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Abstract

Bityukov S.I., Krasnikov N.V. On observability of signal over background: IHEP Preprint 98-48. –
Protvino, 1998. – p. 13, figs. 8, tables 4, refs.: 8.

Several statistics used by physicists to declare the signal observability over the background
are compared. It is shown that the frequentist method of testing a precise hypothesis allows

one to estimate the power value of criteria with specified level of significance for the considered
statistics by Monte Carlo calculations. The application of this approach for the analysis of

discovery potential of experiments is discussed.
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Introduction

One of the common tasks for searching experiments is the detection of a predicted new
Phenomenon. As a rule the estimations of an expected mean Ns for the signal events of
new Phenomenon and Nb for the background events are known. Then we want to know
is the given experiment able to detect new Phenomenon or not. To check the statement
about the observation of Phenomenon a researcher uses some function of the observed
number of events – a statistic. The value of this statistic for detected x events allows
one to find the degree of confidence of the discovery statement. After having drawn a
conclusion on the observation of Phenomenon, two possibilities for mistake are available:
to state that Phenomenon is absent but in real life it exists (Type I error), or to state
that Phenomenon exists but it is absent (Type II error).

In this paper we compare the “signal significances” used by the researchers for the
hypothesis testing about the observation of Phenomenon:

(a) “significance” S1 =
Ns√
Nb

[1],

(b) “significance” S2 =
Ns√

Ns +Nb
[2,3],

(c) “significance” S12 =
√
Ns +Nb −

√
Nb [4],

(d) likelihood ratio as is defined in references [5,6].

For this purpose we formulate the null and alternative hypotheses, construct the sta-
tistical test, determine the rejection region by Monte Carlo calculations, make the decision
and find the power of test for the criteria with a specified level of significance. We also use
an equal-tailed test to study the behaviour of Type I and Type II errors versus Ns and Nb
for specified values of S1 and S2. The hypotheses testing results obtained by Monte Carlo
calculations are compared with result obtained by the direct calculations of probability
density functions.
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1. Notations

Let us study a physical process during a fixed time. The estimations of the average
number of signal events which indicate new Phenomenon (Ns) and of the average number
of background events (Nb) in the experiment are given. We suppose that the events
have the Poisson distributions with the parameters Ns and Nb, i.e. the random variable
ξ ∼ Pois(Ns) describes the signal events and the random variable η ∼ Pois(Nb) describes
the background events. Say we observed x events – the realization of the studying process
X = ξ + η (x is the sum of signal and background events in the experiment). Here Ns,
Nb are non-negative real numbers and x is an integer. The classical frequentist methods
of testing a precise hypothesis allow one to construct a rejection region and determine
associated error probabilities for the following “simple” hypotheses:

H0 : X ∼ Pois(Ns + Nb) versus H1 : X ∼ Pois(Nb), where Pois(Ns + Nb) and
Pois(Nb) have the probability density functions (p.d.f.’s)

f0(x) =
(Ns +Nb)

x

x!
e−(Ns+Nb) for the case of presence and f1(x) =

(Nb)
x

x!
e−(Nb)

for the case of absence of signal events in the universe population.
In Fig.1 the p.d.f.’s f0(x) (a) and f1(x) (b) for the case Ns+Nb = 104 and Nb = 53 ([3],

Table.13, cut 6) are shown. As is seen the intersection of these p.d.f.’s takes place. Let us
denote the threshold (critical value) that divides the abscissa in Fig.1 into the rejection
region and the area of accepted hypothesis H0 via Nev. The incorrect rejection of the
null hypothesis H0, the Type I error (the statement that Phenomenon is absent, but it is

present), has the probability α =
Nev∑
x=0

f0(x), and the incorrect acceptance of H0, the Type

II error (the statement that Phenomenon exists, but it is absent), has the probability

β =
∞∑

x=Nev+1

f1(x). The dependence of α and β on the value of Nev for above example is

presented in Fig.2.

2. Hypothesis testing

In this Section we show the procedure of the rejection region construction for the
likelihood ratio [5].

We denote by B(x) =
f0(x)

f1(x)
the likelihood ratio of H0 to H1 in the area of existing

B(X). The decision to either reject or accept H0 will depend on the observed value of
B(x), where small values of B(x) correspond to the rejection of H0. For the traditional
frequentist the classical most powerful test of the simple hypothesis is determined by some
critical value c such that

if B(x) ≤ c, reject H0,
if B(x) > c, accept H0.

In compliance with this test, the frequentist reports Type I and Type II error probabilities
as α = P0(B(X) ≤ c) ≡ F0(c) and β = P1(B(X) > c) ≡ 1 − F1(c), where F0 and F1
are cumulative distribution functions of B(X) under H0 and H1, respectively. For a
conventional equal-tailed test with α = β, the critical value c satisfies F0(c) ≡ 1− F1(c).
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Fig. 1. The probability density functions f0(x) (a) and f1(x) (b) for the case of 51 signal events
and 53 background events obtained by direct calculations of the probabilities.

Fig. 2. The dependence of Type I α and Type II β errors on Nev for the case of 51 signal
events and 53 background events.
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In the same way we can construct the rejection region, find the critical values c1, c2

and c12, the probabilities α and β for the statistics s1 =
x−Nb√

Nb
(for “significance” S1),

s2 =
x−Nb√

x
(for “significance” S2) and s12 =

√
x−
√
Nb (for “significance” S12). Here, the

value of x−Nb is the estimation of the number of signal events. Note that “significance”

S12 depends on S1 and S2, namely, S12 =
S1 · S2
S1 + S2

[4].

3. Determination of probability density functions for statistics

The probability density functions of statistics under consideration can be obtained in
an analytical form. Another way to obtain the p.d.f. is the calculations by a Monte Carlo
simulation of the results of a large number of experiments (see as an example [7,6,8]) for
the given values Ns and Nb. In this study we use the latter approach. The p.d.f.’s for
Ns +Nb = 104 and Nb = 53 obtained by this way are shown in Fig.3 (these distributions
are the result of 105 simulation experiments for random variables ξ and η). The difference
between these p.d.f.’s and p.d.f.’s resulting from direct calculations of the probabilities
(Fig.1) is extremely small.

In Fig.4 the p.d.f.’s of statistic s2 for the case of Ns = 51, Nb = 53 (a) and the case
of Ns = 0, Nb = 53 (b) are shown. The behaviour of probabilities α and β versus the
critical value c2 for the statistic s2 is also presented in Fig.4 (c).

It is worth to stress that this approach allows one to construct the p.d.f.’s and, cor-
respondingly, the acceptance and the rejection regions for complicated statistics with
account for the systematic errors and the uncertainties in Nb and Ns estimations.

4. Comparison of different statistics

We compare the statistic s1, the statistic s2, the statistic s12 and the likelihood ratio
(B(x−Nb) in our case). The reason for the comparison is the existence of a opinion that the
value of such type statistic (s1, s2, s12) characterizes the difference between the samples
with and without signal events in terms of “standard deviations” (1 σ, 2 σ, . . . , 5 σ) 1.
To anticipate a little, the values of α and β corresponding to these “standard deviations”
depend on the value of the sample and for S1, for example, α and β have a perceptible
value even if Ns and Nb satisfy the condition S1 = 5.

The Type I error α is also called a significance level of the test. The value for β is
meaningful only when it is related to an alternative hypothesis H1. The dependence 1−β
is referred to as a power function that allows one to choose a preferable statistic for the
hypothesis testing. It means that for the specified significance level we can determine the
critical value c (correspondingly, c1, c2, c12) and find the power 1 − β of this criterion.
The greater the value 1 − β, the better statistic separates hypotheses for the specified
value of α.

1If f1(x) is the standard normal distribution, then the 1 σ deviation from 0 corresponds the area of
tail that is equal to 0.1587, 2 σ – 0.0228, 3 σ – 0.00135, 4 σ – 0.000032 and 5 σ – 0.000003.
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Fig. 3. The probability density functions f0(x) (a) and f1(x) (b) for the case of 51 signal events
and 53 background events obtained by Monte Carlo simulation.

Fig. 4. The probability density functions f0(x) (a) and f1(x) (b) of statistic s2. The dependence
of Type I and Type II errors on critical value c2 (c) for the case of 51 signal events and

53 background events.
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Table 1. The comparison of power of criteria for different statistics. The values c1, c2, c12 and
c are the critical values of statistics s1, s2, s12 and likelihood ratio for α = 0.01. The

values 1− β are the power for corresponding critical values.

statistic: s1 s2 s12 likelihood ratio

Ns Nb c1 1− β c2 1− β c12 1− β c 1− β
10 5 0.89 0.762 0.75 0.762 0.3 0.762 0.035 0.760
15 2.23 0.968 1.58 0.968 0.8 0.968 0.078 0.968
20 4.02 0.999 2.40 0.999 1.4 0.999 2.563 0.999
25 5.81 1.000 3.06 1.000 1.9 1.000 110.0 1.000
15 10 1.26 0.864 1.06 0.866 0.4 0.865 0.045 0.864
20 2.52 0.986 1.88 0.986 0.9 0.985 0.269 0.986
25 3.79 0.999 2.55 0.999 1.4 0.999 3.939 0.999
30 5.05 1.000 3.13 1.000 1.8 1.000 307.0 1.000

15 15 0.77 0.750 0.70 0.747 0.2 0.750 0.040 0.749
20 1.80 0.947 1.49 0.947 0.7 0.948 0.117 0.947
25 2.84 0.994 2.15 0.994 1.1 0.994 0.667 0.994
30 3.87 0.999 2.73 1.000 1.5 1.000 7.795 1.000

20 55 0.13 0.535 0.00 0.479 -0.1 0.483 0.052 0.536
25 0.67 0.733 0.64 0.733 0.2 0.735 0.049 0.731
30 1.21 0.873 1.12 0.874 0.4 0.843 0.074 0.873
35 1.88 0.963 1.68 0.962 0.7 0.950 0.231 0.962
40 2.42 0.989 2.10 0.988 1.0 0.988 0.512 0.989
45 2.96 0.997 2.60 0.998 1.3 0.998 2.894 0.998
50 3.64 1.000 2.98 1.000 1.5 1.000 9.957 1.000

Table 2. The dependence of α and β determined by using equal-tailed test on Ns and Nb for

S1 = 5. The κ is the area of intersection of probability density functions f0(x) and
f1(x).

Ns Nb α β κ

5 1 0.0620 0.0803 0.1423
10 4 0.0316 0.0511 0.0828
15 9 0.0198 0.0415 0.0564
20 16 0.0141 0.0367 0.0448
25 25 0.0162 0.0225 0.0383
30 36 0.0125 0.0225 0.0333
35 49 0.0139 0.0164 0.0303
40 64 0.0114 0.0171 0.0278
45 81 0.0124 0.0136 0.0260
50 100 0.0106 0.0143 0.0245
55 121 0.0114 0.0120 0.0234
60 144 0.0100 0.0126 0.0224
65 169 0.0106 0.0109 0.0216
70 196 0.0095 0.0115 0.0209
75 225 0.0101 0.0102 0.0203
80 256 0.0091 0.0107 0.0198
85 289 0.0096 0.0097 0.0193
90 324 0.0088 0.0101 0.0189
95 361 0.0081 0.0106 0.0185
100 400 0.0086 0.0097 0.0182
150 900 0.0078 0.0084 0.0162
500 104 0.0068 0.0068 0.0136
5000 106 0.0062 0.0065 0.0125
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In Table 1 the comparison result is shown. For several values of Ns and Nb (signif-
icance level α = 0.01) 2 the critical values c1, c2, c12, c and the corresponding values
of power 1 − β of these criteria for the statistics s1, s2, s12 and the likelihood ratio are
presented. As is seen from Table I there is no visible difference in the power values for
the considered statistics, i.e. we can use in an equivalent manner either of these statistics
for the hypotheses testing.

5. Equal-tailed test

Of concern to us is the question: What is meant by the statement that

S1 =
Ns√
Nb

= 5 or S2 =
Ns√

Ns +Nb
= 5 ?

Tables 2 and 3 give the answer to this question. In Tables 2 and 3 the values Ns
and Nb corresponding to the above condition, the values α and β determined by applying
equal-tailed test (in this study we use the conditionsmin(β−α) and α ≤ β) are presented.
One can see the dependence of α (or β) on the value of sample. The case of Ns = 5 and
Nb = 1 for S1 (Fig.5) is perhaps the most dramatic example. We have 5σ deviation,
however, if we reject the hypothesis H0, we are mistaken in 6.2% of cases and if we accept
the hypothesis H0 we are mistaken in 8.0% of cases.

Table 3. The dependence of α and β determined by using equal-tailed test on Ns and Nb for

S2 ≈ 5. The κ is the area of intersection of probability density functions f0(x) and
f1(x).

Ns Nb α β κ

26 1 0.519 · 10−5 0.102 · 10−4 0.154 · 10−4

29 4 0.661 · 10−4 0.764 · 10−4 0.142 · 10−3

33 9 0.127 · 10−3 0.439 · 10−3 0.440 · 10−3

37 16 0.426 · 10−3 0.567 · 10−3 0.993 · 10−3

41 25 0.648 · 10−3 0.118 · 10−2 0.172 · 10−2

45 36 0.929 · 10−2 0.193 · 10−2 0.262 · 10−2

50 49 0.133 · 10−2 0.185 · 10−2 0.314 · 10−2

55 64 0.178 · 10−2 0.179 · 10−2 0.357 · 10−2

100 300 0.317 · 10−2 0.428 · 10−2 0.735 · 10−2

150 750 0.445 · 10−2 0.450 · 10−2 0.894 · 10−2

One can point out that for a good deal of events the values of α for S1 and S2 ap-
proach each other. A simple argument explains such dependence. The x − Nb has the
variation equal to

√
Ns +Nb for nonzero signal events, and to

√
Nb if signal events are

absent. Correspondingly, if Nb 	 Ns, the contribution of Ns to the variation is very
small. Therefore, the standard deviation tends to unity both for the distribution of
s1 (Fig.6) and for the distribution of s2. It means that for the sufficiently large Nb, the
values of α and β obtained by equal-tailed test have a constant value close to 0.0062.
These distributions also can be approximated by a standard Gaussian N (0, 1) 3 for
the pure background and Gaussian N (5, 1) for the signal mixed with the background.

2The conditions min(0.01− α) and α ≤ 0.01 are performed.
3It is a conventional notation for normal distribution N (mean,variance).
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Fig. 5. The probability density functions f0(x) (a) and f1(x) (b) of statistic s1. The dependence
of Type I and Type II errors on critical value c1 (c) for the case of 5 signal events and

1 background events.

Fig. 6. The probability density functions f0(x) (a) and f1(x) (b) of statistic s1. The dependence
of Type I and Type II errors on critical value c1 (c) for the case of 5000 signal events

and 106 background events.
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Therefore, the equal-tailed test for the normal distributions gives c1 = 2.5 and α = β =
0.0062. These are the limiting values of α and β for the requirement S1 = 5 or S2 = 5
(by the way S12 equals 2.5 in this case).

In a similar way we can determine the behaviour of the Type I and Type II errors
depending on Ns and Nb for a small number of events and we can predict the limiting
values of α and β for a large number of events in case of other statements about statistic
s1 (Table 4) or any other estimator.

Table 4. The dependence of α and β determined by using equal-tailed test on Ns and Nb for

S1 = 2, S1 = 3, S1 = 4, S1 = 6 and S1 = 8. The κ is the area of intersection of
probability density functions f0(x) and f1(x).

S1 Ns Nb α β κ

2 2 1 0.199 0.265 0.4634
4 4 0.192 0.216 0.4061
6 9 0.184 0.199 0.3817
8 16 0.179 0.188 0.3680
∞ ∞ 0.1587 0.1587 0.3174

3 3 1 0.0906 0.263 0.3184
6 4 0.0687 0.216 0.2408
9 9 0.0917 0.123 0.2159
12 16 0.0722 0.131 0.1952
∞ ∞ 0.0668 0.0668 0.1336

4 4 1 0.0400 0.263 0.2050
8 4 0.0459 0.110 0.1406
12 9 0.0424 0.0735 0.1130
16 16 0.0407 0.0572 0.0977
∞ ∞ 0.0228 0.0228 0.0456

6 6 1 0.0301 0.0806 0.1008
12 4 0.0217 0.0217 0.0434
18 9 0.0089 0.0224 0.0271
24 16 0.00751 0.0132 0.0198
∞ ∞ 0.00135 0.00135 0.0027

8 8 1 0.0061 0.0822 0.0402
16 4 0.0049 0.0081 0.0131
24 9 0.0016 0.0052 0.00567
32 16 0.00128 0.00237 0.00331
∞ ∞ 0.000032 0.000032 0.000064

Right column in Tables 2, 3 and 4 contains the value of probability κ [4]. The κ is a
characteristic of the observability of Phenomenon for the given Ns and Nb. In particular,
it is the fraction of p.d.f. f0(x) for statistic x that can be described by the fluctuation
of background in case of the absence of Phenomenon. The value of κ equals the area of
intersection of probability density functions f0(x) and f1(x) (Fig.1). Clearly, if we su-
perimpose the p.d.f.’s f0(x) and f1(x) and choose the intersection point of curves (point

Nev = [
Ns

ln(1 + Ns
Nb
)
]) as a critical value for the hypotheses testing 4, we have κ ≡ α + β.

4Notice that in this point f0(Nev) = f1(Nev) (in our case conditions min(f0(Nev) − f1(Nev)) and

9



As is seen from Tables 2, 3 and 4 the value of κ is also close to the sum α+β determined
by using the equal-tailed test.

The accuracy of determination of the critical value by Monte Carlo calculations de-
pends on the number of Monte Carlo trials and on the level of significance defined by
the critical value. To illustrate, Fig.7 shows the distribution of the estimations of the

value
α+ β

2
for the case Ns = 100, Nb = 500 and for the 105 Monte Carlo trials in each

estimation (equal-tailed test is used). The result obtained via the direct calculations of
p.d.f.’s is also shown in this Figure. Thus, this method is accurate enough to give reliable
results for estimation of the discovery potential of the experiment.

The approach to the determination of the critical region in the hypotheses testing
by Monte Carlo calculation of p.d.f.’s can be used to estimate the integrated luminosity
which is necessary for detection the predicted effects with sufficient accuracy. In Fig.8 (a)
the dependence of Nev on integrated luminosity ([3], Table.12, cut.5, mχ1 = 85 GeV, Ns =
45, Nb = 45) is shown. The corresponding values of α and β are presented in Fig.8 (b).
As evident from Figure the integrated luminosity L = 8 · 104pb−1 is sufficient to detect
sleptons under the requirement that the probability κ ≈ α + β less than 1%.

Fig. 7. The variation of
α+ β

2
in the equal-tailed hypotheses testing (Ns = 100, Nb = 500 and

Ns = 0, Nb = 500 in 40 Monte Carlo simulations of probability density functions).

f1(Nev) ≤ f0(Nev) are performed). By this is meant that this checking can be named as the equal
probability test. Of course, if we use the hypotheses testing we can also determine Nev having found the
minimum of the sum of α and β or having found the minimum of the sum of weighted α and β or having
exploited any other condition in accordance with the requirements of experiment. The κ may be thought
of as independing of these requirements.
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Fig. 8. The dependence of the critical valueNev (a), Type I and Type II errors (b) on integrated

luminosity L for the case Ns = Nb and Ns = 45 for L = 105pb−1 (equal-tailed test).

Conclusion

In this paper the discussion on the observation of new Phenomenon is restricted to the
testing of simple hypotheses in case of the predicted values Ns and Nb and the observed
value x. As is stressed in [5], the precise hypothesis testing should not be done by
forming a traditional confidence interval and simply checking whether or not the precise
hypothesis is compatible with the confidence interval. A confidence interval [8] is usually
of considerable importance in determining where the unknown parameter is likely to be,
given that the alternative hypothesis is true, but it is not useful in determining whether
or not a precise null hypothesis is true.

To compare several statistics used for the hypotheses testing, we employ the method
that allows one to construct the rejection regions via the determination the probability
density functions of these statistics by Monte Carlo calculations. As is shown, the con-
sidered statistics have close values of power for the specified significance level and can be
used for the hypotheses testing in an equivalent manner. Also, it has been shown that the
estimations of Type I and Type II errors obtained by this method have a reasonable accu-
racy. The method was used to make the inferences on the observability of some predicted
phenomena.
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