

росударственный научный центр российской федерации В Э ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

ИФВЭ 98-26 ОЛУ, ОМВТ

О.К. Беляев, А.Д. Рябов, В.Б. Степанов

ИССЛЕДОВАНИЕ СЕКТОРНОГО Н-РЕЗОНАТОРА

Направлено в ПТЭ

Протвино 1998

Аннотация

Беляев О.К. и др. Исследование секторного Н-резонатора: Препринт ИФВЭ 98–26. – Протвино, 1998. – 12 с., 10 рис., 4 табл., библиогр.: 10.

Выполнены расчетное исследование параметров секторного H-резонатора в двумерном приближении и экспериментальное изучение резонатора с электродами сложной формы. Обсуждаются результаты исследований. С использованием этих результатов выбрано поперечное сечение резонатора. Показано, что потери ВЧ-мощности в стенках SH-резонатора лежат между потерями в H- и 2K-резонаторах.

Abstract

Beliaev O.K. et al. Investigation of Sector H-Cavity: IHEP Preprint 98–26. – Protvino, 1998. – p. 12, figs. 10, tables 4, refs.: 10.

A two-dimensional numerical study of the SH-cavity parameters and an experimental research of this cavity with the complicated electrodes have been carried out. The results of these investigations are discussed. The SH-cavity cross-section was chosen using these results. It is shown that the RF power losses of the SH-cavity are between the losses of the H- and 2K-cavities.

> (с) Государственный научный центр Российской Федерации
> Институт физики высоких энергий, 1998

Введение

Развитие идей ВЧК-фокусировки в линейных ускорителях ионов, ускоряющих частицы от тысячных-сотых до нескольких десятых долей скорости света, потребовало разработки резонаторов, наиболее удачно и экономично обеспечивающих заданный закон распределения напряжения на электродах ускоряющефокусирующего канала. Так, для инжектора в бустер ускорительного комплекса ИФВЭ — УРАЛ-30 [1] были разработаны и созданы резонаторы с постоянной вдоль структуры амплитудой напряжения на электродах: 2H-резонатор [2,3] для скоростей протонов $\beta = 0,014 \div 0,065$ и H-резонатор [4,5] для скоростей $\beta = 0,065 \div 0,25$. Структура с ВЧК-фокусировкой на H-резонаторе по темпу ускорения уступает структуре Альвареца для скоростей частиц $\beta \ge 0,15$, что связано с постоянством амплитуды ВЧ-напряжения.

Желание иметь ускоряющую структуру, не уступающую структуре Альвареца до скоростей частиц $\beta = 0, 3$, привело к разработке 2К-резонатора [6,7], в котором реализовано нарастающее напряжение. Исследования 2К-резонатора позволили разработать методику настройки, обеспечивающую заданное деление напряжения между аксиально-симметричным и квадрупольным зазорами [7] при нарастающем напряжении от начала к концу резонатора.

Конструкторско-технологическая проработка показала, что в этом резонаторе трудно обеспечить на имеющемся оборудовании необходимую точность постановки электродов, надежные ВЧ-контакты и минимальное их число. Поэтому для структуры с нарастающим напряжением был предложен секторный резонатор с продольным магнитным полем — SH-резонатор (рис. 1). Предварительные оценки показали, что потери ВЧ-мощности в таком резонаторе будут больше, чем в 2K-резонаторе, но меньше, чем в H-резонаторе. При этом многие технологические приемы изготовления резонаторов и монтаж электродов вне контейнера, отработанные на 2H- и H-резонаторах [8], представляются подходящими к предложенному резонатору. Для разработки конструкции резонатора с ускоряющими электродами требуется выполнить комплекс экспериментальных и расчетных исследований, которым и посвящена данная работа.

Рис. 1. Фото макета SH-резонатора с электродами, помещенного в цилиндрический экранконтейнер.

1. Экспериментальная и расчетная модели SH-резонатора

Для проведения экспериментальных исследований был создан специальный стенд. Стенд состоял из макета SH-резонатора, помещенного в цилиндрический экран-контейнер длиной 1100 мм и диаметром 520 мм (рис. 1). Резонатор был нагружен системой электродов пяти периодов ускорения, использовавшихся ранее в 2K-резонаторе. Ноги крепления промежуточных электродов были установлены под расчетными углами согласно соотношениям, приведенным в работе [7]. Из работы [7] следует, что при отсутствии тока по ноге промежуточного электрода, установленного под расчетным углом, напряжение между ускоряющим и фокусирующим зазорами периода ускорения делится в требуемом соотношении. Как и ожидалось, этот макет удалось настроить на рабочую частоту f = 148, 5 МГц, увеличив зазор между резонатором и днищем контейнера.

Для получения расчетных параметров резонатора использовалась двумерная программа PRUD-0 [9,10], поэтому в расчетах реальные электроды были заменены пластинами предварительно выбранной толщины и ширины (5 \times 51 мм). Зазор

между пластинами был подобран таким, чтобы расчетная и измеренная частоты были равными. Поперечное сечение расчетной модели с обозначениями основных геометрических параметров показано на рис. 2.

Рис. 2. Поперечное сечение расчетной модели SH-резонатора. $R_c = 260$ мм; $R_1 = 195$ мм; $R_2 = 225$ мм; $g = 20 \div 80$ мм; $d = 2 \div 70$ мм; $b = 35 \div 55$ мм.

В полученной таким образом расчетной модели емкостная нагрузка, обусловленная плоскими электродами, должна быть эквивалентна емкостной нагрузке резонатора с реальными электродами. На такой модели были проведены расчеты всех радиотехнических параметров резонатора и распределений Е- и Н-полей при вариации основных конструктивных размеров.

Вычислялись следующие параметры резонатора:

- собственная частота SH-резонатора f [МГц];
- погонная емкость резонатора $C [\Pi \Phi/M] (C = 2W/U^2);$
- накопленная энергия на единицу длины резонатора W [мДж/м];
- мощность потерь на единицу длины резонатора P [kBt/m];
- собственная добротность резонатора Q;
- распределение мощности потерь на единицу длины резонатора по различным участкам поверхности;
- распределение нормальной компоненты электрического поля и тангенциальной компоненты магнитного поля по поверхности резонатора;
- производные частоты и мощности потерь по изменяемым размерам резонатора.

Расчеты проводились на половине поперечного сечения резонатора при постановке на плоскости симметрии граничных условий электрического типа. Во всех

расчетах напряжение U_0 , вычисленное по прямой, соединяющей середины пластин, полагалось равным $U_0 = 400$ кВ.

Поскольку электрическое поле не является электростатическим, значение вычисляемого напряжения между некоторыми двумя точками зависит от пути интегрирования. Интерес представляет значение максимального напряжения U^* , которое достигается при его вычислении по линии L^* , определяемой уравнением $H_z(x,y)=0$. В этом случае

$$U^* = \int_{L^*} E_\tau \, dl = \kappa \iint_{S_+} H_z \, ds = -\kappa \iint_{S_-} H_z \, ds,$$

где S_+ и S_- — подобласти сечения, разделяемые линией L^* , в каждой из которых магнитное поле H_z одного знака, а κ — постоянный коэффициент, зависящий от системы единиц.

Таким образом, U^* вычислялось как поток H_z -компоненты магнитного поля одного знака через поперечное сечение резонатора. Значения U_0 и U^* использованы при вычислении емкостей резонатора (два значения в приводимых ниже таблицах).

Расчеты (их результаты представлены в табл. 1–3) проводились параллельно измерениям на макете SH-резонатора и конструированию секции ускоряющей системы. Последовательность расчетов определялась результатами измерений и принятыми конструкторскими решениями, которые, в свою очередь, принимались с учетом результатов расчетов и измерений.

<u>Таблица 1.</u> Зависимость параметров секторного H-резонатора от величины зазора d между резонатором и днищем контейнера. g = 54, 3 мм, $U_0 = 400$ кВ

	·• I	1			1 0	,	/ 0	
ſ	d	f	Q	C	W	P	P_k	P_k/P
	$\mathbf{M}\mathbf{M}$	ΜΓц		пФ/м	Дж/м	кВт/м	кВт/м	%
Γ	2.0	167.17	16680	19.8/19.6	1.582	100.2	25.54	25.5
	10.0	165.87	14420	20.4/20.2	1.635	118.2	34.28	29.0
	20.0	162.90	12440	22.5/22.2	1.798	148.0	48.84	33.0
	30.0	158.59	11480	26.3/25.8	2.100	182.3	65.88	36.1
	40.0	153.52	11400	31.5/30.7	2.518	213.1	81.26	38.1
	49.6	148.50	11830	37.1/35.6	2.970	234.3	91.86	39.2
	50.0	148.31	11850	37.4/35.8	2.989	235.0	92.22	39.2
	60.0	143.27	12560	43.3/39.4	3.460	248.0	98.48	39.7
	70.0	138.50	13370	48.8/39.5	3.905	254.2	101.14	39.8

<u>Таблица 2.</u> Зависимость параметров секторного H-резонатора от величины зазора g между электродами. d = 49, 6 мм, $U_0 = 400$ кВ

•	-		, , ,				
g	f	Q	C	W	P	P_k	P_k/P
MM	ΜΓц		пФ/м	Дж/м	кВт/м	кВт/м	%
20.0	115.12	13830	43.1/42.9	3.447	180.3	45.9	25.5
30.0	129.79	13360	36.4/36.2	2.915	178.0	53.2	29.9
40.0	139.54	12670	35.0/34.4	2.797	193.5	66.1	34.1
50.0	146.27	12050	36.1/35.0	2.888	220.2	83.3	37.8
54.3	148.50	11830	37.1/35.6	2.970	234.3	91.9	39.2
60.0	151.02	11580	38.8/36.7	3.107	254.6	104.0	40.8
70.0	154.45	11250	42.6/36.6	3.404	293.8	126.6	43.1
80.0	156.99	11020	46.9/35.4	3.748	335.5	150.5	44.9

<u>Таблица 3.</u> Параметры SH-резонатора, настроенного на частоту f = 148,50 МГц, в зависимости от величины зазора b между контейнером и лопастями (в плоскости y = 0). d = 35 мм, $U_0 = 400$ кВ

u	- 00 1	~ 0	- 100 1			
	b	g	Q	C	W	P
	MM	$\mathbf{M}\mathbf{M}$		пФ/м	Дж/м	кВт/м
[35	44.8	12000	29.4/29.0	2.350	182.7
	40	44.2	12390	28.7/28.3	2.296	172.8
	45	43.6	12890	28.0/27.7	2.239	162.1
	50	43.1	13390	27.4/27.1	2.192	152.8
	55	42.7	13860	26.9/26.6	2.186	145.0

b	$\partial f/\partial g$	$\partial P/\partial g$	$\partial f/\partial R_1$	$\partial P/\partial R_1$	$\partial f/\partial R_2$	$\partial P/\partial R_2$	$\partial f/\partial R_k$	$\partial P/\partial R_k$
MM	МГц/мм	кВт/м·мм	МГц/мм	кВт/м·мм	МГц/мм	кВт/м·мм	МГц/мм	кВт/м·мм
35	0.842	2.15	-0.517	-2.41	0.175	3.59	-0.398	-2.45
40	0.883	1.71	-0.529	-2.12	0.184	2.97	-0.400	-2.03
45	0.921	1.24	-0.542	-1.82	0.192	2.35	-0.400	-1.62
50	0.965	0.81	-0.554	-1.57	0.195	1.87	-0.397	-1.30
55	0.997	0.48	-0.564	-1.38	0.195	1.52	-0.391	-1.07

2. Анализ полученных результатов

Распределения магнитного и электрического полей в SH-резонаторе на основном типе колебаний приведены на рис. 3. Равномерное распределение плотности ВЧ-потерь на внутренней поверхности резонатора указывает на однородность магнитного поля внутри резонатора. В пространстве между резонатором и контейнером магнитное поле достигает максимума под резонатором и спадает по мере приближения к его краям. Соответствующие расчетная и экспериментальная зависимости показаны на рис. 4.

В максимуме магнитного поля должна располагаться петля ввода мощности для возбуждения резонатора. При изменении высоты d установки SH-резонатора в контейнер характер распределения магнитного поля не меняется. Увеличение dприводит к снижению собственной частоты резонатора — расчетная и экспериментальная зависимости на рис. 5а. Уменьшение частоты объясняется ростом емкости резонатора (рис. 5б), что приводит также к увеличению потерь (рис. 5в). При проведении расчетов напряжение U_0 между плоскими электродами поддерживалось постоянным, поэтому можно утверждать, что увеличение размера d приводит к падению шунтового сопротивления SH-резонатора $R_u = U^2/2P$. Так как SH-резонатор предназначен для работы с ускоряющей структурой, снижение R_u энергетически невыгодно.

Из проведенного рассмотрения следует, что высота *d* постановки SH-резонатора в контейнер должна быть минимальной, обеспечивающей размещение петли ввода мощности в пространстве между резонатором и контейнером.

Согласно эпюре рис. Зб электрическое поле в SH-резонаторе сосредоточено между плоскими электродами и в зазоре между контейнером и внешней поверхностью резонатора в области его края. Емкостная нагрузка резонатора определяется этими зонами концентрации электрического поля.

Рис. 3. Эпюры различных величин и силовые линии электрического поля для рабочего колебания $f = 148, 5 \text{ M}\Gamma$ ц в секторном H-резонаторе.

Рис. 4. Распределение H_z -компоненты магнитного поля (нормированное на максимальное значение) по поверхности контейнера. Точки — эксперимент, сплошная линия — расчет. Значение угловой координаты $\varphi = -90^{\circ}$ соответствует самой нижней точке контейнера.

45⊢**б**)

25

20

0

10 20

60 70

165

160

 $\widetilde{\underline{\mathbb{X}}}_{150}^{\mathrm{N}}$

145

140

0

10 20 30 40 50

d [mm]

a)

Рис. 5. Зависимость частоты, емкости и мощности потерь от величины зазора *d* между резонатором и днищем контейнера.

d [mm]

30 40 50

Результаты расчета показывают, что увеличение g ведет к монотонному повышению собственной частоты резонатора (рис. 6а). При этом наблюдается незначительное уменьшение и последующий заметный рост эквивалентной емкости резонатора (рис. 6б), а также монотонное увеличение потерь (рис. 6в). Объяснение необычного характера двух последних зависимостей состоит в перераспределении электрического поля из межэлектродного зазора в область края резонатора при увеличении g. Для увеличения поля в межэлектродном зазоре и снижения потерь необходимо ослабить влияние области края резонатора.

Рис. 6. Зависимость частоты, емкости и мощности потерь от величины зазора *g* между плоскими электродами.

Увеличение зазора b путем локального уменьшения толщины стенки резонатора у его края при постоянной собственной частоте приводит к уменьшению потерь до 20% (рис. 7). Таким образом, SH-резонатор должен иметь значительную емкость в области электродов и минимальную емкость между контейнером и внешней поверхностью резонатора в области его края (максимально допустимый размер b).

Сделанный вывод основан на результатах расчета в двумерном приближении. Однако нагрузка резонатора реальной трехмерной системой электродов (рис. 8) приводит к нарушению расчетной структуры полей, в частности, к появлению в области электродов поперечной компоненты магнитного поля и продольной электрического поля. Это может оказать влияние на соотношение напряжений на ускоряющем U_a и фокусирующем $U_{\kappa 6}$ зазорах периодов ускорения. Настройка структуры на SH-резонаторе, как и в работе [7], проводилась путем изменения величин емкостей ускоряющего (поз. 1) и фокусирующего (поз. 2) зазоров за счет специальных накладок для устранения токов по ногам промежуточных электродов (рис. 8).

Затем во всех периодах ускорения методом малых возмущений были измерены величины

$$\alpha = \sqrt{\Delta f_{\kappa e} / \Delta f_a} \sim U_{\kappa e} / U_a,$$

где $\Delta f_{\kappa 6}$ и Δf_a — частотные расстройки при помещении возмущающего тела в фокусирующий и ускоряющий зазоры соответственно. Измеренные α и требуемые α_{mp} [7] величины показаны на рис. 9 (графики 1 и 3 соответственно). Видно, что имеется значительное (до 10%) расхождение величин α и α_{mp} при допуске $1 \div 2\%$.

Такое расхождение можно объяснить влиянием поперечной компоненты H_{\perp} магнитного поля, возникающего из-за продольного тока проводимости по электродам и тока смещения между разнополярными трубками дрейфа через промежуточный электрод. Рассматриваемый макет SH-резонатора, нагруженный электродами, имел характерные размеры в области размещения электродов (щели резонатора) l = 180 мм и t = 10 мм, в то время как в 2K-резонаторе [7] с теми же электродами эти величины равнялись 120 и 30 мм соответственно. Уменьшенная емкостная нагрузка щели привела к уменьшению продольной компоненты H_{\parallel} магнитного поля и возрастанию влияния H_{\perp} . Для ослабления эффекта неоднородности магнитного поля размер l был уменьшен до 120 мм, а размер t увеличен до 30 мм. Измеренные в этом случае величины α также показаны на рис. 9 (график 2). Среднеарифметическое отклонение α от α_{mp} не превышает 1%. Из проведенного рассмотрения следует недопустимость чрезмерного уменьшения емкостной нагрузки в области размещения электродов. Этот вывод не противоречит выводу об увеличении емкости между плоскими электродами, сделанному ранее по энергетическим соображениям.

Рис. 8. Нагрузка резонатора электродами реальной формы: 1 — ускоряющий зазор; 2 — фокусирующий зазор; l и t — характерные размеры в области размещения электродов; $N15 \div N17$ — моделируемые периоды ускорения; H_{\parallel} и H_{\perp} — продольная и поперечная компоненты магнитного поля; I_i — ток в ножке промежуточного электрода *i*-го периода ускорения.

Рис. 9. Результаты настройки макета ускоряющей структуры на SH-резонаторе для периодов ускорения N13 ÷ N17: 1 — для размеров l = 180 мм и t = 10 мм; 2 — для размеров l = 120 мм и t = 30 мм; 3 — требуемая зависимость.

3. Резонатор с уточненным поперечным сечением

В результате проведенных комплексных исследований была разработана форма поперечного сечения секторного H-резонатора. Поперечное сечение с указанием характерных размеров приведено на рис. 10.

Рис. 10. Поперечное сечение SH-резонатора с уточненной геометрией. $R_c = 260$ мм; $R_1 = 194$ мм; $R_2 = 224$ мм; g = 48, 3 мм; d = 36 мм; b = 54 мм.

Угол "раскрыва" сектора выбран равным 180°. Ось канала ускорения совмещена с осью контейнера. При этом размер *d* достаточен для размещения петли ввода

мощности в максимуме магнитного поля. Локальное уменьшение толщины стенок резонатора привело к уменьшению потерь в стенках резонатора. Рассчитанные радиотехнические параметры такого резонатора приведены в табл. 4. По величине потерь SH-резонатор занимает промежуточное положение между H- и 2K-резонаторами: $P_H = 1$; $P_{SH} \approx 0.85$; $P_{2K} \approx 0.58$. В табл. 4 показаны величины частных производных частоты и потерь по основным размерам SH-резонатора. Эти данные необходимы для определения допусков при изготовлении и настройке резонатора.

Таблица 4.	Параметры SH-резонатора с уточненной геометрией. $f = 148,50$ МГ ц, $R_1 =$
	194 мм, $R_2 = 224$ мм, $R_k = 260$ мм, $d = 36$ мм, $g = 48, 3$ мм, $U_0 = 400$ кВ

Q	C	W	P	
	$\pi\Phi/M$	Дж/м	кВт/м	
13770	25.9/25.6	2.071	140.3	

$\partial f/\partial g$	$\partial P/\partial g$	$\partial f/\partial R_1$	$\partial P/\partial R_1$	$\partial f/\partial R_2$	$\partial P/\partial R_2$	$\partial f/\partial R_k$	$\partial P/\partial R_k$
МГц/мм	кВт/м·мм	МГц/мм	кВт/м·мм	МГц/мм	кВт/м·мм	МГц/мм	кВт/м·мм
0.853	0.63	-0.452	-1.17	0.288	0.27	-0.430	-1.35

Расчеты высших типов колебаний показали, что по частоте они достаточно далеко отстоят от рабочей частоты $f_0 = 148,5$ МГц (205,5; 488,9; 638,8 МГц) и их можно не рассматривать в рамках этой работы.

Заключение

Комплексный подход к изучению SH-резонатора, когда экспериментальные исследования, расчеты и принятие решений о форме и размерах поперечного сечения резонатора проводились во взаимосвязи, позволил достаточно экономно по времени и ресурсам выбрать приемлемый вариант поперечного сечения SH-резонатора.

Показано, что в реальной трехмерной системе электродов при определенных размерах области размещения электродов возможно произвести настройку требуемого деления напряжения между ускоряющими и фокусирующими зазорами. При этом реализуются рекомендации расчетов об увеличении емкости между плоскими электродами (т.е. об уменьшении зазора между ними) с целью уменьшения мощности потерь в стенках резонатора.

Рассчитанные частные производные частоты и мощности потерь по основным размерам позволили определить допуски на эти размеры при изготовлении и необходимый диапазон подстройки частоты из-за неточностей изготовления. Кроме того, знание этих производных способствует правильному выбору размеров поперечного сечения, что ускоряет процесс конструирования резонатора.

Авторы благодарят В.А. Теплякова за поддержку работы и ценные замечания.

Список литературы

- B.A. Зенин и др. Препринт ИФВЭ 93-147. Протвино, 1993. V.A. Zenin et al. 30 MeV Proton Linear Accelerator with RFQ Focusing. – In: Proc. of the 1994 Int. L.C., Tsukuba, Japan. V.1, p.158 (1994).
- [2] В.А. Тепляков, В.Б. Степанов. Объемный резонатор. ОИПОТЗ, 1971. № 13, с.226, а.с. 300970.
- [3] О.К. Беляев, В.Б. Степанов. Препринт ИФВЭ 91-126. Протвино, 1991.
- [4] В.А. Тепляков, В.Б. Степанов. Объемный резонатор с волной магнитного типа.
 ОИПОТЗ, 1968. № 14, с. 45, а.с. 216064.
- [5] В.П. Голубков и др. Радиотехническая настройка ускоряющей системы линейного ускорителя УРАЛ-15. // ЖТФ. 1977, т.47, вып.11, с.2332.
- [6] О.К. Беляев и др. Препринт ИФВЭ 92-58. Протвино, 1992.
- [7] О.К. Беляев и др. Препринт ИФВЭ 93-140. Протвино, 1993. Belyaev O.K. et al. Turning Method for the Accelerating Structure with RFQ Focusing and Increasing Voltage. – In: Proc. of the 1994 Int. L.C., Tsukuba, Japan. V.1, p.296 (1994).
- [8] А.Ж. Атачкин и др. Конструкторско-технологические особенности ускоряющих систем линейных ускорителей ИФВЭ с ВЧК-фокусировкой. – В сб: Труды XIV Сов. по ускор. заряж. частиц. Протвино 1994, т.3, с.137.
- [9] А.Г. Абрамов и др. Препринт ИФВЭ 83-3. Серпухов, 1983.
- [10] А.Г. Дайковский, Ю.И. Португалов, А.Д. Рябов. Комплекс программ для расчета ускоряющих структур. // ЖВТ и МФ. т.26, №8, сс.1206-1214, 1986.

Рукопись поступила 10 апреля 1998 г.

О.К. Беляев и др. Исследование секторного Н-резонатора.

Оригинал-макет подготовлен с помощью системы ІАТ_ЕХ. Редактор Л.Ф.Васильева. Технический редактор Н.В.Орлова.

Подписано к печати 14.04.98. Формат 60 × 84/8. Офсетная печать. Печ.л. 1,5. Уч.-изд.л. 1,15. Тираж 150. Заказ 173. Индекс 3649. ЛР №020498 17.04.97.

ГНЦ РФ Институт физики высоких энергий 142284, Протвино Московской обл.

Индекс 3649

 $\Pi P Е П P И Н Т 98-26,$ $И \Phi В Э,$ 1998