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Abstract

Alekseev A.I. QCD Running Coupling: Freezing Versus Enhancement in the Infrared Region:
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We discuss whether or not ”freezing” of the QCD running coupling constant in the infrared
region is consistent with the Schwinger – Dyson (SD) equations. Since the consistency of the

”freezing” was not found, the conclusion is made that the ”analytization” method does not catch
an essential part of nonperturbative contributions. Proceeding from the results on consistency

of the infrared enhanced behaviour of the gluon propagator with SD equations, the running cou-
pling constant is modified taking into account the minimality principle for the nonperturbative

contributions in the ultraviolet region and convergence condition for the gluon condensate. It is
shown that the requirements of asymptotic freedom, analyticity, confinement and the value of

the gluon condensate are compatible in the framework of our approach. Possibilities to find an
agreement of the enhanced behaviour of the running coupling constant with integral estimations
in the infrared region are also discussed.
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oBSUVDAETSQ WOPROS O SOGLASOWANNOSTI GIPOTEZY ”ZAMORAVIWANIQ” BEGU]EJ KONSTANTY

SWQZI khd W INFRAKRASNOJ OBLASTI S URAWNENIEM –WINGERA-dAJSONA (–d) DLQ GL@ONNOGO

PROPAGATORA. pOSKOLXKU SOGLASOWANNOSTX ”ZAMORAVIWANIQ” NE OBNARUVENA, SDELAN WYWOD

O TOM, ˆTO METOD ”ANALITIZACII” NE UHWATYWAET SU]ESTWENNU@ ˆASTX NEPERTURBATIWNYH

WKLADOW. wYRAVENIE DLQ BEGU]EJ KONSTANTY SWQZI khd MODIFICIROWANO S UˆETOM SO-

GLASOWANNOSTI USILENIQ INFRAKRASNOGO POWEDENIQ GL@ONNOGO PROPAGATORA S URAWNENIEM

–d, PRINCIPA MINIMALXNOSTI NEPERTURBATIWNYH WKLADOW W ULXTRAFIOLETOWOJ OBLASTI I

USLOWIQ KONEˆNOSTI GL@ONNOGO KONDENSATA. w RAMKAH RASSMATRIWAEMOGO PODHODA UDAETSQ

SOGLASOWATX TREBOWANIQ ASIMPTOTIˆESKOJ SWOBODY, ANALITIˆNOSTI, KONFAJNMENTA I OCENKI

WELIˆINY GL@ONNOGO KONDENSATA. oBSUVDA@TSQ TAKVE WOZMOVNOSTI SOGLASOWANIQ INFRA-
KRASNOGO USILENIQ BEGU]EJ KONSTANTY SWQZI S INTEGRALXNYMI OCENKAMI W INFRAKRASNOJ

OBLASTI.
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The phenomenon of asymptotic freedom [1] called forth an impressive success of per-
turbative QCD in the description of experimental data plethora. However, there is wide
scope of phenomena which is intractable in the framework of perturbation theory. Nonper-
turbative effects modify the infrared behaviour of the quark and gluon Green‘s functions.
With q2 decreas the renormalization group improved one-loop running coupling constant

ᾱs(q
2) =

4π

b0 ln(q2/Λ2)
. (1)

(b0 = 11C2/3 − 2Nf/3) increases, which may indicate a tendency of unlimited growth of
the interaction at large distances, leading to a confinement of coloured objects. However,
at q2 = Λ2 in (1) the pole is present, which is nonphysical, at least, due to the fail of the
perturbation theory, and the account of nonperturbative effects becomes obligatory.

In recent papers [2] the solution of the problem of a ghost pole was proposed with the
condition of analyticity in q2 being imposed. The idea of ”forced analyticity” goes back
to [3,4] of the late 50s. They were dedicated to the problem of Landau-Pomeranchuk
pole [5] in QED. Using for ᾱs(q

2) a spectral representation without subtractions, the
following expression for the running coupling constant was obtained in [2]

ᾱ(1)s (q2) =
4π

b0

[
1

ln(q2/Λ2)
+

Λ2

Λ2 − q2

]
. (2)

This expression is analytic in the infrared region due to nonperturbative contributions
and it has a finite limit at zero (although the derivative is infinite).

Nowadays a possibility of ”freezing” the coupling constant at low energies is under
discussion [6] in the framework of some scheme of approximate calculations ((161

2
−Nf )

- expansion). In the approach [7] with confining background field, ”freezing” was also
obtained,

ᾱs(q
2) =

4π

b0 ln((m2B + q2)/Λ2)
. (3)

Here mB is a process-dependent constant of the order of 1 GeV.
In the present paper we follow the approach of Refs. [8,9]. We discuss the problem

of consistency of the constant behaviour of the running coupling constant in the infrared
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region with Schwinger-Dyson (SD) equation for a gluon propagator. Further we include
into consideration additional nonperturbative terms, in particular, the singular in the
infrared region term ∼ 1/q2, the necessity of renormalization invariance being taken into
account. Then we consider possibilities to fulfill the demands of confinement, asymptotic
freedom, analyticity, correspondence with estimates of the gluon condensate and integral
estimates for ᾱs(q

2) in the infrared region.
Let us consider the integral SD equation for the gluon propagator in ghost-free axial

gauge [10] Aaµηµ = 0, ηµ — gauge vector, η2 �= 0. In this gauge the running coupling
constant is directly connected with the gluon propagator and Slavnov-Taylor identities
[11] have the simplest form. An important preference of the axial gauge consists in a
possibility to exclude the term from the SD equation, which contains a full four-gluon
vertex, by means of contraction of the equation with tensor ηµην/η

2. We work in the
Euclidean momentum space, where smallness of the momentum squared means smallness
of all its components. For the gluon propagator Dµν(p), we suppose the approximation
Dµν(p) = Z(p2)D(0)µν(p) to be appropriate for studying the infrared region. D(0)µν(p)
is a free gluon propagator. In the first paper of Ref. [9] the possibility of the infrared
behaviour for renormalized function ZR(p

2) = Z(p2)/Z(µ2) being of the form

ZR(x) = ZR(0) + o(1), x→ +0, (4)

has been studied (ZR(0) is nonzero constant) in the framework of nonperturbative ap-
proach of Baker - Ball - Zachariasen (BBZ) [12]. The approximations of the BBZ approach
as well as the condition y = 0 imposed on gauge parameter y = (pη)2/p2η2 seems to be
adequate to studying the possibility of the infrared behaviour which is not too singular.
With the assumption (4) the equation for function ZR(p

2) takes the form

Z−1R (p2) = 1 + ZR(0)
g2C2

16π2
11

3
ln p2 + o(ln p2), p2 → 0. (5)

We see, that the behaviour ZR(p
2) � Z(0) �= 0 for p2 → 0 does not agree with the SD

equation.
This conclusion encourages us to look for the possibilities different from the assumption

on the finiteness of the coupling constant at zero. Recently a possibility of the soft singular
power infrared behaviour of the gluon propagator has been discussed [13], D(q) ∼ (q2)−β ,
q2 → 0, where β is a small positive non-integer number. In Ref. [14] the consistency of
such behaviour with the same equation was studied. A characteristic equation for the
exponent β was obtained and this equation was shown to have no solutions in the region
0 < β < 1. The authors of Ref. [15] also came to the conclusion on the inconsistency
of the soft singular infrared behaviour of the gluon propagator. The case of possible
interference of power terms was studied in Ref. [16] and it was shown that in a rather wide
interval −1 < β < 3 of the non-integer values of the exponent the characteristic equation
had no solutions 1. At present a more singular, in comparison with free case, infrared
behaviour of the form D(q) � M2/(q2)2, q2 → 0 seems to be most justified [17,12,18].

1Note that this interval contains values −1 < β < 0 for which the propagator vanishes at zero.
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The models based on this assumption are widespread and rather attractive. In this way
it is possible to describe the dynamical chiral symmetry breaking, to solve the U(1)
problem, to evaluate the topological susceptibility [19,20], to calculate the condensates of
gluon and quark fields [21], etc. The physical consequences of such enhancement of zero
modes are discussed in reviews [22,23]. Bearing in mind the remarks stated above, let us
turn to the problem of nonperturbative contributions. The ”analytized” expression (2)
without nonphysical singularity will be a starting point of our further consideration. We
see that this expression has a nonperturbative tail with the behaviour 1/q2 at q2 → 0. To
answer the question if this behaviour is admissible, let us consider the important physical
quantity, namely, the gluon condensate K = < vac | αs/π : Gaµν G

a
µν :| vac > . According

to the definition (see e.g., [22]) up to the quadratic approximation in the gluon fields, one
has after the Wick rotation

K = −
δaa

π

∫
d4k

(2π)4
(δµνk

2 − kµkν)D
(0)
µν (k)

g2

2π
(Z(k)− Zpert(k)) =

=
48

π

∫
d4k

(2π)4

(
ᾱs(k

2) − ᾱperts (k2)
)
=

3

π3

∫ ∞
0

ᾱnps (y) ydy , (6)

where ᾱnps is a nonperturbative part of the running coupling constant. The one-loop
”analytized” behaviour of Eq. (2) leads to the quadratic divergence in Eq. (6) at infinity
and this is true for two- and three-loop expressions [2] of the analytization approach.
Note that at large q2, ”freezed” behaviour (3) and known enhanced in the infrared region
Richardson’s running coupling constant [24] (coinciding formally with (3) at mB = Λ)
do not ensure the convergence of the integral (6) at infinity. According to the results
of Refs. [17,12,18] let us add in Eq. (2) the isolated infrared singular term of the form
1/q2. This term is harmless at zero and it can improve the behaviour of the integrand at
infinity and make the integral logarithmically divergent. To make integral (6) convergent
at infinity, it is sufficient to add one more isolated singular term of a pole type with
parameters chosen appropriately. In this sense the model we come to is minimal. The
expression, we obtain for the running coupling constant, is the following:

ᾱs(q
2) =

4π

b0

(
1

ln(q2/Λ2)
+

Λ2

Λ2 − q2
+

cΛ2

q2
+

(1− c)Λ2

q2 +m2g

)
, (7)

with mass parameter mg,
m2g = Λ2/(c− 1). (8)

It is worth noting that an account of nonperturbative contributions in Eq. (7) preserves
a perturbative time-like cut of Eq. (2). With the given value of the QCD scale parameter
Λ, the parameter c can be fixed by the string tension κ or the Regge slope α′ = 1/(2πκ)
assuming the linear confinement V (r) � κr = a2r at r → ∞. We define the potential
V (r) of static qq̄ interaction [25,26] by means of three-dimensional Fourier transform of
ᾱs('q

2)/'q2 with the contributions of only one dressed gluon exchange taken into account.
This gives the following relation

cΛ2 = (3b0/8π)a
2 = (b0/16π

2)g2M2. (9)
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Taking a � 0.42GeV , one obtains c = Λ21/Λ
2 where Λ21 = 3b0κ/8π � 0.434GeV (b0 = 9

in the case of 3 light flavours). From Eq. (8) one obtains

mg =
Λ2√

27
8π
a2 − Λ2

, (10)

and the tachion absence condition limits the parameter Λ, Λ < 434MeV . With Eq. (9)
taken into account, the parameters in Eq. (7) are only Λ and b0. For SUc(3) colour group
(C2 = 3), Nf = 3 and Λ = 300 MeV, the behaviour of running coupling constant is
represented in Fig. 1 for the cases under discussion.

Fig. 1. Momentum behaviour of the running coupling constant. Continuous curve corresponds

to our Eq. (7); the curve (a) is one-loop Eq. (1); the curve (b) shows ”analytized”
Eq. (2); the curve (c) is ”freezed” behaviour Eq. (3) where m is taken 1 GeV; the

curve (d) corresponds to Richardson parameterization for the running coupling constant
(Eq. (3) with mB = Λ). Here Λ = 300 MeV, b0 = 9.

It should be noted that at sufficiently large q the curves in Fig. 1 seem to be indistin-
guishable, but the presence of amplifying multipler y in Eq. (6) allows one to distinguish
the ultraviolet behaviour of the nonperturbative contributions.

Let us represent expression (7) in explicitly renormalization invariant form. It can be
done without solving the differential renormalization group equations. In this order we
write ᾱs(q

2) = ḡ2(q2/µ2, g2)/4π and use the normalization condition ḡ2(1, g2) = g2. Then
we obtain the equation for the wanted dependence of the parameter Λ2 on g2 and µ2:

g2/4π =
4π

b0

[
1

ln(µ2/Λ2)
+

Λ2

Λ2 − µ2
+ c

Λ2

µ2
+
(1− c)Λ2

µ2 +m2g

]
.
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From dimensional reasons Λ2 = µ2exp{−ϕ(x)}, where x = b0g
2/16π2 = b0αs/4π, and for

function ϕ(x) we obtain the equation:

x =
1

ϕ(x)
+

1

1− eϕ(x)
+ ce−ϕ(x) −

(c− 1)2

(c− 1)eϕ(x) + 1
.

The solution of this equation at c > 1 is function ϕ(x), which has the behaviour ϕ(x) �
1/x at x → 0 and ϕ(x) � − ln(x/c) at x → +∞. The relation obtained ensures the
renormalization invariance of ᾱs(q

2). At low g2, we obtain Λ2 = µ2 exp{−4π/(b0αs)},
which indicates the essentially nonperturbative character of three last terms in Eq. (7)
and these terms are absent in the usual perturbation theory.

The acceptance of the cancellation mechanism for the nonphysical perturbation the-
ory singularity in Eq. (1) by the nonperturbative contributions leads to the necessity of
supplementary definition of integral (6) near point k2 = Λ2. This problem can be refor-
mulated as a problem of dividing perturbative and nonperturbative contributions in ᾱs
resulting in the introduction of some parameter k0 ≈ 1 GeV. This provides the absence
of the pole at k2 = Λ2 in both perturbative and nonperturbative parts 2. Nonperturbative
contributions in Eq. (7) decrease at infinity as 1/q6, the integral in Eq. (6) converges and
we can obtain

K(Λ, k0) =
4

3π2

{
Λ4 ln

[(
Λ21
Λ2
− 1

)(
k20
Λ2
− 1

)]
+ k20Λ

2

}
. (11)

Phenomenology gives the positive value of the gluon condensate K in the interval
(0.32GeV )4 — (0.38GeV )4 [28,29]. If one takes the value of gluon condensate K1/4 =
0.33GeV and consider formula (11) as equation for Λ at different values of k0, the picture
will be the following. At k0 < k̄0 = 0.777GeV there are no solutions in the interval
Λ = 0.1GeV −0.434GeV . At k0 = k̄0 there is a single solution Λ = 375MeV correspond-
ing to mg = m̄g � 0.6GeV . At k0 > k̄0 for Λ two solutions appear to whom two values
mg correspond, one of them increases with the increase of k0 and other decreases with
increase of k0. This situation is illustrated in Fig. 2 where we used Eq. (10) to connect
the parameters Λ and mg.

It is seen from Eq. (7) that the pole singularities are situated at two points q2 = 0 and
q2 = −m2g. It corresponds to the two effective gluon masses, 0 and mg. Therefore, the
physical meaning of the parameter mg is not the constituent gluon mass, but rather the
mass of the exited state of the gluon.

2See also Ref. [27] where the problem of perturbative and nonperturbative contributions to ᾱs is
discussed and the definition of infrared finite regularized perturbative part of ᾱs is suggested.
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Fig. 2. The dynamical gluon mass mg corresponding to the nonperturbative scale k0 for fixed
value of the gluon condensate K1/4 = 0.33 GeV.

In a number of cases of the QCD calculations it is necessary to estimate integrals of
the form

F (q2) =

q2∫
0

ᾱs(k
2)f(k2)dk, (12)

where f(k2) is some smooth function and integration includes the infrared region where
the usual perturbation theory is inapplicable. In this cases the infrared matching scale
µI can be introduced (Λ << µI << q) and the contribution to integral (12) from the
region k > µI can be calculated perturbatively. To estimate the contribution of the
region k < µI in Ref. [30] the running coupling constant is assumed to be regular at
zero and power terms are extracted using dimensional arguments. In this connection the
nonperturbative parameters αp are introduced,

αp(µI) =
p + 1

µp+1I

µI∫
0

dkᾱs(k)k
p, (13)

which should be found from experiment. In the approach connected with infrared renor-
malons [31], the analogous ambiguity arises when evaluating integral (12). This ambiguity
can be understood in the following way. Expanding ᾱs(k

2) in the series of powers of ᾱs(q
2)

and integrating in k2 one obtains an asymptotic series with terms growing as factorial
which can be estimated by the finite number of terms up to power corrections. The char-
acteristic integral Ā(µ) ≡ α0(µ)/π (zero moment) has been estimated [30,32] with the
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result α0(2GeV )/π = 0.18 ± 0.02. This integral turned out to be not only stable with
respect to the choice of the infrared regularization (fit-invariance) but also relative to
different approximations of the high energy tail of the running coupling (number of active
quarks, one- or two-loop approximation). It is shown in Refs. [2] that the behaviour (2)
complies with integral estimations of Refs. [30,32]. Let us see whether the behaviour (7)
is compatible with these estimations. In this case we also encounter the problem of def-
inition in expressions of form (12) and the necessity to fix the corresponding ambiguity.
The following method seems to be highly convenient and universal,

1

(k2)m
=⇒ lim

ε′→0

d

dε′
ε′

(k2)m

(
µ2

k2

)ε′
. (14)

The finite arbitrariness described by the constant µ2 arises only if we integrate the log-
arithmic singularities (which are usually connected with physics). In the case of local
integrability (n > 2m, here n is the dimension of integration space) the rule (14) runs
idle and at n < 2m it corresponds [33] to analytic continuation in m. In accordance with
the rule (14), the contribution of the singular term of Eq. (7) to the moments (13) is the
following:

∆singαp(µI) =
p + 1

p− 1

3a2

2µ2I
, p �= 1, ∆singα1(µI) = −

3a2

2µ2I
ln

µ2

µ2I
. (15)

Thus, at p ≤ 1 the singular term of Eq. (7) should be considered as a distribution and
fit-invariance of the lowest moment ᾱ0(µI) for different variants of infrared behaviour can
probably indicate the absence of ”freezing” the running coupling constant and universality
of ambiguity fixing. In favour of ”freezing” the coupling could indicate the equality of
moments αp(µI) for different p. For contribution of the last two terms of Eq. (7) to zero
moment one obtains:

∆α0(µI)/π = −
4

9

cΛ2

µ2I
−

4

9

Λ

µI
(c− 1)3/2arctg(

µI
Λ

√
c− 1). (16)

Taking a � 0.42GeV , µI = 2GeV one finds rather small contribution of the singular
term, ∆singα0(µI)/π = −(3a2)/(2πµ2I) � −0.021. At Λ→ Λ1 the second term of Eq. (16)
vanishes as −(16/9)(Λ1 − Λ)2/Λ21 and it can be made small by a corresponding choice of
Λ. For example, at Λ = 0.375GeV (in this case c = 1.3476) this term equals −0.0216.
Having in mind the results of Refs. [2] where the contribution of the first two terms of
Eq. (7) has been evaluated, we conclude that the running coupling constant Eq. (7) can
be consistent with integral estimations in the infrared region. Note, that if we compare
Eq. (5) and Eq. (12) of the second of Ref. [2], we find that ”analytization” procedure in
two-loop case leads, at large momentum, to the half nonperturbative contribution of one-
loop case. It can point to the tendency of minimization of nonperturbative contributions
in the ultraviolet region.

I would like to thank B.A. Arbuzov and V.E. Rochev for interesting discussions. This
work is supported by the Russian Foundation for Basic Research Grant 95-02-03704.
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