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Abstract
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A path integral with respect to the measure, generated by the stochastic process, is used to

describe the particle motion on a compact Riemannian manifold, on which a free effective and
isometric action of a compact semi-simple Lie group is given.

By choosing with the Bogolubov coordinate transformationmethod the coordinates, adapted
to the principal fibre structure, the transformation of the path integral is performed. The

separation of variables in the obtained path integral is realized with the help of the nonlinear
filtering equation from the stochastic process theory.

After factorizing the path integral measure, we get the integral relation between the path
integral given on the total space of the principal fiber bundle and the path integral on the base
space of this bundle — the orbit space of the group action.
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1. Introduction

Late in the 70s, a new kind of path integral transformation was proposed by
L.D.Faddeev and V.N.Popov [1] to study the gauge theory quantization. With this trans-
formation the relation between the path integrals defined over the orbit space of the gauge
group and the path integrals over the whole space of the gauge potentials was established.

Since then and up to the present investigations have been carried out to reach a
rigorous foundation of such kind of path integral transformations. We mention only
recent papers from this field [2].

The path integral transformation from [1] was proposed for the path integrals of the
quantum field theories. But in order to clarify all the difficulties of this transformation,
it is useful (or necessary) to consider a similar transformation of the quantum mechanical
path integrals. By this reason, many investigations has been also carried out in this field
of path integration [3].

Of finite-dimensional mechanical systems there is one which has many properties that
can be found in gauge theories. This is a mechanical system describing the particle motion
on a manifold with the action of a group given. In the present paper we will investigate
the transformation of path integrals related to this dynamical system. We will consider
the case of a smooth compact Riemannian manifold (without the boundary) with a free,
effective, isometric action of a semi-simple compact Lie group.

The considered system has an important property: Due to the symmetry it can be
reduced to some classical mechanical system defined on the orbit space of the group ac-
tion. In a quantum case, there is the relationship between original and reduced system
too. When the system is quantized with the path integral method this relationship is
expressed by some connection between the path integrals. We will investigate this con-
nection between the Wiener-like path integrals. By the Wiener path integrals we mean
the path integrals in which the integrations are performed over the measures that are
generated by stochastic processes. The processes will be defined by the solution of the
stochastic differential equations that are also given on the manifold. To determine the
stochastic processes and the stochastic differential equation, we will follow the papers by
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Beloplskaya and Dalecky [4]. It allows us to use mainly a local approach (provided that an
additional analytical restrictions have been imposed) in the investigation of path integral
transformations.

An introduction of “separated” coordinates is an important point in path integral
transformations. It is well-known [5] that in the system under consideration the original
manifold can be regarded as the total space of the principal fibre bundle over the orbit
space. There are several ways to introduce the local coordinates that are adapted to a
fibre bundle structure. These coordinates separate into the invariant coordinates – the
coordinates on the base of the fibre bundle (on the orbit space) and on variable coordinates
– the fiber coordinates.

In this paper we will use the Bogolubov coordinate transformation method [7] by which
the invariant coordinates are defined. In this method it is supposed that an arbitrary gauge
surface is given.

In our previous paper [8], where we investigated the reduction problem in path inte-
grals for a scalar particle on a manifold with a group action, we found a way of separating
invariant and variable coordinates in path integrals. It was shown there, that the sepa-
ration problem was reduced to the solution of the nonlinear filtering equation, provided
that the path integral is defined as an integral over the measure generated by a stochas-
tic diffusion process. Due to the symmetry of the problem, this complicated nonlinear
equation becomes a linear matrix equation.

The present paper continues the investigation begun in [8]. The contents of the paper
is as follows:

In Section 1 the main definitions are given. Section 2 presents a way of introducing
the local coordinates by means of the Bogolubov coordinate transformation method. In
this section the transformation of the initial Riemannian metric due to the introduction
of the coordinates adapted to the principal fibre bundle structure is under discussion.

Section 3 considers the path integral transformation originating from the replacement
of the initial coordinates by fiber coordinates. This transformation is derived by using
the transformation of the local stochastic differential equations representing the measure
generated stochastic process on a manifold.

In Section 4 further transformation of a path integral is made. It relates an initial
path integral to a path integral over the invariant variables.

In Appendix we present arguments that are used in [4] to define a stochastic process
on a manifold.

2. Definition

We consider a particle movement on a smooth compact Riemannian manifold P (with-
out boundary) on which a smooth isometric action of a semi-simple compact Lie group G
is given.

We will assume that the action of a group G is effective, i.e. the homomorphism from
G to the group of the transformation of a manifold P is an isomorphism, and free, i.e. for
every g ∈ G there is some point p0 ∈ P and element a ∈ G such that p = p0a.
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With the particle movement we relate the backward Kolmogorov equation
(

∂

∂ta
+
1

2
µ2κ�P(pa) +

1

µ2κm
V (pa)

)
ψtb(pa, ta) = 0,

ψtb(pb, tb) = φ0(pb), (tb > ta),
(1)

where µ2 = ~

m
, κ is a real positive parameter, the potential V (p) is invariant under the

action of the group G: V (pg) = V (p), �P(pa) is the Laplace–Beltrami operator on a
manifold P . In local coordinates Q = ϕ(p) given by the chart (U, ϕ) it has the following
form

�P(Q) = G−1/2(Q)
∂

∂QA
GAB(Q)G1/2(Q)

∂

∂QB
, (2)

where GAB(Q) are the components of the matrix which is inverse to the matrix GAB of
the components of the initial Riemannian metric given in the coordinate basis { ∂

∂QA
},

G = det(GAB). In formula (2), as in the sequel, we assume that there is sum over
the repeated indices. The indices denoted by the capital letters ranged from 1 to nP
(nP = dimP).

Provided that the coefficients and the initial function of eq.(1) are properly bounded
and satisfy the necessary smooth requirement, the solution of eq.(1), as it follows from
[4], can be presented in the following form

ψtb(pa, ta) = E
[
φ0(η(tb)) exp{

1

µ2κm

∫ tb

ta
V (η(u))du}

]
=

∫
Ω−

dµη(ω)φ0(η(tb)) exp{. . .}, (3)

where η(t) is a stochastic process on a manifold P , µη is the generated by this process
measure in the path space Ω− = {ω(t) : ω(ta) = 0, η(t) = pa + ω(t)}.

In Appendix we will present the main ideas of [4] concerning the definition of the
stochastic process on a manifold. The basic elements of the approach are local stochastic
processes given by the solution of the Stratonovich-like equations on charts of the atlas
of a manifold. “Gluing” these local processes into a global stochastic process is made
by a special method that are valid in a case of the manifold having a uniform atlas (see
Appendix).

Neglecting the global effects (they could originate because of the nontrivial topology of
the manifold), it is possible in many cases to predict the behavior of the global stochastic
process by studying its local representatives. It takes place due to the fact that it is the
local representatives of a global stochastic process that determine a character of such a
behavior.

The local components ηA(t) of the stochastic process η(t) of eqs.(3) are defined by the
map ϕ of the chart (U, ϕ) in accordance with the equality: ϕ(η) = ηϕ(t) ≡ {ηA(t)}. They
are satisfied by the following stochastic differential equation:

dηA(t) = µ2κG−1/2
∂

∂QB
(G1/2GAB)dt+ µ

√
κXA

M̄(η(t))dwM̄(t), (4)
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where XA
M̄ is defined locally by

∑nP
K̄=1 XA

K̄XB
K̄ = GAB . Here and what follows by the barred

indices we denote the Euclidean indices.
Notice that eq.(4) coincides with equation (42) of the Application, i.e. it is a

Stratonovich-like equation.
From the general theory developed in [4] it follows that eq.(3) determines a semigroup

in the space of a smooth and bounded function on a manifold P . We assume that in
our case there exists the fundamental solution GP(pb, tb; pa, ta) of eq.(1). Then, we can
present the semigroup as follows:

ψtb(pa, ta) =
∫

GP(pb, tb; pa, ta)φ0(pb)dvP(pb), (5)

where dvP(p) is the volume element on the manifold P .
In the path integral for GP , the integration is carried out over the space of a such paths

on a manifold that have the fixed values at times t = ta and t = tb. The representation
for GP can be derived from (3) by substituting the delta-function for φ0.

Symbolical formula (5) has a definite meaning if there is a some partition of unity
µi(p),

∑
i µ(p) = 1, subordinate to a locally finite covering Ui of P : P =

⋃
i Ui. In that

case formula (5) can be rewritten to give a representation of the semigroup, which acts
on the functions defined in the corresponding domains of RnP :

ψia(Qa, ta) =
∑
ib

∫
ϕib (Uib )

µ̃ib(Qb)GP(ib, Qb, tb; ia, Qa, ta)φ0ib(Qb)dvP(Qb) (6)

(ψia = ψ ◦ ϕ−1ia , φ0ib = φ0 ◦ ϕ−1ib , Q b
a
= ϕi b

a

(p b
a
) and dvP(Q) =

√
G(Q)dQ1...dQnP .

3. The principal bundle coordinates

In this section we consider the geometrical aspect of our problem. In our problem we
have a smooth isometric effective and free action of a compact semi-simple Lie group G
on a smooth compact manifold P . This action maps the point p into the point p̃ = pg.
(We consider the right action of a group G.) If in some chart the coordinates of the point
p are {QA}, then the action of the group G in this chart is given by the functions FA:
Q̃A = FA(QB, gα), α = 1, . . . , nG, These functions have the well known properties, and
we only recall here the one concerning the right multiplication of the group. Namely, for
(pg1)g2 = p(g1g2):

FA(F (Q, g1), g2) = FA(Q,Φ(g1, g2)),

where the function Φ is the group function which determines the multiplication law in
the parameter space of the group.

An isometric action of the group G on P generates the vector fields Kα – the Killing
vector fields. In coordinates {QA}, they can be written as follows: KA

α = KA
α (Q)

∂
∂QA

,

KA
α (Q) ≡ ∂FA(Q,a)

∂aα
|a=e.

4



In our case these vector fields form a Lie algebra, which is isomorphic to the Lie algebra
of a group G:

[KA
α , KA

β ] = cγαβK
A
γ ,

where cγαβ are the structure constants of a Lie algebra.
It is well known ( see e.g. [5]) that if the action of a compact Lie group is free and

effective, then the orbit space, denoted usually as P/G =M, is also a smooth manifold.
The natural projection π : P → P/G, which put in correspondence the orbit pG of a
group G to every point p, determines the principal fibre bundle P (M,G).

Our main interest is the relationship between the movement on P and on M. To
consider this relation in detail, we, first of all, should introduce the corresponding coor-
dinates. Since we deal with the principal fibre bundle, this implies that our manifold P
can be locally presented as π−1(Ux) ∼ Ux × G, where Ux is a neighborhood of a point
x = π(p) belonging to a chart (Ux, ϕx) of the fibre bundle. It means that we should find
local coordinates (xi, aα), i = 1, . . . , nM, nM = dimM, for each point p of the manifold
P . In finding such coordinates we should provide a one-to-one correspondence between
the coordinates QA of a point p regarded as a point of the manifold P and the fiber
coordinate (xi, aα) of this point. In addition to this requirement, we should have the
compatibility condition of local coordinates on the overlapping of charts. In order words,
we must construct the coordinate homeomorphisms of the principal bundle P (M,G).

It is clear, that there are several ways of introducing the bundle coordinates. As the
local invariant bundle coordinates (the coordinates xi) it is possible, for example, to take
a complete set of invariants, obtained as a result of the action of a group G on P . The
existence of these coordinates follows from the fact that the principal fibre bundle P (M,G)
can be locally regarded as a foliation of P formed by the vector fields on P . These vector
fields are the images of elements of a Lie algebra of a group G. After completing these
invariant coordinates to the full set, we get the necessary coordinates on a principal fibre
bundle. We followed this way in our previous paper [8].

Here, we take another way, which has its origin in the Bogolubov coordinate trans-
formation method. The method was applied by N.N.Bogolubov in the polaron problem
to separate the translation invariant motion of a system considered as a whole and an
internal motion of a system. Later, this method was generalized to include the systems
that are invariant under an arbitrary Lie group [6]. Final generalization was given in [7],
where, in addition, the geometrical content of the Bogolubov transformation method was
revealed.

Here, we recall the main points of this method referring to [7] for details. In this
method it is supposed that in each sufficiently small neighborhood of an arbitrary point
p, there is the set of functions {χα(Q), α = 1, . . . , nG} determining the submanifold.
Given by the equation χα(Q) = 0 this submanifold, which we will also call as a surface,
has a unique and transversal intersection with each orbit, i.e. TP = TM+ T{χα = 0}.

Along with ordinary smoothness requirements posed on functions χα(Q), they must
satisfy an additional requirement that follows from the transversality condition: The
matrix (ΦΠ)

α
β ( Faddeev–Popov matrix)
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(ΦΠ)
α
β(Q) = KA

β

∂χα

∂QA

should be invertible.
The coordinate homeomorphisms are defined by the following steps: Firstly, provided

that the coordinates QA of a point p are given, from the equation

χα(FA(Q, g−1)) = 0

one searches for the group element gα(Q). This group element “connects” the point
p having the coordinates QA, to that point, which belongs to the intersection of the
submanifold {χα(Q) = 0} with the orbit pG.

In order to define the invariant coordinates xi(Q), the parametric form representation
of the submanifold {χα(Q) = 0} is used. The points of this submanifold are given by the
equation QA = Q∗A(xi), where xi are the surface coordinates and {χα(Q∗(xi)) = 0}.

Then, by the invariant coordinates xi(Q) one should take the coordinates xi of that
point of the surface QA = Q∗A(xi) which results from the action of the element g−1 on
the initial point p. These invariant coordinates are defined by the following equation:

Q∗A(xi) = FA(Q, g−1).

Thus, for an arbitrary point p with the coordinates QA, we have introduced new
coordinates (xi(Q), gα(Q)). The coordinates xi(Q) define the orbit pG passing through
the point p and the coordinates gα(Q) tell us where on this orbit the point p is placed,
provided that the surface {χα = 0} is used as referrence surface.

In order words, if p̃ = pa and p̃ = {Q̃A}, then xi(Q) = xi(Q̃) and gα(Q̃) = gα(Q)a.
These conditions provide the compatibility of the local coordinates in the intersections of
charts of the principal fibre bundle.

This and the bijection between QA and (xi, gα) allows us to say that we have con-
structed the coordinate homeomorhisms of the principal fibre bundle P (M,G). By our
initial assumption we only deal with the smooth functions. So, we suppose that the
constructed coordinate homeomorhisms are diffeomorphisms.

Changing the coordinates QA for (xi, aα), QA = FA(Q∗(xi), aα), leads to the following
components of the Riemannian metric GAB in the basis { ∂

∂xi
, ∂
∂aα
}:

Gij(x, a) = FA
B (Q

∗(x), a)Q∗Bi (x)GAC(F (Q
∗(x), a))FC

D (Q
∗(x), a)Q∗Dj (x),

Giβ(x, a) = FA
B (Q

∗(x), a)Q∗Bi (x)GAC(F (Q
∗(x), a))FC

β (Q
∗(x), a),

Gαβ(x, a) = FA
α (Q

∗(x), a)GAB(F (Q
∗(x), a))FB

β (Q
∗(x), a).

Here we have introduced the notations FA
B (Q, a) ≡ ∂FA

∂QB
(Q, a), FA

α (Q, a) ≡ ∂FA

∂aα
(Q, a),

Q∗Bi (x) ≡ ∂Q∗B

∂xi
.
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Because of the isometric action of the group G on the manifold P , the previous ex-
pressions for metric components can be rewritten as follows:

Gij(x, a) = Q∗Ai (x)GAB(Q
∗(x))Q∗Bj (x) = Gij(x, e),

Giβ(x, a) = Q∗Ai (x)GAB(Q
∗(x))KB

δ (Q
∗(x))ūδ

β(a) = Giδ(x, e)ū
δ
β(a),

Gαβ(x, a) = ūγ
α(a)K

A
γ (Q

∗(x))GAB(Q
∗(x))KB

δ (Q
∗(x))ūδ

β(a) =

= ūγ
α(a)Gγδ(x, e)ū

δ
β(a). (7)

In (7) ūα
β is an inverse matrix to the matrix v̄αβ (a) =

∂Φα(b,a)
∂bβ

∣∣∣
b=e

(Φ is a group function

which defines the group multiplication in the space of group parameters).
In deriving (7) the equality

FA
α (Q, g) = ūβ

α(g)F
A
B (Q, g)KB

β (Q)

was used.
In the considered problem there are enough data for determining the metric on the

orbit space M = P/G. In these, a significant role is played by the Killing vectors Kα

which we have introduced earlier. By using the projectors ΠA
B = δAB−KA

α dαβKβB (dαβ is a
metric which is inverse to the metric dαβ = KA

αGABKB
β defined along the orbit), we split

the initial metric GAB into the horizontal metric GH
AB = ΠC

AGCDΠ
D
B and the vertical one:

GAB = GH
AB +GV

AB . The components GH
AB of the horizontal metric satisfy the condition

KA
α (Q)G

H
AB(Q) = 0.

Projecting the horizontal metric GH
AB onto the surface Q∗ = Q∗(x), we obtain the

metric hij on the orbit space. In basis { ∂
∂xi
} its components are given as

hij(x) = Q∗Ai G
H
ABQ∗Bj , (8)

where Q∗Ai ≡ ∂Q∗A

∂xi
.

Usually, to introduce the metric on the orbit space of the principal fibre bundle, one
should make use of the metric of the total space and the principal fibre bundle connection.
In that case the orbit space metric hx is defined as follows

hx(v, v
′) = Gp(vH, v′H), p = π−1(x), (9)

where vH, v
′
H are the horizontal lifts of the tangent vectors v, v′ ∈ TxM.

In our problem, we also have a connection. In [9] it was called by mechanical con-
nection. The connection is determined by the Lie algebra-valued connection one-form
ω = ωα ⊗ eα given on a manifold P as

ωα(Q) = dαβ(Q)GAB(Q)K
B
β (Q)dQ

A.
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It has standard properties:

ωα(Q)

(
KA

β

∂

∂QA

)
= δαβ ,

ωα(FA(Q, g)) = ραµ(g
−1)ωµ(Q).

In this formula ραµ(a) = ūα
ν (a)v

ν
µ(a) is a matrix of an adjoint representation of a Lie

group G.
In local coordinates (xi, aα), the one-form ωα is written as

ωα(F (Q∗(x), a)) = ραν (a
−1)Aν

i (x)dx
i + uα

β(a)da
β,

where

Aν
i (x) = dνσ(Q∗(x))GEB(Q

∗(x))KB
σ (Q

∗(x))
∂Q∗E(x)

∂xi

is the projection of the connection to the base of the fibre bundle.
Calculating the metric hij by eq.(9), we get the expression which coincides with that

of eq.(8). This verifies the validity of definition of hij given by eq.(8).
Now, using the representation of hij and Aν

i (x) in terms of the components GAB , we
rewrite GAB in the following form:(

hij(x) + Aµ
i (x)A

ν
j (x)γ̄µν(x) Aµ

i (x)ū
ν
σ(a)γ̄µν(x)

Aµ
i (x)ū

ν
σ(a)γ̄µν(x) ūµ

ρ(a)ū
ν
σ(a)γ̄µν(x)

)
. (10)

By γµν(x) we denote Gµν(x, e) of eq.(7).
From eq.(10) we see that in coordinates (xi, aα), the metric GAB is a Kaluza–Klein

metric [10]. And we find that the determinant of the metric GAB is equal to

detGAB = (dethij(x)) (det γ̄αβ(x)) (det ū
µ
ρ(a))

2.

4. Point transformation of the path integral

In this section we will consider the transformation of the path integral (3) resulting
from the replacement of the coordinates QA by (xi, aα). Since it mainly concerns with
the transformation of the path integral measure, which is associated with the differential
part of eq.(1), we discard the potential term in path integral of (3). The account of this
potential term can be easily made in the final formulas by using the Girsanov theorem [4].

First we recall that in our paper the path integral of (3) is defined by the local approach.
The semigroup, determined by this path integral, acts in the space of the smooth and
bounded function on P . The semigroup is obtained as a result of going to the limit in
the superposition of the local semigroups (see eqs.(44) and (45) of Appendix):

ψtb(pa, ta) = U(tb, ta)φ0(pa) = limqŨη(ta, t1) · . . . · Ũη(tn−1, tb)φ0(pa). (11)

And each local semigroup Ũη is build by using a stochastic family of local evolution
mappings of the manifold P .

8



The advantage of this approach lies in the fact that many properties of the initial
global semigroup can be derived by analyzing the local semigroups Ũη. But as for the
local semigroups, they are completely determined by the stochastic differential equations
whose solutions – the stochastic processes – generate the corresponding path integral
measures.

Therefore, studying the transformation of the local stochastic differential equations
enable us to conclude on the transformation of the path integrals and of the semigroups
acting in the space of functions on a manifold.

Notice that in the case of the non-trivial topology of the manifolds such an approach
for changing the coordinates QA for (xi, aα) in the path integral should be corrected. But
in the paper we neglect the influence of the topology effects.

Let us consider the transformation of an arbitrary local semigroup Ũη of (11). This
semigroup is defined by the equality:

Ũη(s, t)φ(p) = Es,pφ(η(t)), s ≤ t, η(s) = p, (12)

where the stochastic process η(t) is build by the Itô fields that are localizable at the
neighborhood Vp of the point p. The mapping ϕP of the chart (Vp, ϕP) brings the process
η(t) to the corresponding neighborhood of RnP :

ϕP(η(t)) = ηϕ
P
(t) ≡ {ηA(t)}.

By this mapping it is possible to change the process of the right-hand side of eq.(12)
for the process ηϕ

P
(t). Then, we obtain

Ũη(s, t)φ(p) = Es,ϕP (p)φ((ϕ
P)−1(ηϕ

P
(t))), ηϕ

P
(s) = ϕP(p). (13)

Now we introduce other coordinates in RnP . We transform Q = ϕP(p) to (x, a):
QA = fA(xi, aα). In correspondence with this transformation, we have the tranformation
of the components ηA(t) of the stochastic process ηϕ

P
(t):

ηA(t) = FA(Q∗(xi(t)), aα(t)) ≡ fA(xi(t), aα(t)). (14)

We can regard (xi(t), aα(t)) as the components ζA(t) of the local stochastic process
ζϕ
P
(t) which is also defined in RnP . Then, eq.(14) represents the phase-space transfor-

mation of the stochastic process. From the stochastic process theory it is known that
phase-space transformation of the stochastic processes does not change both the proba-
bilities:

P (ηϕ
P
(t) ∈ B) = P (ζϕ

P

(t) ∈ f−1(B))

(B is a Borel set of B(RnP )) and the transition probabilities either. Taking this into
account, we rewrite eq.(13) as

Ũη(s, t)φ(p) = Es,ϕP (p)φ((ϕ
P )−1(ζϕ

P

(t))), (15)

where ϕP = f−1 ◦ ϕP .

9



In order words, ϕP are new coordinate homeomorphisms of the manifold P . The index
P suggests that they are attached to the principal bundle P (M,G).

At last, we can introduce a new function φ̃ = φ ◦ (ϕP )−1 and after this eq.(15) is as
follows:

Ũη(s, t)φ(p) = Es,ϕP (p)φ̃(ζ
ϕP (t)). (16)

Therefore, in eq.(11) each of the local semigroups is calculated by using the corre-
sponding semigroup which acts on functions defined on RnP .

Since we have introduced the fiber coordinates, then it is natural to expect that the
stochastic process ζϕ

P
(t) is a local representative of the global stochastic process ζ(t)

defined in the principal bundle P (M,G). If it is the case, then local processes given
in the overlapping charts must satisfy the compatibility condition: Under “the gluing”
of the charts of the fibre bundle, these local stochastic processes transform into each
other. In turn, this condition will be satisfied if the stochastic differential equations for
the processes have the similar properties. Therefore, to elucidate this question, we must
find the stochastic differential equation for the local components ζA(t) of the stochastic
process ζϕ

P
(t). To find the coefficient of such a stochastic differential equation, we make

use of the Itô differentiation formula (lemma).
Let the stochastic differential equation for ζA(t) = (xi(t), aα(t)) be given as follows:{

dxi(t) = bi(t)dt+Xi
M̄dwM̄

daα(t) = bα(t)dt+Xα
M̄dwM̄ .

(17)

An inversion of the homogeneous point canonical transformation QA = fA(xi, aα)
allows us to express the coordinates xi and aα in terms of the coordinates QA: xi =
xi(Q), aα = aα(Q). In a similar manner, from formula (14) representing the phase-space
transformation of the stochastic processes, we can derive the expressions of stochastic
processes xi = xi(η(t)), aα = aα(η(t)).

Then, to obtain the equation for the definition of the coefficients b and X of eq.(17),
we substitute the r.h.s. of the following equation

dxi(t) =
∂xi

∂QA
(η(t))dηA(t) +

1

2

∂2xi

∂QA∂QB
(η(t))GAB(η(t))dt (18)

(dηA(t) is given by eq.(4) ) for dxi in eq.(17). The same should be done to obtain the
equation for daα(t)).

The partial derivatives ∂xi

∂QA
in eq.(18) (and ∂aα

∂QA
in the corresponding equation for

daα(t)) are defined by making use of the formula QA = FA(Q∗(x), a) by which we have
introduced new coordinates on the manifold P [7]:

∂xi

∂QA
(F (Q∗(x), a)) = FB

A (F (Q
∗(x), a), a−1)GH

BC(Q
∗(x))

∂Q∗C(x)

∂xm
hmi(x),

∂aα

∂QA
(F (Q∗(x), a)) = v̄αβ (a)(Φ

−1
Π )αγ (Q

∗(x))χγ
B(Q

∗(x))FB
A (F (Q

∗(x), a), a−1),

10



where hmi(x) is an inverse metric to the metric on the orbit space, Φ−1Π is an inverse
matrix to the Faddeev-Popov matrix, χγ

B ≡ ∂χγ

∂QB
.

Notice that in the way we have used to define the coefficients b and X, the diffusion
coefficients X are determined up to an arbitrary orthogonal transformation [11]. But,
such a standard ambiguity does not interfere with the path integral transformation, since
it is always possible to get rid of it in eq.(17) by changing the Wiener process with some
orthogonal matrix: (wα)

′
= Oα

βw
β .

Remark, that the drift coefficients bA = (bi, bα) can be also derived by making use
of the transformed metric G̃AB . An initial drift coefficient of eq.(4), which is equal to
G−1/2(Q) ∂

∂QB
(G1/2(Q)GAB(Q)), is form-invariant under the “point transformation” per-

formed with the Itô formula. In new coordinates (xi, aα), the drift coefficients are given
by the same formula, but where the metric G̃AB is used instead of the metric GAB .

In the sequel, it will be desirable for us to have equation (17) withXi
ᾱ = 0. We achieve

this form of the equation with the help of the orthogonal transformation of the Wiener
process wN̄ . As we have already remarked, it will not disturb the path integral measure.
The replacement of the diffusion coefficients of eq.(17) is made as follows [12]:

Xi
k̄dw

k̄ +Xi
ᾱdw

ᾱ = X̃i
k̄dw̃

k̄,

Xα
k̄ dw

k̄ +Xα
β̄ dw

β̄ = X̃α
k̄ dw̃

k̄ + X̃α
β̄ dw̃

β̄ ,

where

X̃i
k̄ = (Xi

k̄X
j

k̄
+Xi

ᾱX
j
ᾱ)
1/2 ≡ (Xi

M̄Xj

M̄
)1/2,

X̃α
k̄ = (Xi

k̄X
α
k̄ +Xi

β̄X
α
β̄ )(X

i
M̄Xj

M̄
)−1/2,

X̃α
γ̄ =

[
(Xα

M̄Xβ

M̄
)−Xα

M̄Xi
M̄ )(Xi

M̄Xj

M̄
)−1/2(Xβ

M̄
Xj

M̄
)

]1/2
.

In these formulas the summations over the repeated indices are assumed.
Performing the transformation, we find that Xi

M̄Xj
M̄
= hij(x),

Xi
k̄X

α
k̄ +Xi

β̄X
α
β̄ = ΠB

LQ
∗L
nh

niv̄αβ (Φ
−1
Π )βνχ

ν
B

= −γ̄βνKN
ν GNMQ∗Mk hkiv̄αβ

= −Aµ
k(x)h

ki(x)v̄αβ ;

and X̃α
β̄
= [v̄αµ(a)v̄

β
ν (a)γ̄

µν(x)]1/2.

From these equalities it follows that in the transformed equation (17) we can choose
the diffusion coefficients in the following form:

X̃i
k̄(x) = (hij(x))1/2,

X̃α
k̄ (x, a) = −Aµ

n(x)v̄
α
µ(a)X̃

n
k̄ (x),

X̃α
β̄ (x, a) = v̄αµ(a)Ȳ

µ

β̄
(x)

(Ȳ µ

β̄
Ȳ ν
β̄ = γ̄µν(x)).

11



In what follows, for simplicity of the notation we will omit the tilde over X and w
assuming that the additional orthogonal transformation of the Wiener process is already
made. Taking this into account, we obtain that the equations for the local components
of the stochastic process ζϕ

P
(t) will be the following ones:

dxi(t) =
1

2
µ2κ

[
1√
hγ̄

∂

∂xn
(hni

√
hγ̄)

]
dt+ µ

√
κXi

n̄(x(t))dw
n̄(t),

daα(t) = µ2κ

[
−1
2

1√
hγ̄

∂

∂xk

(√
hγ̄hkmAν

m

)
v̄αν (a(t))

+
1

2
(γ̄λε + hijAλ

i A
ε
j)v̄

σ
λ(a(t))

∂

∂aσ
(v̄αε (a(t))

]
dt

+µ
√
κv̄αλ(a(t))Ȳ

λ
ε̄ dwε̄(t)− µ

√
κXi

n̄A
ν
i v̄

α
ν (a(t))dw

n̄(t). (19)

Thus, due to the introduction of new coordinates (xi, aα) adapted to the fibre bundle
structure, we have changed the local components ηA(t) of the stochastic process η(t) for
the local components ζA(t) = (xi(t), aα(t)) of the stochastic process ζϕ

P
(t).

Eq.(19) for ζA(t) are the coordinate representatives of the local stochastic differential
process, given on a chart of the principal fibre bundle. If two local processes on overlapping
charts are given and both of the processes are described (in the corresponding coordinates)
by the stochastic differential equations (19), then it is not difficult to check, that gluing
transformation of the charts transforms the local equations into each other. It gives the
necessary conditions for the definition of the global stochastic process in the principal
fibre bundle by the method of [4].

Solutions of the local stochastic differential equation (19) give rise to the local stochas-
tic evolution family of the mappings of the total space P of the principal fibre bundle
P (M,G). As in the case with the manifold these local families defined in charts of the
principal fibre bundle, are the main elements that can be used in building the global
stochastic evolution family of the mappings acting in P . By definition, this global family
is a global stochastic process in the principal fibre bundle.

Notice, however, since we haven’t changed our manifold P but have introduced only a
new coordinate system on it, the global process ζ(t) is the same global process η(t), that
is considered from the principal fibre bundle viewpoint.

From eq.(19) we see that the process ζ(t) has two components. The former describes
the stochastic process on a base of the fibre bundle, while the latter — on a fiber of
the principal fibre bundle (i.e., on a group G). The stochastic evolution family T (t, s) of
mappings of the total space of the principal fibre bundle has the following properties:

π ◦ T (t, τ ) = S(t, τ ) ◦ π, (20)

where S(t, τ ) is the stochastic evolution family of mappings of the fibre bundle base (i.e.,
the manifold M). The first of eqs.(19) is the equation for the local components of the
stochastic process ξ(t) related to the family S(t, s). Besides, according to eq.(20) we have
π(ζ(t)) = ξ(t).

12



As in the case with the manifold, we can present the global stochastic evolution family
of the mappings of the total space of the principal fibre bundle P in the form of the
superposition of the local evolution families. This property can be extended to the global
semigroup, defined by the process ζ(t), which acts in the corresponding function space.

In our case the global semigroup is the superposition of the local semigroups of such
a form as in eq.(16). The local semigroups are obtained as a result of the transformation
of the local semigroup associated with the process η(t).

A global semigroup in the space of the smooth and bounded functions given on the
total space of the principal fibre bundle is obtained as a result of going to the limit (under
the refinement of the partition of the time interval) in the superposition of the local
semigroups.

Concluding on the path integral transformation resulting from passing to the fibre
bundle coordinates, we can say that this transformation enables us to present path integral
(3) in the form of the limit of the local semigroups based on the process ζ(t):

ψtb(pa, ta) = limqŨζϕ
P (ta, t1) · . . . · Ũζϕ

P (tn−1, tb)φ̃0(xa, θa), (21)

where by ŨζϕP we denote the r.h.s. of eq.(16), i.e.,

Ũ
ζϕ
P (s, t)φ̃(x0, θ0) = Es,(x0,θ0)φ̃(x(t), a(t)), x(s) = x0, a(s) = θ0. (22)

Recovering the potential term, we present eq.(21) in the following symbolical form:

ψtb(pa, ta) = E
[
φ̃0(ξ(tb), a(tb)) exp{

1

µ2κm

∫ tb

ta
Ṽ (ξ(u))du}

]
, (23)

where ξ(ta) = xa, a(ta) = θa and ϕP (pa) = (xa, θa).
Calculating the differential generator of the semigroup associated with the process

ζ(t), we find that in (xi, aα)-coordinates, it can be written as follows:

1

2
µ2κ{�M (x) + hij 1√

γ̄

(
∂
√
γ̄

∂xi

)
∂

∂xj
+ hijAα

i A
β
j L̄αL̄β − 2hinAα

nL̄α

∂

∂xi

−hin∂A
α
n

∂xi
L̄α − hin∂

√
h

∂xi
Aα

nL̄α − hin 1√
γ̄

∂
√
γ̄

∂xi
Aα

nL̄α −
∂hin

∂xi
Aα

nL̄α + γ̄αβL̄αL̄β},

(24)

where �M is a Laplace–Beltrami operator onM and by L̄α we denote the right-invariant
vector field L̄α = v̄εα(a)

∂
∂aε

.
We remark that the operator given by (24) can be rewritten in the following form:

1

2
µ2κ{�H + hij 1√

γ̄

(
∂
√
γ̄

∂xi

)
∂

∂xj
+ γ̄αβL̄αL̄β −

∂hin

∂xi
Aα

nL̄α},

where �H is the horizontal Laplace operator.
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5. Separation of the variables in the path integral

In this section we continue the transformation of the path integral (21). As previously,
the local semigroups that are used (by their superposition) in path integral definition will
be in the center of our investigation.

The aim of the path integral transformation of this section is to separate the variables
in the path integral. For this purpose we apply the method from our paper [8]. It
was found there that local stochastic differential equations (in the present paper these
are eqs.(19) ) of the stochastic process ζ(t) given on the principal fibre bundle coincide
with the stochastic differential equations that are used in the nonlinear filtering theory.
The equation for aα(t) describes the signal process (it cannot be directly observed in the
experiment) and the equation for xi(t) — the observation process.

To estimate the existing difference between the observation process and the signal
process in the experiment, the conditional expectation of the signal process given the sub-
σ-field associated with the observation process is used. The evolution of this conditional
expectation is given by the nonlinear filtering equation. It is this equation that enables
us to perform the path integral transformation that separates the path integral variables.

To reveal the conditional expectation in the local semigroup (22) (in the local path
integral), we make use of usual conditional expectation properties that are valid in our
case due to the fact that the process ζ(t) is the Markov process. By these properties the
path integral (22) can be transformed as follows:

ŨζϕP (s, t)φ̃(x0, θ0) = E
[
E
[
φ̃(x(t), a(t)) | (Fx)

t
s

]]
. (25)

Now, in eq.(25), under the “path integral sign”, we have the conditional expectation

ˆ̃
φ(x(t)) ≡ E

[
φ̃(x(t), a(t)) | (Fx)

t
s

]
and we can write for it the nonlinear filtering equation. A comparison of our processes
xi(t) and aα(t) with the processes used in the nonlinear filtering equation of [13,12] leads
to the following equation for the conditional expectation:

d
ˆ̃
φ(x(t)) =

[
−1
2

1√
hγ̄

∂

∂xk

(√
hγ̄hkmAµ

m

)]
E[L̄µφ̃(x(t), a(t)) | (Fx)

t
s]dt

+
1

2
(γ̄µν + hijAµ

i A
ν
j )E[L̄µL̄ν φ̃0(x(t), a(t)) | (Fx)

t
s]dt

−Aµ
kX

k
m̄ E[L̄µφ̃(x(t), a(t)) | (Fx)

t
s]dw

m̄(t). (26)

Due to the symmetry of our problem, equation (26) can be considerably simplified.
To realize it, we expand the function φ̃(x, a) with the Peter–Weyl theorem in a series over
the matrix irreducible representation (

∑
q D

λ
pq(a)D

λ
qn(b) = Dλ

pn(ab)) of a group G:

14



φ̃0(x, a) =
∑
λ,p,q

cλpq(x)D
λ
pq(a) (27)

and substitute this series in eq.(26).
Then, as it follows from the conditional expectation properties, we obtain that

E
[
φ̃(x(t), a(t)) | (F)x)ts

]
=
∑
λ,p,q

cλpq(x(t)) E
[
Dλ

pq(a(t)) | (Fx)
t
s

]
.

The evolution of the conditional expectation D̂λ
pq(x(t)) ≡ E

[
Dλ

pq(a(t)) | (Fx)
t
s

]
1will be

described by the linear matrix equation:

dD̂λ
pq(x(t)) = Γµ

1 (Jµ)
λ
pq′D̂

λ
q′q(x(t))dt+ Γµν

2 (Jµ)
λ
pq′(Jν)

λ
q′q′′D̂

λ
q′′q(x(t))dt

−(Jµ)
λ
pq′D̂

λ
q′q(x(t))A

µ
k(x(t))X

k
m̄(x(t))dw

m̄(t), (28)

where the matrix elements (Jµ)
λ
pn are the generators of the representation Dλ(a), (Jµ)

λ
pq ≡

(
∂Dλpq(a)

∂aµ
)|a=e, with the properties

L̄µD
λ
pq(a) =

∑
q′
(Jµ)

λ
pq′D

λ
q′q(a).

In eq.(28), the explicit forms of the coefficients Γµ
1 and Γµν

2 can be easily obtained from
the transformation of eq.(26).

The solution of eq.(28) can be written in terms of the multiplicative stochastic integral
[14,15]:

D̂λ
pq(x(t)) = (←−exp)λpn(x(t), t, ta) E

[
Dλ

nq(a(s)) | (Fx)
t
s

]
, (29)

where

(←−exp)λpn(x(t), t, s) =←−exp
∫ t

s

{[
1

2
γ̄µν(x(u))(Jµ)

λ
pr(Jν)

λ
rn

−1
2

1√
hγ̄

∂

∂xk

(√
hγ̄hkmAµ

m

)
(Jµ)

λ
pn

]
du− Aµ

k(x(u))(Jµ)
λ
pnX

k
m̄(x(u))dw

m̄(u)
}

(30)

(h, γ̄ depend on x(u)).
By the multiplicative stochastic integral of eq.(29) we mean the limit of the sequence

of the time-ordered exponential multipliers. These multipliers are obtained as a result of
partition of time interval (t, s). By the arrow we denote the order of the multipliers: The
arrow is aimed at the multipliers under the greater times.

Using the series of eq.(27) and the representation of (29) in eq.(25), we obtain that

Ũ
ζϕ
P (s, t)φ̃(x0, θ0) =

∑
λ,p,q,q′

E
[
cλpq(x(t))(

←−exp)λpq′(x(t), t, s)
]
Dλ

q′q(θ0). (31)

1D̂λpq(x(t)) depends as well on x
i
0 = x

i(s) and θα0 = a
α(s). But, for brevity, this dependence was not

explicitly shown in the notation of D̂λpq(x(t)).
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In obtaining this equation, we have taken into account that at the initial moment of time
it must be

E
[
Dλ

nq(a(s)) | (Fx)
t
s

]
= Dλ

nq(a(s)) = Dλ
nq(θ0).

Thus, we see that the expression under the expectation in eq.(31) depends on the
stochastic process given on the base of the principal fibre bundle. Due to the symmetry
of the problem the only trace of the fiber stochastic process a(t) (the process on the
group G) is the dependence of the matrix element Dλ on the boundary value of this
process at t = s : a(s) = θ0.

If after partition of the time interval [ta, tb], we form the superposition of the local
semigroups that are similar to the semigroups of eq.(31) and go to a limit by taking finer
partition of the time interval, we get the global semigroup.

Similar to the symbolical formula (23), the resulting global semigroup can be also
written in symbolical form as follows:

ψtb(pa, ta) =
∑

λ,p,q,q′
E
[
cλpq(ξ(tb))(

←−exp)λpq′(ξ(t), tb, ta)
]
Dλ

q′q(θa) (32)

(ξ(ta) = π ◦ pa),

where the process ξ(t) is a global process on a manifold M = P/G. The stochastic
equation of the local representatives of the process ξ(t) is given by the first equation
of (19).

Both the stochastic process ξ(t) and multiplicative stochastic integral (30), which
is an operator multiplicative functional of the process ξ(t), determine the semigroup in
the space of the sections Γ(M, V ∗) of the associated co-vector bundle (we consider the
backward equation) E∗ = P ×G V ∗λ . This semigroup is determined by the expectation
value of eq.(32) standing under the sum. A scalar product in the space of the sections of
the associated co-vector bundle is given by the following form:

(ψn, ψm) =
∫
M
〈ψn, ψm〉V ∗λ

√
γ̄(x)dvM(x), (33)

(dvM(x) is an invariant volume measure on a manifoldM; in xi-coordinates it is presented

as dvM(x) =
√

h(x)dx1...dxnM).
It is not difficult to obtain the differential generator of the semigroup associated with

the process ξ(t). Its coordinate expression will be the following differential operator:

1

2
µ2κ

{[
�M + hni 1√

γ̄

∂
√
γ̄

∂xn

∂

∂xi

]
(Iλ)pq − 2hniAα

n(Jα)
λ
pq

∂

∂xi

− 1√
hγ̄

∂

∂xn

(√
hγ̄hnmAα

m

)
(Jα)

λ
pq + (γ̄αν + hijAα

i A
ν
j )(Jα)

λ
pq′(Jν)

λ
q′q

}
.

(Here (Iλ)pq is a unity matrix.) This operator acts in the space of functions with the
scalar product (33).
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It is possible to inverse formula (32). In case of performing this, we will find how the
kernel of the operator semigroup associated with the process ξ(t) is related to the kernel
of our initial semigroup (the Green function of eq.(1) ) associated with the process η(t) (or
ζ(t)). As a consequence of this relation, we get the connection between the corresponding
path integrals.

We will carry out the inversion of formula (32) by using (6), where globally defined
semigroup (5) was presented in terms of the kernels given on a locally finite covering of
the manifold P . We will make all of the variable replacements in the local integrals of (6)
that lead us to formula (32).

After changing Qb for (x
i
b, θ

α
b ) performed both with the help of local maps of the charts

and the local Bogolubov transformation

Qb = ϕPαb(pb), (xi
b, θ

α
b ) = f−1(Qb),

in which the local neighborhood ϕPαb(U
P
αb
) transforms consequently into (f−1b ◦ϕPαb)(U

P
αb
) ≡

ϕP
αb
(UPαb) and ϕMαb (U

M
αb
)×G, for the l.h.s. of formula (32) restricted to a local neighborhood

of the point pa, we get the expression∑
αb

∫
ϕMαb (U

M
αb
)×G

˜̃µαb
(xb)GP(αb, fb(xb, θb), tb; βa, fa(xa, θa), ta)φ̃0(xb, θb)dv(xb)dµ(θb). (34)

But, the r.h.s. of formula (32) can also be specified for the locally finite covering of
the manifoldM:∑

αb

∫
ϕMαb (U

M
αb
)

ρ̃αb(xb)
∑

λ,p,q,q′
Gλ

q′p(αb, xb, tb; βa, xa, ta)c
λ
pq(xb)D

λ
q′q(θa)dv(xb). (35)

Comparing (35) with (34), where the function φ̃0 has been expanded in series over the
matrix elements of the irreducible representation of a group G, we find that∫

G
GP(αb, fb(xb, θb), tb; βa, fa(xa, θa), ta)D

λ
pq(θb)dµ(θb) =∑

q′
Gλ

q′p(αb, xb, tb; βa, xa, ta)D
λ
q′q(θa).

After multiplying both sides of the above formula on D̄λ
mn and integrating over the

invariant Haar measure dµ(θa) normalized to unity, we obtain the following relation:

Gλ
mn(αb, xb, tb; βa, xa, ta) =

∫
G
GP (αb, xb, θ, tb; βa, xa, e, ta)D

λ
nm(θ)dµ(θ) (36)

with
GP (αb, xb, θ, tb; βa, xa, e, ta) ≡ GP(αb, fb(xb, θb), tb; βa, fa(xa, θa), ta).

By the letter e in eq.(36), we denote the unity element of the group G.
Performing an inversion of formula (32), we have obtained the relation between the

Green functions defined in charts of the locally finite covering of the manifold. Given
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in the intersection of the charts of this covering, the Green functions Gλ
mn satisfy the

following relation:

Gλ
qp(αb, xb, tb; βa, xa, ta) = D̄λ

qn(gβµ(xa))G
λ
ns(γb, xb, tb;µa, xa, ta)D̄

λ
sp(gγα(xb)),

where the G-valued functions gβµ(x) on M are the transition functions of the principal
fibre bundle.

On the overlapping of the charts labelled by the indices α and β, the corresponding
functions ψ are connected by the equality:

(ψβ)p(xa) = D̄λ
pn(gβα(xa))(ψα)n(xa). (37)

From this it follows that ψn belongs to the space of the sections Γ(M, V ∗) of the associated
bundle E∗.

The consistency condition of the local Green functions given on the overlapping of
the charts enables us to extend the local equality (36) to the global one. We write it as
follows:

Gλ
mn(π(pb), tb; π(pa), ta) =

∫
G
GP(pbθ, tb; pa, ta)D

λ
nm(θ)dµ(θ). (38)

Notice that this formula determines the connection between the path integral for GP
and for Gλ

mn. The path integral for the Green function GP is almost analogous in the
form to the path integral of eq.(3) but with one exception concerning the domain of the
integration. Now, it should be carried out over the paths with fixed values at the time
t = ta and t = tb. As for the path integral for the Green function Gλ

mn, it can be derived
from the path integral determined by eq.(32) and we write it symbolically as

Gλ
mn(π(pb), tb; π(pa), ta) =

Ẽ ξ(ta)=π(pa)
ξ(tb)=π(pb)

[
(←−exp)λmn(ξ(t), tb, ta) exp{

1

µ2κm

∫ tb

ta
Ṽ (ξ(u))du}

]
=

∫
ξ(ta)=π(pa)
ξ(tb)=π(pb)

dµξ exp{ 1

µ2κm

∫ tb

ta
Ṽ (x(u))du}

×←−exp
∫ tb

ta

{[
1

2
γ̄µν(Jµ)

λ
pr(Jν)

λ
rs −

1

2

1√
hγ̄

∂

∂xk

(√
hγ̄hkmAµ

m

)
(Jµ)

λ
ps

]
du

−Aµ
k(Jµ)

λ
psX

k
m̄dwm̄

}
.

(39)

It is well known that there exists an isomorphism between the space of the sections of
the associated vector bundle and the space of the covariant functions on the total space of
the principal fibre bundle. From this it follows that the semigroup with the kernel given
by eq.(39) acts in the space of the functions ψ̃n(p) for which the following relation holds:

ψ̃n(pg) = Dλ
mn(g)ψ̃m(p).
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The connection between these functions and the functions of Γ(M, V ∗) for which equal-
ity (37) is valid, can be established with the Bogolubov transformation by the following
local formula:

ψ̃n(F (Q
∗(x), e)) = ψn(x).

Thus, as a result of the performed transformation, our initial problem has been reduced
to the corresponding problem on the orbit spaceM = P/G. To put it differently in terms
of the constrained system point of view, we have made the quantum reduction of the
dynamical system onto the momentum level λ, determined by the representation Dλ.

A considerable simplification of the obtained formulas can be gained in the case of
the reduction onto the zero momentum level. Then, in this case D0pq ≡ 1, the semigroup
with kernel given by eq.(39) acts in the space of the scalar equivariant functions on the
total space of the principal fibre bundle. Now, the measure of the path integral of eq.(39)
is determined by the stochastic process ξ(t) and the multiplicative stochastic integral is
equal to the unity. The differential generator of the process ξ(t) is

1

2
µ2κ

{
�M + hni 1√

γ̄

∂
√
γ̄

∂xn

∂

∂xi

}
.

By using the Girsanov transformation, we can change the measure in the path integral
which is obtained from the path integral of eq.(39) in the case of λ = 0. As a result of
such a transformation, when the process ξ is replaced for ξ̃ which is locally described by
the following stochastic differential equation:

dx̃i(t) =
1

2
µ2κ

[
1√
h

∂

∂xn
(hni
√
h)
]
dt+ µ

√
κXi

n̄(x̃(t))dw
n̄(t),

we get the path integral for a semigroup that has the differential generator consisting of
�M and an additional potential term – the Jacobian of the performed transformation.

Notice that the Jacobian depends on the orbit volume γ̄(x).
An obtained semigroup, determined by its kernel GM from the equality

γ̄(xb)
−1/4γ̄(xa)

−1/4GM(xb, tb; xa, ta) =
∫
G
GP(pbθ, tb; pa, ta)dµ(θ),

GM(xb, tb; xa, ta) =
∫

dµξ̃ exp{ 1

µ2κm

∫ tb

ta
V (ξ̃(u))du+

∫ tb

ta
J(ξ̃(u))du} (40)

(x = π(p)),
acts in the space of the scalar functions on M (or in the space of the scalar invariant
functions on P)) with the following scalar product: (ψ1, ψ2) =

∫
ψ1(x)ψ2(x)dvM(x). In

eq.(40), the Jacobian J is given by

J(x) = −µ2κ

8

[
�M ln γ̄ +

1

4
hni∂ ln γ̄

∂xn

∂ ln γ̄

∂xi

]
.

As it has been shown in [16], this Jacobian can be presented by the expression depending
on the mean curvature normal to the orbit at the point x.
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Notice that the differential operator

Ĥκ =
�κ

2m
�M −

�κ

8m
[�M ln γ̄ +

1

4
(∇M ln γ̄)2] +

1

�κ
V

is the operator of the forward Kolmogorov equation for the Green function GM. When
changing the forward Kolmogorov equation for the Schrödinger equation, the operator
Ĥκ becomes the Hamilton operator Ĥ = − ~

κ
Ĥκ

∣∣∣
κ=i

of the corresponding Schrödinger
equation.

Conclusion

The main result of the paper is formula (38) and formula (39) that represents the
reduced Green function Gλ

mn. Our formulas generalize the well-known formula of [17] for
the Green functions on the principal fibre bundle.

In obtaining our result, we made use of such an approach to the path integral, in
which the path integral measure was determined by the stochastic process. This stochastic
process was constructed by using the local stochastic differential equation defined on charts
of the manifold. It has an advantage in performing the path integral transformation.
However, in this approach the effects coming from the topology of the manifold are not
explained and have not been considered in the paper. It is supposed to study this problem
in further investigations.

Besides, in the paper a rather strong restrictions on a manifold, on a group, which
acts on this manifold, and on differential equation are imposed. All these exclude an
important case of the action of the noncompact group on a manifold. The investigation of
the last case may be very important in attempts to generalize the obtained result to gauge
theories. Perhaps, such a generalization to the noncompact case calls for some changes in
the approach considered in the paper.

It is necessary to stress an important role of the nonlinear filtering equation in fac-
torization of the path integral measure. At present, this field of the stochastic process
theory is rather advanced. And after comprehension, one can derive from it the things
that would be useful in quantization of the constrained systems.
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Appendix

Stochastic process on manifold

In case of regarding the manifold as the set of the charts together with their gluing
mappings, it is possible to define the stochastic process on each chart by the solution of
the corresponding stochastic differential equation in the Euclidean space. However, the
problem arises when one is trying to construct the global process on a manifold. Its origin
lies in the transformation law of the stochastic differentials: they transform in accordance
with the Itô’s formula but not as the tensor objects. If one makes use of the standard
way of “gluing” the processes given on the overlapping of the charts, then one faces with
violation of the compatibility condition for these stochastic processes.

In [4], to solve this problem the following construction has been proposed. First of
all, it has been shown there, that for each manifoldM it is possible to define a special
fibre bundle I(M). The fibers of this fibre bundle are formed from vector and operator
functions (a, A), that are defined in the corresponding spaces. The “gluing” mapping of
this fibre bundle which acts on overlapping of the charts (U1, ϕ1) and (U2, ϕ2) is given as
follows

I(fϕ1ϕ2)(a
ϕ1, Aϕ1)→

(
f
′
ϕ1ϕ2

aϕ1 +
1

2
Trf

′′
ϕ1ϕ2

(Aϕ1, Aϕ1), f
′
ϕ1ϕ2

Aϕ1
)
,

(fϕ1ϕ2 = ϕ2 · ϕ1−1).
Locally, that is on a chart (U, ϕ), each pair (a, A) determines the germ Rx(a, A) of the

diffusion processes that don’t leave the chart to which this pair belongs. The diffusion
processes of the germ Rx(a, A) are stochastically equivalent to the processes obtained as
a result of the solution of the stochastic differential equations

dξ(s) = a(s, ξ(s))ds+ A(s, ξ(s))dw(s),

which coefficients a(s, x) and A(s, x) have the supports in U and satisfy the equalities:

a(0, x) = a, A(0, x) = a.

It is important, that under the local mappings of the manifold, the germ Rx(a, A)
transforms into the germ Rf(x)(I(f)(a, A)). It allows one to associate the fiber of the
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Itô fibre bundle I(M) with the space of the germs of the diffusion processes. The more
important fact is that it is possible to extend the functorial character of the correspondence
U → Ix(U) to Ix(U)→ Rx(Ix(U)). Therefore, if we have the Itô fibre bundle I(M), then
we are able to construct the germs of the diffusion processes on a manifoldM.

Now we must introduce a new notion called the Itô field. It comes from the particular
case of the Itô bundle — the vector Itô bundle. The vector Itô bundle is a sum of tangent
bundle and an operator bundle. The fibers of this vector bundle are again given by the
pairs (ax, Ax), where ax ∈ TxM, and Ax is a linear map from Rn into TxM. But since
now we have a vector bundle, the law of the ”gluing” transformation becomes as follows

(ax, Ax)→ (f
′
(x)ax, f

′
(x)Ax).

By definition, the Itô field is a section of the introduced vector Itô bundle.
However, by constructing with the Itô field I(M) the germs of the stochastic processes

on a manifoldM, we find that they don’t have the necessary law of the transformation
on overlappings of the charts. So, we must change our construction. And the solution
of the problem concerning the transformation law is to take the Itô field I(x,0)(TxM) (for
the tangent bundle (TxM)) rather than the Itô field I(M).

By the general approach, the Itô field I(x,0)(TxM) leads us to the germs R(x,0)(a, A)
of the stochastic processes in the neighborhood of the zero (y = 0 in (x, y)) of the tangent
bundle TxM. Then, by supposing the existence of the linear connection on a manifold,
the germs R(x,0)(a, A) are carried onto the manifold with the help of the exponential
mapping. These diffusion processes germs

ẽxpxR(x,0)(a, A) ≡ Rx

(
I(expx)(a, A)

) (
≡ expx(axdt+ Axdw)

)
,

which in coordinates is presented as follows

ϕ · ẽxpxR(x,0)(a, A) = Rϕ
x(a

ϕ − 1

2
TrΓϕ

ϕ(x)

(
Aϕ

x , A
ϕ
x), A

ϕ
x)
)
,

are called the stochastic differentials.
Because of the functorial character of the previous construction, these stochastic dif-

ferentials transform as necessary under the “gluing” mapping of the charts. That is, the
Itô field transformation

(ax, Ax)→ (f ′(x)ax, f
′(x)Ax),

leads to the following transformation of the germs of the diffusion processes onM:

f̃ · ẽxpxR(x,0)(a, A)→ ẽxpf(x)R(f(x),0)
(
f
′
(x)ax, f

′
(x)Ax

)
.

Now, if we let the Itô field be dependent on time as well, we will be able to construct
the field of the compatable germs. In this case we may put a question concerning the
existence of such a process ξ(t) on a manifoldM for which at every moment of time and at
every point x it would be possible to find a neighborhood of x where the process coincides
(almost surely) with one of the processes belonging to the germ ẽxpxR(ax(t), Ax(t)). By
definition, the process in question is the integral process of the Itô field (ax(t), Ax(t)).
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The problem of finding the integral process ξ(t) can be symbolically written as the
following (symbolical) equation:

dξ(t) = expξ(t)(aξ(t)(t)dt+ Aξ(t)(t)dw(t)). (41)

An integral process of the Itô field (the solution of eq.(41)) is determined in two steps.
In the first step, one solves the equation defined by the local Itô field, by which is meant
that the Itô fields is supported to some chart of the manifold.

Let eq.(41) be given by the local Itô field. Then, this equation determines the germ
of the diffusion processes that don’t leave the chart where the support of the local Itô
field is. If the considered chart of the point x is (V , ϕ), then the stochastic differential
equation for ξϕ = ϕ(ξ) in the neighborhood V ϕ = ϕ(V) of the Euclidean space will be
the following equation:

dξϕ(t) = {aϕ(ξϕ(t))− 1

2
Γϕ
ξϕ(t)(A

ϕ(ξϕ(t)) ·, Aϕ(ξϕ(t)) ·)}dt+ Aϕ(ξϕ(t))dw(t), (42)

with the initial data: ξϕ(s) = ϕ(x).
Being the Stratonovich-like equation, eq.(42) is invariant under the changing of the

charts of the manifold. The solution of this equation defines the stochastic evolution
family Tx(t, s) (x ∈ V) of mappings of the manifold. In the exterior of V , this family
consists of the identity mappings and in the interior of V , it is given by the solution of
eq.(42): ϕ(Tx(t, s) · x) ≡ ϕ(T (t, s; x)).

In the second step, by making use of the local stochastic evolution families of mappings
of the manifoldM, the global solution of the stochastic differential equation (41) is built.
It is made as follows: Taking the partition q = (s = t0 ≤ t1 ≤ . . . ≤ tn = t) of the
time interval [s, t] and forming the consequent superposition of local stochastic mappings
Tξ(ti−1)(ti−1, ti; ξ(ti−1)), the stochastic evolution family T q of mappings of the manifoldM
is defined as

T q(t, s; x) = Tξn−1(tn−1)(t, tn−1; ξn−1(tn−1)),

ξk(τ ) = Tξk−1(tk−1)(τ, tk−1; ξk−1(tk−1)), ξ0 = x, τ ∈ [tk−1, tk].

In [4] it was shown that under the refinement of the partition q, the family T q of the
mappings has a limit. It is this limitmapping that is a solution of the stochastic differential
equation (41). The existence of the limit was proven with rather general assumptions
concerning the structure of the manifold. Namely, it was assumed that there was a
uniform atlas2on a manifoldM.

Obtained as a result of the limiting procedure, the evolution family T has the following
evolution property:

T (t, s; x) = T (t, τ ;T (τ, s; x)).

2In each chart (Vx, ϕx) of the point x there must be two embeded neighborhoods V
2
x ⊂ V 1x ⊂ Vx, such

that if y ∈ V 2x then V 2x ⊂ V 1y . In the neighborhood ϕx(V 2x ) it must be a ball of the fixed radius. Also, the
linear connection coefficients and the Itô field coefficients must be uniformly bounded. These conditions
are satisfied in the case of the compact manifold.
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It means that the stochastic process ξs,x(t) = T (t, s; x) is a Markov stochastic process.
Then, from the general theory it follows, that there is a family of the operators

U(τ, t)f(y) = Ef(ξτ,y(t)) = Ef(T (t, τ ; y)), (43)

defined in the space B(M) of continuous and bounded functions onM. This family has
an evolution property

U(τ, t) = U(τ, s)U(s, t), τ ≤ s ≤ t.

The expectation value of formula (43) denotes the integration with respect to the measure
defined in the space of paths onM constructed by the Kolmogorov theorem, that is

Ef(ξτ,y(t)) =
∫

M t
τ,y

f(x(t))dµξτ,y (x(·)),

where M t
τ,y = {x(s), s ∈ [τ, t], x(τ ) = y}.

By its construction, the family of the operators U(t, s) has the following superposition
properties:

U(τ, t) = limqŨ(τ, t1) · Ũ (t1, t2) · . . . · Ũ (tn−1, tn). (44)

This property enables one to calculate U(t, s) by using such local operators as

Ũ (τ, t)f(x) = Ux(τ, t) = Ef(Tx(t, τ ; x)). (45)

Notice that in [4], the same approach was applied to the construction of the stochastic
processes on vector bundles and on principal fibre bundles.
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