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Four-fermion interaction is considered in the representation of auxiliary field. It is shown

that the conformal anomaly results in the emergence of kinetic term of the auxiliary field, the
conventional compositeness conditions being broken. This kinetic term makes it possible to
construct the renormalizable perturbation theory on the basis of the four-fermion interaction

Lagrangian.
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The concept of quantization in field theory implies the procedure that can be broken
down into two subsequent stages. The first stage is called canonical quantization. At this
stage, quantum canonical variables, space of states etc. are conventionally constructed.
In most cases of practical significance, there are no difficulties at the first stage.

The second stage involves constructing the S-matrix (or the generating functional)
and the like. The main problem is the infinities stemming from the definition of the
S-matrix as the time-ordered exponential of the classical Lagrangian. The elimination of
the infinities (in perturbation heory) consists in adding the counterterms to the classical
Lagrangian with

Lcl → Lqu = Lcl +
∑
Zi∆Li, (1)

where the counterterms are calculated by employing the R-operation.
The sum in formula (1) can be either finite or infinite. In the former case the theory

is called renormalizable, theories of this type are widely used. In the latter case the
theory is called nonrenormalizable. In this case, the calculation of counterterms cannot
be completed and thus the quantization (in the sense as it was defined above) cannot be
performed. Its limitation hinders a wide usage of such theories.

The question arises of whether the theory with four-fermion interaction is renormal-
izable. Let us consider the perturbation expansion in the theory with the simplest La-
grangian

LΨ = Ψ̄i∂Ψ +
G

2
(Ψ̄Ψ)2, ∂ = γµ∂µ. (2)

Making use of counting rules for the diagrams in the perturbation theory one can show
that the theory is not renormalizable. However, if we consider the representation that
does not rely on the perturbation theory, the nonrenormalizability is not so obvious. In
order to demonstrate this, it is sufficient to consider the vacuum average of the S-matrix

S =
∫
dΨ̄dΨexp(iLΨ) (3)

(here and below, the integration over four-dimensional space is implied).
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We can use change of variables [1] in order to eliminate integration with respect to
fermion fields. First, we introduce the additional integration:

S =
∫
dΨ̄dΨdσexpi{Ψ̄(i∂ − σ)Ψ} −

1

2G
σ2. (4)

The scalar variable σ introduced here represents an auxiliary field. The term ”auxil-
iary” means that the transition from formula (3) to formula (4) does not endow the field
σ with a definite physical sense.

Integration with respect to fermions in formula (4) yields the effective action for the
auxiliary field

Lσ = −iT rln(i∂ − σ)−
1

2G
σ2. (5)

With the aid of this Lagrangian we can try to determine the renormalizable perturba-
tion series [2]. In order to make certain of this, we compare representation (4) with the
Yukawa model

LY = Ψ̄(i∂ − gϕ)Ψ−
1

2
ϕ(M2 + ∂2)ϕ. (6)

Integration with respect to fermions in formula (6) yields the effective action:

Lϕ = iT rln(i∂ − gϕ)−
1

2
ϕ(M2 + ∂2)ϕ. (7)

Comparing (7) with (5) and taking into account that Trln(i∂ − σ) involves the ki-
netic term, we make sure that the Lagrangians Lσ and Lϕ yield coincident perturbation
expansions. By the analogy with the Yukawa model, renormalization of the Lagrangian
Lσ consists in adding the counterterms

∆L = −
Z

2
σ∂2σ −

Z2

2
σ2 −

Z4

4
σ4. (8)

As it has been mentioned, the counterterms may be added only in the case of quantum
(that is, possessing asymptotic states and the respective Hilbert space) fields. The field σ
has no of such attributes. For this reason it is highly questionable that the auxiliary field
σ is equivalent to a field with the kinetic term. These speculations result in the conclusion
that the field σ should not be renormalized:

Z = Z4 = 0. (9)

(The second term in formula and (8) is related to charge renormalization.)
Relations (9) are referred to as the compositeness conditions, which were proposed

many years ago [1,3] in order to distinguish between elementary particles and bound
states. Currently these conditions are widely used [4], mainly for the studies of four-
fermion interactions.

In terms of the original interaction (2), conditions (9) look as follows:

LΨ,cl = LΨ,qu. (10)
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Strictly speaking, it is this requirement that has led to the compositeness conditions.
The surprising thing is that the inconsistency of this requirement has not been noticed so
far. Indeed, this requirement does not agree with the quantization procedure, as has been
mentioned, consists in the calculations of counterterms. The procedure of calculation of
counterterms to the Lagrangian LΨ is well defined in the perturbation theory, even though
it is nonrenormalizable, whereas condition (10) (or, which is the same, conditions (9))
exclude any calculations beyond the tree approximation. To put it differently, conditions
(9) and (10) rule out the possibility that the respective theory can be quantized.

The solution of this puzzle stems from noticing that one should renormalize the original
action (2) instead of the auxiliary field σ.

Let us consider the renormalized version of the action in (2)

LΨ,qu = ZΨΨ̄i∂Ψ + Z2Ψ
G

2
(Ψ̄Ψ)2. (11)

By applying transformation (4) to the Lagrangian in (11), we obtain

Lσ,qu = −iT rln{ZΨ(i∂ − σ)} −
1

2G
σ2. (12)

In what follows, the crucial point is that the fermion determinant contains the confor-
mal anomaly [5]. For this reason,

Trln{ZΨ(i∂ − σ)} = Trln(i∂ − σ)− lnZΨ · Trao + const, (13)

where the Seeley–DeWitt coefficient for the operator i∂ − σ is as follows:

ao = −
1

(4π)2
(σ∂2σ + σ4). (14)

In order to derive relation (14) one should change over to the Euclidean space, define
the regularized determinant, and calculate the Seeley coefficients. In this case, we refer
to the ξ-function as an example of regularization. A simpler way of deriving relation (14)
is as follows: by making use of an arbitrary regularization ε, one should expand the trace
Trln(i∂−σ) in powers of σ, and then use the obtained Lagrangian Lε for the calculation
of the Seeley coefficient

ao = lim
ε→0
ε · Lε(σ).

The result is independent of regularization.
After substituting (13) in formula (12) we obtain the ultimate expression for the

renormalized action:

Lσ,qu = −iT rln(i∂ − σ)−
1

2G
σ2 −

1

2
Zσ2∂2σ −

1

4
Z4σ

4. (15)

In this case, making use of the explicit form of the anomaly of (14) leads to the relation:

2Z = Z4. (16)
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Formula (15) furnishes the main result of this study: the emergence of kinetic term
of the auxiliary field is the consequence of the conformal anomaly, that arises from the
renormalization of the fermion fields. Certainly, a similar result holds for the four-fermion
interaction of the general form. Obviously, the greater the number of types of interaction
(SS, VV, AA, etc.) is involved in the initial Lagrangian, the greater the number of coupling
constants, which are connected with each other by the relations of form (16). The studies
of these new compositeness conditions are very promising.
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