qy = Q · y,

Shy = h · S · y, SHh = H · S · h, SHy = H · S · y.

Since FDij , being a force, should be orthogonal to hi, the general expression for BU is
a linear combination of 12 terms of the form xc, where x is one of two vectors h̄i, y and c
is any of the six scalars above.

To simplify further the equations, we will not use all 12 terms xc, but will leave in the
expression for FDij only 6 terms h̄iQH, h̄iQh, h̄iQy, yShy, h̄iSHh, ySHy,.
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The causality principle requires that, in the expression for the force Fij, any variables
with index j must have retarded values. It concerns as well the point xri , reciprocal to the
point xretj in the sense of synchronization like (8). Point xri is, generally, different from
xreti (though these points are close, if accelerations are small).

Below, index r will mean the presence of one retarded argument (in FDij , for example,
Hr = hi + hretj ), and index

rr will mean the presence of retarded argument and of its
reciprocal (for example, Hrr = hri + hretj , where h

r
i = hi(x

r
i )).

In these notations, the simplest decay forces take form

FDij = a0h̄
r
iQ
rr
Hrr + b0y

rSrrhrryrr + ahh̄
r
iQ
rr
hrr + bhh̄

r
iS
rr
Hrrhrr + ayy

rQrryrr + byy
rSrrHrryrr , (19)

FDji = a0h̄
r
jQ
rr
Hrr − b0y

rSrrhrryrr − ahh̄
r
jQ
rr
hrr − bhh̄

r
jS
rr
Hrrhrr + ayy

rQrryrr + byy
rSrrHrryrr , (20)

where coefficients a0, b0, ah, bh, ay, by determine the decay rates of different components of
RF and are arbitrary within certain limits depending on retardation time.

The terms in (19),(20) have a simple interpretation.
The term with coefficient a0 is a force returning the energy of RF back to particles.
The term with coefficient ah is a force returning the momentum of RF along the

relative velocity h back to particles.
The term with coefficient ay is a force returning the momentum of RF in the y direction.
The term with coefficient b0 returns to particles the angular momentum of RF.
The term with coefficient bh is a force reducing the element of spin tensor related with

the spatial separation of the field from the particles in the direction of h.
The term with coefficient by is a force reducing the element of spin tensor related with

the spatial separation of RF from the particles in the y direction.
One may see from these comments that all 6 terms in the decay forces (19),(20)

are necessary for the decay of all components of RF state. From the other hand, the
inclusion into the decay force of other terms xc would increase the number of forces of
the same direction and make the system of equations more coupled. So, little freedom
of choice is left, if the force is linear in the state U and the coupling of equations is
reduced to minimum. (19),(20) is a generalization of the corresponding decay force of the
one-dimensional case [39] to the case of planar motion.

Note that the state of RF in the RHS of (19),(20) is completely retarded (all 6 terms
have index rr). It is not required by causality and, in [39], both completely retarded and
partly retarded forces were considered for the one-dimensional case. However, in the 3-
dimensional case, only completely retarded version of FD gives equations for U uncoupled
with equations for differences qi,j − qj,i. To avoid a lengthy analysis of equations, where
the quantities of different asymptotical behaviour are coupled, we will consider here only
fully retarded decay forces.

7. Decay of RF excitations

The inhomogeneous equation (18) describes the competition of two processes: the
creation of new RF distortions by the force fA and the decay of RF distortion with the

16



help of force FD. The decay is expressed by the homogeneous equation

U ′ = AB U (ret). (21)

Operator A depends on coordinates and velocities of particles, depending, in their turn,
on time. Operator B may depend on velocities and distances. With full account of this
dependence, the analytic consideration of solutions of equation (21) is difficult even for
the simplest choice of operator B.

To simplify the task, we will use synchronization (8) with time (10) and consider the
estimates of the asymptotic behaviour of U in the rough adiabatic approximation, where
change of vectors hi, hj, R during retardation time is neglected, so that

τ ′i = τ ′j = 1, H · R = 0, Cr = C, . . .

and retardations of arguments are the same for both particles. In this approximation,
system (21) is similar to system

U ′ = ZU , (22)

where Z is a constant matrix and which can be analysed by finding the proper values
of Z. The main difference of (21) from (22) is that the state U in RHS of (21) has
some retarded arguments. To reduce (21) formally to (22), we introduce the retardation
operator E acting on elements of state

E : Eq = qret, EQ = Qrr, ES = Srr,

and include this operator in the elements of Z so that

ZU = ABU (ret).

Equation (22) has exponential solutions U = U(0)exp(tγ). The retardation operator
acts on them as the multiplication operator:

EU = exp(−trγ)U ,

where tr ≥ 0 is the retardation (in our approximation, tr = Rr ·Hr/|Hr| = (T +D)/|H|).
The spectrum of proper values γ for (22) can be found from the characteristic equation

|Z − γI | = 0,

where the elements of Z containing operator E depend on γ.
If all the proper values of operator matrix Z have negative real parts, force FD will

constantly diminish RF distortion Q,S and solutions will be stable [36]. Let us write
matrix Z for forces (19),(20) explicitly.

In case fA = 0 and τ ′i = τ ′j = 1, (16),(17) turn into

Q′ = −(FDij + FDji ), (23)

17



S ′ = −[Ri ∧ (F
D
ij − FDji ) +H ∧Q]/2. (24)

The combinations of forces (19), entering these equations, in our approximation are

FDij + FDji = a0H̄(QH)
rr + ahh̄(Qh)

rr + bhh̄(SHh)
rr + 2ayy(Qy)

rr + 2byy(SHy)
rr, (25)

FDij − FDji = a0h̄(QH)
rr + 2b0y(Shy)

rr + ahH̄(Qh)
rr + bhH̄(SHh)

rr.

Passing to scalar products with H, h, y, we get from (23),(25)

Q′H = −2a0(QH)
rr, Q′h = 2ah(Qh)

rr + 2bh(SHh)
rr,

Q′y = 2ay(Qy)
rr + 2by(SHy)

rr.

The scalar products with F− = FDij − FDji are

F−H = 2ah(Qh)
rr + 2bh(SHh)

rr, F−h = −2a0(QH)
rr,

F−y = −2b0S
rr
hy.

This and (24) give
S ′hy = −a0Ry(QH)

rr + b0Rh(Shy)
rr,

S ′Hh = a0RH(QH)
rr + ahRh(Qh)

rr + bhRh(SHh)
rr −

H2

2
Qh,

S ′Hy = b0RH(Shy)
rr + ahRy(Qh)

rr + bhRy(SHh)
rr −

H2

2
Qy.

One may note, that equations for Qh,SHh are fully coupled and equations for Qy,SHy
are fully coupled. It happens because the corresponding terms in the decay forces have
the same direction. The equation for Shy remains uncoupled from the equation for Qy in
spite of the coincidence of the directions of the relevant terms in the force, since one term
is odd to the interchange of particles, while the other term is even.

It is convenient to group the fully coupled equations together and write U as a column


QH
Shy
Qh
SHh
Qy
SHy



.

Then the matrix Z corresponding to the above equations is

Z =




−2a0E 0 0 0 0 0
−a0RyE b0RhE 0 0 0 0

0 0 2ahE 2bhE 0 0
a0RHE 0 ahRhE −

H2

2
bhRhE 0 0

0 0 0 0 2ayE 2byE

0 b0RH ahRyE bhRyE −H
2

2
0



,
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This matrix has four diagonal blocks, above which the matrix is empty. Therefore the
characteristic function ζ = |Z − γI | is a product of four functions ζ = ζ1ζ2ζ3ζ4, where

ζ1 = −γ − 2a0E,

ζ2 = −γ + b0RhE,

ζ3 =
∣∣∣∣−γ + 2ahE 2bhE
ahRh − H2

2
−γ + bhRhE

∣∣∣∣ = γ2 − γ(2ah + bhRh)E + 2bh
H2

2
E,

ζ4 =

∣∣∣∣∣−γ + 2ayE 2byE

−H
2

2
−γ

∣∣∣∣∣ = γ2 − γ2ayE + 2by
H2

2
E,

and
E = e−trγ .

Function ζ(γ) has on the complex plane the zeros of all four functions ζ1, . . . , ζ4. The
real part of the position of the rightmost zero of the rightmost zeros of these functions
determines the general asymptotical behaviour of the solution U . If this real part is
negative, the forces diminish |U| and make the motion of particles stable. Otherwise,
they make it unstable.

By the change of variables λ = trγ, the analysis of zeros of all factors in ζ is reduced
to the analysis of two functions

z1 = λ+ αe−λ, z2 = λ2 + (βλ+ δ)e−λ,

where α, β, δ are parameters expressible through a0, . . . , by.
Consider function z1. At small α the rightmost root λ0 of equation z1 = 0 is real and

close to −α. At the point α = 1/e, where the function α(λ) = −λeλ reaches the maximum
α̂, the rightmost root is λ0 = −1 and becomes double. At greater α, the root λ0 splits
into two complex roots, which move to the right with the growth of α. At α = π/2, roots
λ0 become purely imaginary: λ0 = ±iπ/2. Therefore, the region of α, where Reλ0 < 0,
and the extremal point in it are

0 < α < π/2, α̂ = 1/e, λ0(α̂) = −1.

Returning to functions ζ1, ζ2, we obtain limitations on parameters a0, b0:

0 < 2a0tr < π/2, 0 < −b0Rhtr < π/2.

The fastest decay rate of components QH,Shy is γ̂0 = −1/tr and is reached at

â0 = 1/(2tre), b̂0 = −1/(Rhtre).

Consider now the function z3. The dependence of the rightmost root λ0 on parameters
β, δ is easier to analyse numerically. The calculations give the limitation

0 < β < 1.5 . . . , 0 < δ < f(β),
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where the borderline curve f looks as distorted semicircle. At small β, f ′(β) ≈ 0.8. Then,
at about β = 1, f reaches maximum fmax ≈ 0.55. Near the other end β ≈ 1.5, the curve
goes steeply to zero, f ′ → −∞ at the end point.

The fastest decay rate λ̂0 ≈ −0.55 corresponds to

β̂ ≈ 0.5, δ̂ ≈ 0.1006.

The fastest decay rate λ̂0 ≈ −0.55 is slower than that obtained for equation z1 = 0, and
is, therefore, the fastest possible decay rate of RF distortion U as a whole.

The relevant limitations on parameters ah, bh, ay, by are obtained from limitations on
β, δ by using relations

−2(ah + bhRh)tr = β, bhH
2t2r = δ,

−2aytr = β, byH
2t2r = δ.

The fastest possible decay is obtained for

b̂h =
δ̂

H2t2r
, âh = −

β̂

2tr
−

δ̂Rh
H2t2r

,

b̂y =
δ̂

H2t2r
, ây = −

β̂

2tr
.

The values â0, b̂0, . . . turn into infinity at tr = 0 and at Rh = 0 and become large
near these points, what contradicts to our assumption that accelerations are small. To
remain within the region, where the adiabatic approximation and the analysis above are
applicable, one has, estimating the decay rates, to consider parameters a0, . . ., limited
everywhere, for example, the expressions

a0 =
1

2e(tr +D0)
, b0 = −

1

e

Rh

R2h + |h2|R2y + |h2|D
2
0

1

tr +D0
, . . .

bh =
δ̂

H2(tr +D0)2
, ah = −

β̂

2(tr +D0)
−

δ̂Rh

H2(tr +D0)2
,

by =
δ̂

H2(tr +D0)2
, ay = −

β̂

2(tr +D0)
.

where D0 is some characteristic small distance below which the decay forces are switching
off. The term |h2|R2y in the dominator of the expression for b0 does not let b0 to grow near
the points, where R is orthogonal to h, when R is large compared to D0.

We may conclude, that the parameters in the expressions for the forces FD can be
chosen in such a way, that RF distortion will decay at any energies. The decay rate is
limited: if time is measured in terms of the retardation time tr, it is limited by the value
λ0 ≈ −0.55. The maximal decay rate is possible everywhere, except the vicinities of the
points tr = 0,Rh = 0, where the adiabatic condition puts additional limitations.
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8. Conditions of Elastic Scattering

The conditions of elastic scattering are specially important in the relativistic mechanics
with interactions through RF since they limit the domain of consistency of the theory.
Indeed, RF belonging to a pair of particles, as a mediator of interactions between these
particles, should not disconnect with them. If particles, when they fly to infinity after the
scattering, cease to interact with their RF and leave it in a nonzero state, it, generally,
means that the used reduced description of their fields is contradictory and more detailed
description of the fields is required.

The conditions of elastic scattering can be derived by a method similar to the method
of the preceding section. One has only to take into account that distances between
flying away particles may considerably grow during the retardation time. The equations
with changeable retardation may be reduced to the equations with constant retardation
parameter by a change of variables and by making the parameters of the decay force to
be time-dependent.

Let us estimate the retardation time for flying away particles. At some distance
from the collision zone, the trajectories of particles become close to the straight rays
coming from one point. Taking this point as the origin of our coordinate frame, we may
approximate the trajectories of particles by expressions

xi = hiτi, xj = hjτj .

Solving then the retardation equation

(hiτi − hjτ
ret
j )

2 = 0

for τ retj (and solving similar equation for τ reti ), we obtain

τ retj = kτi, τ reti = kτj, k = C −
√
C2 − 1 =

1

C +
√
C2 − 1

.

The retardation time tr depends on the definition of the evolution parameter t. In case of
the ray trajectories, any reciprocal synchronization gives τ ri = τ retj , Di = Dj , Ti = Tj and
tret = kt, if t is proportional to τ . (In particular, it is true for (8) and (11) synchronizations.
Besides, for the ray trajectories (10) give t = τi = τj.) Hence,

tr = t− tret = t(1− k).

Consider now the homogeneous part of one pair of coupled equations for RF compo-
nents, for example, the equations for Qy, SHy:

Q′y = 2ayQy(t− tr) + 2bySHy(t− tr),

S ′Hy = −
H2

2
Qy(t).
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Let
2ay = ã/tr, 2by = b̃/(tr)

2, t = eθ.

Then
dQy

dθ
=

ã

(1− k)
Qy(θ − µ) +

b̃

(1− k)tr
SHy(θ − µ),

dSHy
dθ

= −
H2

2
tQy(θ).

The corresponding characteristic equation is

∣∣∣∣∣−γ +
ã

(1−k)E
b̃

(1−k)tr
E

−(C + 1)t −γ

∣∣∣∣∣ = γ2 − γ
ã

(1− k)
e−γµ +

b̃

(1− k)2
(C + 1)e−γµ = 0.

Comparing it with the equation z2 = 0 of the preceding section, we may identify

−ã
µ

1− k
= β, b̃(C + 1)

(
µ

1− k

)2
= δ, γ0µ = λ0 ≈ −0.55,

what gives the decay parameters

ay = −
β

2

1− k

µtr
, by =

δ

2(C + 1)

(
1− k

µtr

)2
.

In terms of time t, the decay now is not exponential, but obeys a power law:

(Qy, SHy) ∼ tλ/µ. (26)

The consideration of other equations in the system U ′ = ZU is quite similar. In all
the expressions for a0, . . . , by, derived in the adiabatic approximation, the account of the
growing separation of particles after the scattering gives the replacement of each factor
1/tr by the factor (1− k)/(µtr), and of the exponential law eλt/tr by the power law (26).

The after-collision decay of RF with the decay forces (19),(20) is slow at high velocities.
In principle, it is sufficient to make the scattering elastic and the theory with RF consistent
at arbitrary energies. However, when the decay rate is small, the terms which were
neglected in the above derivation, become important and may prevent the decay of spin
components of RF at high velocities. The numerical tests show that, for the fully retarded
version of decay forces and for the coefficients derived above, the scattering remains elastic
below the relative velocity 0.3 c. To make the scatterin elastic at higher velocities, the
”less retarded” decay forces, like those considered in [39], with Qr, Sr instead of Qrr, Srr

should be used.
If the mechanics with retarded interactions is used as a model of processes with parti-

cles which scatter inelastically above some energy threshold, there is no reason to use in
the model the decay forces making the scattering always elastic. The model will be more
accurate below the energy threshold, if the energy dependence of the decay forces is so
modified that at the threshold energy the coefficients a0, . . . leave the region where all the
roots of the characteristic equation for U ′ = ZU have a negative real part.
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9. Exact and Numerical Solutions

We give here just a few examples of the solutions of the equations of motion with the
discussed forces.

The systems with the primary and decay forces described above permit exact solutions
with circular trajectories of particles. If the center of mass of the whole system of particles
and RF is placed at the origin and the particle i at t = 0 is on the x-axis, the circular
solutions may be written as (xi)0 = (xj)0 = t, (xi)3 = (xj)3 = 0 and

(xi)1 = ρicos(ωt), (xj)1 = −ρjcos(ωt+ φ),

(xi)2 = ρisin(ωt), (xj)2 = −ρjsin(ωt+ φ).

They are completely fixed by four parameters ρi, ρj , ω, φ.
The family of such solutions is two-dimensional. Indeed, the fixation of the trajectories

determines the primary forces and the coefficients before the scalars QH, . . . , SHy in the
expressions (19),(20) for the decay forces. These scalars for the circular trajectories with
constant parameters must be constant:

(QH)
′ = 0, . . . , (SHy)

′ = 0. (27)

The last conditions and the RF part (3),(4) of the equations of motion give 6 equations
permitting to express 6 scalars QH, . . . , SHy through the primary forces, and, hence,
through the parameters ρi, ρj , ω, φ. So, finally, these four parameters determine the total
forces F . The particle part (1),(2) of the equations of motion in case of circular solutions
reduces to 6 scalar equations, two of which — hi · Fij = 0, hj · Fji = 0 — are always
fulfilled due to the structure of forces, another two equations

(Fij)0 = 0, (Fji)0 = 0

are the consequences of equations (27) and are satisfied for any values of the parameters
ρi, ρj , ω, φ. The remained two equations for the forces directed toward the origin

Fij · xi/ρi +miω
2ρi/(1− ω2ρ2i ) = 0,

Fji · xj/ρj +mjω
2ρj/(1− ω2ρ2j ) = 0,

reduce the number of independent parameters from four to two. For example, one may
use ω and φ, or the total massM = |Ptotal| and the total angular momentum J = (stotal)12
as a pair of independent parameters.

The region of ω, φ, where the circular solutions exist, depends on the choice of forces
and is limited. (In the nonrelativistic limit, φ → 0, and this region becomes one dimen-
sional. Physically, it corresponds to the vanishing of RF in the limit of small velocities
due to the complete decay of all the non-energy components of RF during typical nonrel-
ativistic times 1/ω. In the absence of RF spin, the total angular momentum reduces to
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the angular momentum of the particles and becomes functionally dependent of the kinetic
energy.)

Consider a numerical example of a relativistic circular solution. Let particles have
different masses mi = 0.15, mj = 0.85, the principle force have form

F P = c1
h · (Rr ∧ h)

1 + (T/c2)4
, c1 = 0.001, c2 = 40

and decay force FD have form (19),(20) with the coefficients

a0 =
1

2etr
, b0 =

0.2

etr

Rrrhrr

(Rrrhrr)
2 + (hrr)2(Rrryrr )2) + c23

, c3 = 10,

bh = −
0.1006

(Hrr)2(tr)2
, ah =

1

4tr
− bhR

r
hr ,

ay =
1

4tr
, by = bh.

corresponding to the maximal decay rates of all the components of RF, except for the co-
efficient b0 having additional factor 0.2, slowing down the decay of the angular momentum
of RF. (Such choice of b0 is convenient for the illustrations below.)

Let the ”equilibrium” value V of the RF state be zero and the echo forces be absent.
The form of the principle force is chosen so as to limit clearly the region, where the

interaction is essential. Within this region, the force is approximately proprtional to the
distance, like the force of an elastic string.

One of the circular solutions found for such system is shown on Fig.1. The left part
of this and further figures is the trajectories of particles. The parts of trajectories drawn
by thicker lines are their ends between tret and t. The right part of the figure shows the
trajectory of the spatial part of the vector Ptotal · S/M which can be loosely interpreted
as the trajectory of the ”coordinate” of RF or of the (minus) ”center-of-mass” of two
particles. The thicker segment of the line marks its end.

The solution has parameters:

ρi = 20.22965, ρj = 4.974676,

ω = 0.02583316, φ = −0.104729.

The total mass of the system is M = 1.027664, the total angular momentum is
J = 4.335000. The particles move with the velocities 0.5222596 c and .128512 c. The
projections of the RF state are

QH = −0.02042097, Qh = −0.01432397, Qy = 0.005647071,

Shy = −1.209215, SHh = 0.6625665, SHy = 0.7438285.

The spatial components of the decay forces are two orders smaller than the components
of the principle forces.
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In this example, the total mass of the system is greater than the sum of masses, so
the particles, if they return the energy and the angular momentum, borrowed from RF,
back to RF, would still have considerable kinetic energy (the lighter particle would have
the velocity 0.507 c). So, one may suspect that the solution is unstable.

During the retardation time, the vectors hi considerably rotate, what makes all the
equations for the RF state coupled. That makes the analytic study of the stability cum-
bersome. More easy is the direct numerical integration of the equations of motion. The
only technical complication in this way is the calculation of the retarded values, what re-
quires the storage and the interpolation of the old states of the mechanical system. Once
it is programmed, the numerical integration of the equations of motion can be done by
the same means as the integration of the Hamiltonian equations. The conservation laws
can be used to check the actual accuracy of the results.

The numerical tests of the above solution had shown that the circular solution is
perfectly stable (in any sense, cf. the discussion of stability definitions [40]). Moreover,
at this interaction and this energy (and with ω for definiteness supposed positive), the
family of stable circular solutions, as function of total angular momentum J , stretches
rather far in the direction of positive J (roughly to J0 ∼ 66), bordering with the region,
where the motion is wiggle-unstable and solutions become more and more rough with
time. In the opposite direction on J axis, the family of stable circular solutions stretches
to negative J , where the particles and RF rotate in the opposite directions. The family
ends at about J1 ∼ −6, where the circular solution becomes unstable and gradually turns
into nonperiodic (but smooth) solution. Example of nonperiodic solution at J = −7.5 is
shown on Fig.2. The further decrease of J increases the average amplitude of nonperiodic
oscilllations, and, at about J = −8.5, the particles, after one of their maximal separations,
change the direction of their orbiting, and solution converges to the ordinary circular
solution (with the particles and RF rotating in the same direction).

Since the exact system of equations is not linear, several solutions may exist at the same
M,J . For the interaction above, the M,J region of the circular solutions partly overlaps
with the region (J2 = −3.513 > J > J1) of stable precessing solutions (i.e. solutions
periodic in a suitable rotating frame of reference), and with the region of nonperiodic
solutions (starting at about J3 ∼ −5.5 and partly overlapping with the region of precessing
solutions). For example, both the precessing solution (Fig.3) and the circular solution
(similar to that on Fig.1 and having parameters: ρi = 20.8036, ρj = 5.520723, ω =
0.002556, φ = −0.118367) exist and are stable at M = 1.027664 and J = −4. The
speed of precession depends on J and tends to zero when J tends to J2. The borderline
”zero precession” solution at J = J2 is shown on Fig.4. The perturbations inreasing J
turn this solution into quasi-precessing solution which is slowly precessing, decreasing the
amplitude of radial oscillations, and tending to the circular solution.

The numerical solutions of the equations of motion with different initial conditions
and forces revealed other interesting features of the typical solutions.

First of all, the particle systems with attractive forces, besides the ordinary scattering
solutions, usually have the capturing solutions. By ”capturing” we mean the process when
the particles initially are far away from each other and move toward each other, but, after
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entering the region of interactions, instead of scattering and then flying away, they start
rotating indefinitely around each other. Other words, the manifold of solutions usually
has normal or strange attractors.

At the beginning of capturing process (Fig.5), the particle motion is quasi-precessing.
Then the trajectories either turn gradually into a precessing solution, or converge to a
circular one (to the solution on Fig.1 in case of Fig.5), or to a nonperiodic solution (strange
attractor). Since the region of existence of the circular solutions is two-dimensional, the
limiting circular solutions are not at all rare (as they are in the Hamiltonian theory, where
their family is usually one-dimensional in M,J plane), but are quite common. For some
interactions, most of the region of initial parameters (energies and angular momenta),
leading to capturing, is covered by the region of the circular solutions.

Besides the capturing solutions and of the simple scattering solutions, there is often
a region of quasi-capturing solutions, where colliding particles start orbiting, then orbits
become close to quasi-precessing solutions slowly changing their parameters. When these
parameters reach some critical values, the motion becomes unstable, and the particles fly
away. Such solutions can be considered as classical analogies of the quantum resonant
states of the elementary particle physics.

Another interesting feature of the motion with retarded interactions is the nontrivial
motion of the center of mass of two particles, which may be orbiting around the center of
mass of the total system at considerable distance.

The simplest echo forces, if added to the forces of the considered examples, change
qualitatively the solutions when their coefficient aE is .3 or greater. As it was expected,
they make the motion less stable. The effect of the echo forces, when it overrides the
effect of decay forces, makes the scattering inelastic.

There are many other physically interesting details of the solutions of the equations
of motion (1)-(5). However, the systematic study of such details lies outside the scope of
the present paper.

10. Conclusion

The completion of the equations of particle motion by the equations for the state of the
mediator of retarded interactions deeply changes the physical contents and the properties
of the solutions, compared to those of the relativistic mechanics where interactions depend
on the particle variables only. The conservation laws for the complete system become
obvious and their interpretation simple. Stable circular and precessing solutions and
elastic scattering of particles become possible.

Even the most primitive reduced description of the mediator by its 4-momentum
and spin reproduces the complicated motion typical for the particles interacting with
a continuous medium. It may reproduce qualitatively even the existence of the energy
threshold between the elastic and inelastic scattering, which is usually considered as a
purely quantum-field phenomenon related to particle production. These features of the
theory with reduced fields make this theory very promising for the construction of the
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classical models of various processes with elementary particles which before could be
considered only in the frame of the relativistic quantum field theory.

The equations of motion with RFs permit to take the electromagnetic interactions into
account exactly by using the Lienard-Wiechert forces with the radiation friction term [41]

F rfi =
2

3
e2hi · (hi ∧ ḧi),

where ḧ (as well as ḣ) should be understood and numerically realized as a limit from the
left to exclude unphysical growing solutions. Then the state U of the reduced electromag-
netic field (in case of several particles, the sum of such states) will give the correct values
of all the energy-momenta of the radiated field without actual calculating of the outgoing
waves what is specially convenient in case of several charged particles [42].

It is worth to comment briefly the way of getting the orbital motion in the theory with
RFs and in earlier MT relativistic models for a pair of electrically charged particles. Such
models use the combinations of retarded and advanced interactions, introduced either in
a symmetrical (e.g. [2]), or in an asymmetrical (e.g. [43]) fashion. In both cases, inclusion
of advanced interactions eliminates the radiation losses (what, of course, is a distortion
of the real electromagnetic interactions though excused usually by the references to the
action-at-a-distance version of the electrodynamics [44]). The actual justification of the
advanced interactions, violating the causality, is the desire to obtain closed (or precessing)
orbits and to come to the Hamiltonian or Lagrangian description.

In the present approach, the RF-dependent decay forces, if added to the Lienard-
Wiechert forces, are able to reach the same goal, i.e. to prevent radiation losses and
produce closed (or precessing) orbits, at smaller cost, without violating the causality.
With respect to the particle motion, the decay forces are similar to the forces from the
fields in accelerating cavities of storage rings compensating the radiation losses of charged
particles.

The peculiar features of the orbital solutions classified in [43] (the solutions with the
sign of Jtotal opposite to the sign of Jparticles, the sideway positions of the center of mass of
particles) are easily reproducible in the theory with RFs. The variety of solutions in the
new theory is, in fact, wider, than in the older models, and contains strange attractors
and capturing solutions.

The reduced description of the mediating field and the forces, considered in this paper,
are the simplest ones. One may take into account some excitations of the mediating field,
adding to 10 values U describing the state of RF, other functionals of the trajectories
and making the forces to depend on these functionals. The freedom here is very large.
However, these additional functionals, if classified according some ”mean retardation” of
the parts of the trajectories used in the functionals, will lie between the echo forces, or the
principle forces, which depend on the least retarded points of the trajectories, compatible
with causality, and the decay forces, which depend on functionals U dependent on old
parts of the trajectories up to −∞. So, the combination of forces FE, F P , FD interpolates
in some sense the whole range of differently retarded forces.

This work was supported in part by the Russian Fond of Fundamental Research (grant
No 95-01-647).
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Fig. 1. The circular solution (J = 4.335).

Fig. 2. The nonperiodic solution (J = −7.5).

Fig. 3. The precessing solution (J = −4).
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Fig. 4. The solution with zero precessing (J = −3.513).

Fig. 5. The process of capturing (J = 4.335).
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