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Abstract

Klimenko K.G. Magnetic Catalysis and Oscillating Effects in the Nambu – Jona-Lasinio Model
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Phase structure of the four dimensional Nambu – Jona-Lasinio model has been investigated
in two cases: 1) in nonsimply connected space-time of the form R3 × S1 (space coordinate is

compactified and the length of the circle S1 is L) with nonzero chemical potential µ and 2) in
the Minkowski space-time at nonzero values of µ,H , where H is the external magnetic field. In

both cases on phase portraits of the model there are infinitely many massless chirally symmetric
phases as well as massive ones with spontaneously broken chiral invariance. Such phase structure

leads unavoidably to oscillations of some physical parameters at L → ∞ or H → 0, including
magnetization, pressure and particle density of the system as well as quark condensate and a

critical curve of chiral phase transitions. Phase transitions of the 1st and 2nd orders and several
tricritical points have been shown to exist on phase diagrams of the model.

aNNOTACIQ

kLIMENKO k.g. mAGNITNYJ kATALIZ I oSCILLQCIONNYE qWLENIQ W mODELI nAMBU – jONA-

lAZINIO PRI NENULEWOM hIMIˆESKOM pOTENCIALE: pREPRINT ifw— 98-56. – pROTWINO,
1998. – 18 S., 3 RIS., BIBLIOGR.: 30.

iSSLEDOWANA FAZOWAQ STRUKTURA ˆETYREHMERNOJ MODELI nAMBU – jONA-lAZINIO W DWUH

SLUˆAQH: 1) W NEODNOSWQZNOM PROSTRANSTWE-WREMENI WIDA R3 × S1 (KOMPAKTIFICIROWANA

PROSTRANSTWENNAQ KOORDINATA, I OKRUVNOSTX S1 IMEET DLINU L) S NENULEWYM HIMIˆESKIM

POTENCIALOM µ I 2) W PROSTRANSTWE mINKOWSKOGO PRI NENULEWYH ZNAˆENIQH µ,H , GDE H

- WNE[NEE MAGNITNOE POLE. w OBOIH SLUˆAQH NA FAZOWYH PORTRETAH MODELI SU]ESTWU@T

BESKONEˆNO MNOGO BEZMASSOWYH KIRALXNO SIMMETRIˆNYH, A TAKVE MASSIWNYH SO SPONTAN-
NO NARU[ENNOJ KIRALXNOJ INWARIANTNOSTX@ FAZ. tAKAQ FAZOWAQ STRUKTURA PRIWODIT K

OSCILLQCIQM NEKOTORYH FIZIˆESKIH PARAMETROW PRI L → ∞ ILI H → 0 TAKIH, KAK NA-
MAGNIˆENNOSTX, DAWLENIE I PLOTNOSTX ˆASTIC W SISTEME, A TAKVE FERMIONNOGO KONDENSATA

I KRITIˆESKOJ KRIWOJ KIRALXNYH FAZOWYH PEREHODOW. fAZOWYE PEREHODY PERWOGO I WTORO-
GO RODOW, A TAKVE NESKOLXKO TRIKRITIˆESKIH TOˆEK SU]ESTWU@T NA FAZOWYH DIAGRAMMAH

MODELI.
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1. Introduction1

The concept of dynamical chiral symmetry breaking (DCSB) plays an essential role in
elementary particle physics and quantum field theory (QFT). In QFT this phenomenon
is well observed in Nambu – Jona-Lasinio (NJL) type models – four-dimensional models
with four-fermionic interactions [3,4]. The simplest one is presented by the Lagrangian

Lψ =
N∑
k=1

ψ̄ki∂̂ψk +
G

2N
[(

N∑
k=1

ψ̄kψk)
2 + (

N∑
k=1

ψ̄kiγ5ψk)
2], (1)

which is invariant under continuous chiral transformations

ψk → eiθγ5ψk ; (k = 1, ..., N). (2)

(In order to apply a large N-expansion technique we use here N-fermionic version of the
model.)

Since there are no closed physical systems in nature, the influence of different external
factors on the DCSB mechanism is of great interest. In these realms, special attention
have been given to the analysis of the vacuum structure of the NJL type models at nonzero
temperature and chemical potential [5,1], in the presence of external (chromo-)magnetic
fields [6,7,8], with allowance for the curvature and nontrivial space-time topology [9,2].
Combined action of external electromagnetic and gravitational fields on the DCSB effect
in four-fermion field theories were investigated in [10,11].

In the present paper we consider the phase structure and related oscillating effects of
the four dimensional Nambu – Jona-Lasinio model in two cases: 1) in nonsimply connected
space-time of the form R3 × S1 (space coordinate is compactified) with nonzero chemical
potential µ and 2) in the Minkowski space-time at nonzero values of µ,H, where H is the
external magnetic field.

1This report is based on works done in collaboration with A.K.Klimenko, M.A.Vdovichenko,
A.S.Vshivtsev and V.Ch.Zhukovskii [1,2].
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1.1 NJL model at µ �= 0

First of all let us prepare the basis for investigations in the following sections and
consider a phase structure of the model (1) at µ �= 0 in the Minkowski space-time.

Recall some well - known vacuum properties of the theory (1) at µ = 0. The intro-
duction of an auxiliary Lagrangian

L̃ = ψ̄i∂̂ψ − ψ̄(σ1 + iσ2γ5)ψ −
N

2G
(σ21 + σ

2
2) (3)

greatly facilitates the problem under consideration. (In (3) and other formulae below we
have omitted the fermionic index k for simplicity.) Theory (3) is equivalent to the (1) for
auxiliary bosonic fields σ1,2 which are solutions of the equations of motion.

From (3) it follows in the leading order of 1/N -expansion:

exp(iNSeff(σ1,2)) =
∫
Dψ̄Dψ exp(i

∫
L̃d4x),

where

Seff (σ1,2) = −
∫
d4x

σ1 + σ
2
2

2G
− i ln det(i∂̂ − σ1 − iγ5σ2).

Supposing that in this formula σ1,2 are independent of the space-time points, we have by
definition:

Seff(σ1,2) = −V0(σ1,2)
∫
d4x,

where (Σ =
√
σ21 + σ

2
2):

V0(σ1,2) =
Σ2

2G
+ 2i

∫ d4p

(2π)4
ln(Σ2 − p2) ≡ V0(Σ). (4)

Introducing in (4) the Euclidean metrics (p0 → ip0) and cutting off the range of
integration (p2 ≤ Λ2), we obtain:

V0(Σ) =
Σ2

2G
− 1

16π2


Λ4 ln

(
1 +

Σ2

Λ2

)
+ Λ2Σ2−− Σ4 ln

(
1 +

Λ2

Σ2

)
. (5)

The stationary equation for the effective potential (5) has the form:

∂V0(Σ)

∂Σ
= 0 =

Σ

4π2


4π

2

G
− Λ2 + Σ2 ln

(
1 +

Λ2

Σ2

)
 ≡ Σ

4π2
F (Σ). (6)

Now one can easily see that at G < Gc = 4π2/Λ2 eq. (6) has no solutions apart from
Σ = 0. Hence, in this case the fermions are massless, and chiral invariance (2) is not
broken.

If G > Gc, then Eq. (6) has one nontrivial solution Σ0(G,Λ) �= 0 such that F (Σ0) = 0.
In this case Σ0 is a point of global minimum for the potential V0(Σ). This means that the
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spontaneous breaking of the symmetry (2) takes place. Moreover, the fermions acquire
mass M ≡ Σ0(G,Λ).

Let us now imagine that µ > 0 and temperature T �= 0. In this case one can find the
an effective potential VµT (Σ) if the measure of integration in (4) is transformed according
to the rule ∫

dp0
2π
→ iT

∞∑
n=−∞

, p0 → iπT (2n+ 1) + µ.

Summing there over n [12] and directing the temperature to zero in the obtained expres-
sion, we have:

Vµ(Σ) = V0(Σ)− 2
∫ d3p

(2π)3
θ(µ−

√
Σ2 + p2)(µ−

√
Σ2 + p2), (7)

where θ(x) is the step function. Integrating in (7), we find

Vµ(Σ) = V0(Σ) −
θ(µ − Σ)
16π2


103 µ(µ2 − Σ2)3/2−

−2µ3
√
µ2 − Σ2 + Σ4 ln [ ( µ +

√
µ2 −Σ2 )2/Σ2 ]


. (8)
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Fig.1. Phase portrait of the NJL model at nonzero µ and for arbitrary values of fermionic mass

M . Phases B and C are massive nonsymmetric phases, A is chirally symmetric phase.

Here µ2c = M , µ1c =
√
1
2
M2 ln(1 + Λ2/M2), M2c = Λ/(2.21...), M1c is the solution of

equation µ21c(M1c) = Λ2/(4e). In phase B the particle density in the ground state is equal

to zero. However, in phase C the particle density is not zero.
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It follows from (8) that in the case G < Gc and at arbitrary values of chemical
potential chiral symmetry (2) is not broken. However, at G > Gc the model has a rich
phase structure, which is presented in Fig.1 in terms of µ andM . (At G > Gc one can use
the fermionic massM as an independent parameter of the theory. Three quantities G, M
and Λ are connected by Eq. (6).) In this Figure the solid and dashed lines represent the
critical curves of the second- and first-order phase transitions, respectively. Furthermore,
there are two tricritical points α and β, two massive phases B and C with spontaneously
broken chiral invariance as well as the symmetric massless phase A on the phase portrait
of the NJL model (for detailed calculations of the vacuum structure of the NJL model see
[1]).

2. Phase structure of the NJL model at µ �= 0 and in the

R3 × S1 space-time

It is well-known that the unified theory of all forces (including gravitation) of nature
has yet to be constructed. Since in the early Universe the gravity was sufficiently strong
and one should take it into account, a lot of physicists study quantum field theories in
space-times with nontrivial metric and topology. In this, the NJL model is the object of
special attention (see review [10]), because the idea of dynamical chiral symmetry breaking
is the underlying concept of elementary particle physics. There is a copious literature on
this subject [9,10,11,13]. In particular, the investigation of four-fermion theories in the
space-time of the form Rd × S1 × · · · × S1 is of great interest [13]. The matter is that
such space-time topology occurs in superstring theories, in the description of Casimir type
effects and so on.

In the present section the NJL model in the R3 × S1 space-time and at µ �= 0 is
considered since a great amount of physical phemomena take place at nonzero particle
density, i.e. at nonzero chemical potential. Here the space coordinate is compactified
and the circumference S1 has the length L. For simplicity we study only the case with
periodic boundary conditions: ψ(t, x+ L, y, z) = ψ(t, x, y, z).

2.1 Phase structure

In order to find the effective potential VµL(Σ) at µ �= 0 and L �= ∞, we need to
transform the integration over p1 in (7) into a summation over discrete values p1n according
to the rule ∫ dp1

2π
f(p1)→

1

L

∞∑
n=−∞

f(p1n); p1n = 2πn/L , n = 0,±1,±2, ...

The resulting expression is

VµL(Σ) = VL(Σ)−
λ

6π

∞∑
n=0

αnθ(µ −
√
Σ2 + (2πλn)2 )·

· (µ −
√
Σ2 + (2πλn)2 )2(µ + 2

√
Σ2 + (2πλn)2 ), (9)
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where

VL(Σ) = V0(Σ)−
2

π2L

∞∫
0

dxx2 ln[ 1− exp(−L
√
x2 + Σ2 ) ], (10)

αn = 2− δn0 and V0(Σ) is given in (5). The stationary equation for function (9) has the
form

∂VµL(Σ)

∂Σ
=

∂VL(Σ)

∂Σ
+
λΣ

π

∞∑
n=0

αnθ(µ−
√
Σ2 + (2πλn)2 ) ·

·(µ−
√
Σ2 + (2πλn)2 ) ≡ 2Σ

π2
φ(Σ) = 0. (11)

The case µ = 0, λ ≡ 1/L > 0. Putting µ equals zero in (9), we obtain the effective
potential VL(Σ) (11) in the case under consideration. This function at G > Gc has a
global minimum point Σ0(λ) > 0, which means that for all the values of λ ≥ 0 chiral
invariance of the model is spontaneously broken. Obviously, Σ0(λ)→ M at λ→ 0.

When G < Gc, Σ0(λ) ≡ 0 at λ < λ0 and Σ0(λ) > 0 at λ > λ0 (here π2

2G
− Λ2

8
≡ π2

6
λ20).

In the point λ = λ0 there is a second order phase transition from a symmetric to a
nonsymmetric phase of the model, because at λ→ λ0+

Σ0(λ) =
2

3
π(λ− λ0) + o(λ− λ0),

i.e. the order parameter Σ0(λ) is a continuous function in the point λ = λ0. At λ → ∞
for all the values of coupling constant G we have

Σ0(λ) ∼ 2πλ(2.719...).

Details of above calculations and of the following ones are presented in [2].
The general case µ, λ �= 0. We shall find a one-to-one correspondence between the

points of the plane (λ, µ) and the phase structure of initial model. It is very convinient
to divide this plane into regions ωk:

(µ, λ) =
∞⋃
k=0

ωk; ωk = {(µ, λ) : 2πλk ≤ µ < 2πλ(k + 1)}. (12)

In ω0 only the first term from a series in (9) is nonzero, in ω1 only the first and
the second terms are nonzero and so on. In order to obtain a phase structure, one
should study step by step the global minimum point of the function VµL(Σ) in regions
ω0,ω1,.... Omitting calculational details we show at once the resulting phase portraits at
G1 ≡ (0.917...)Gc < G < Gc (see Fig.2) and at Gc < G < (1.225...)Gc ≡ G2 (see Fig.3)
as well [2].

One can see in Fig.2 only two massive nonsymmetric phases B and C . In contrast,
there are infinitely many massive phases Ck(k = 0, 1, ...) in Fig.3. In phase B the particle
density is identically zero, but in C and in all Ck phases this quantity is not zero. In
both figures there are also infinitely many symmetric massless phases Ak(k = 0, 1, ..) of
the NJL model.
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µ

λ

B

C

A0

A1

An

µ = 2πλ

µ = 4πλ

µ = 2πλn

λ0

Fig.2. Phase portrait of the R3 × S1 NJL model at µ �= 0 and G1 < G < Gc (λ = 1/L).

The dashed lines are the critical curves of the first-order phase transition, the solid lines

correspond to the second-order critical curves. Points a and b are the tricritical ones.

There is a cascade of massless symmetric phases Ak (k = 0, 1, 2...).

The line µ0(0)cnc2c1b in Fig.3 is the critical line µc(λ) of the second-order phase tran-
sitions, where chiral symmetry is restored. The µc(λ) is defined by the equation

φ(0) = 0, (13)

where φ(Σ) is given in (11). Critical lines l1, l2, ... are the solutions of equations

φ(µk) ≡ φ(
√
µ2 − (2πkλ)2) = 0

for k = 1, 2, ..., respectively. Boundaries between massless phases in both figures are the
boundaries between regions ωk from (12).

Phase structure of the NJL model at other values of the coupling constant G is pre-
sented in [2], where one can also find more detailed description of above phase portraits
at G1 < G < G2.
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ln
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A0

A1

An

M

µc(0)

µ
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Fig.3. Phase portrait of theR3×S1 NJL model at µ �= 0 andGc < G < G2 (λ = 1/L). The dashed

lines are the critical curves of the first-order phase transition, the solid lines correspond

to the second-order critical curves. Points a and b are the tricritical points. There are

cascades of massless symmetric phases Ak as well as massive phases Ck (k = 0, 1, 2...).

The line Ma is µ = Σ0(λ) and µc(0) = 2πλ̄0/
√
6, where π2

2G
− Λ2

8
≡ −π2

6
λ̄20.

2.1 Effects of oscillations

Now let us show that, due to the presence in a phase structure of the NJL model of
cascades of massless Ak as well as massive Ck phases, one can observe oscillations of some
physical parameters. We shall consider only the case Gc < G < G2.

The continuous physical quantity f(x) is called an oscillating one at x→ a,
if there exist a monotonically increasing (decreasing) sequence {xn} such that:
i) xn → a at n → ∞, ii) f(x) is a continuous function at each point xn and iii)
f ′(x) is a discontinuous function at points xn.

At zero temperature the oscillating quantity satisfies, as a rule, this definition (see,
for example, magnetic oscillations in quantum electrodynamics [14,15]). Of course, at
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nonzero temperature one can observe a smoother behaviour of oscillating parameters.
Since we shall deal with the zero temperature case only, the above cited definition of
oscillations is well suited in the framework of the present paper.

Oscillations of the critical curve µc(λ). Recall that µc(λ) is the solution of the equation
(13). Evidently, inside an arbitrary region ωk (see (12)) this function has the form

µc(λ)
∣∣∣
ωk
≡ µ(k)(λ) =

2π{[6k(k + 1) + 1]λ2 + λ̄20}
6(2k + 1)λ

, (14)

where λ̄0 is given in the caption to Fig.3. Hence,

µc(λ) = µ(k)(λ) at tk+1 ≤ λ ≤ tk , k = 1, 2, 3, ..., (15)

where tk is such a value of parameter λ, that the curve µc(λ) crosses the line µ = 2πkλ,
i.e. the right boundary of ωk:

tk =
λ̄0√
6k2 − 1

. (16)

Note, µ(k)(tk) = µ(k−1)(tk), so the function µc(λ) (15) is a continuous one at λ > 0. It
follows also from (15) that

dµ(k−1)(λ)

dλ

∣∣∣∣∣
λ→tk+

=
π(2− 6k)
3(2k − 1) < 0,

dµk(λ)

dλ

∣∣∣∣∣
λ→tk−

=
π(2 + 6k)

3(2k + 1)
> 0.

the last inequalities mean that at an infinite set of points tk (k = 1, 2, ....) the function
µc(λ) is not differentiated. According to the above given definition, the critical curve
µc(λ) oscillates at λ→ 0 or, equivalently, at L→∞ (see Fig.3).

Finally, let us present this oscillations of the µc(λ) in a manifest form. We need the
following Poisson summation formula [16]:

∞∑
n=0

αnΦ(n) = 2
∞∑
k=0

αk

∞∫
0

Φ(x) cos(2πkx)dx, (17)

where αn = 2− δn0. Using it in equation (13), one can easily find at λ→ 0:

µc(λ) ≈
2πλ̄0√
6

{
1 +

3λ2

π2λ̄20

∞∑
n=1

cos(nπλ̄0L/
√
6)

n2

}
, (18)

From (18) it follows that µc(λ) has an oscillating part, which oscillates at L → ∞ with
frequency λ̄0/(2

√
6).

Oscillations of the fermionic condensate. Fermionic condensate is defined as < ψ̄ψ >,
and in the NJL model it is proportional to < Σ >. Since the last quantity is the global
minimum point Σ(µ, λ) of an effective potential, we should study nontrivial solution of
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the stationary equation (11). A detailed analysis of Σ(µ, λ) was carried out in [2], and
this quantity at M < µ < µc(0) and at λ→ 0 (L→∞) behaves as

Σ(µ, λ) = m(µ) +
λ2
√
µ2 −m2(µ)

µf ′(m(µ))

∞∑
n=1

cos(n
√
µ2 −m2(µ) L)
n2

+ o(λ2), (19)

where m(µ) equals Σ(µ, 0), f ′(m) is the derivative of the function

f(m) ≡ F (m) + µ

4

√
µ2 −m2 − m

2

4
ln

(
µ+
√
µ2 −m2
m

)
, (20)

and F (Σ) is given in (6). It is clear from (19) that Σ(µ, λ) has an oscillating part, which

oscillates at L→∞ with frequency
√
µ2 −m2(µ)/(2π).

Oscillations of the particle density. Suppose, M < µ < µc(0). Then the thermody-
namic potential (TDP) Ω(µ, λ) of the NJL system is equal to the value of its effective
potential at the global minimum point Σ(µ, λ), i.e. Ω(µ, λ)= VµL(Σ(µ, λ). It is well-
known that the thermodynamic potential defines the particle density n(µ, λ) through the
relation: n(µ, λ)= −∂Ω(µ, λ)/∂µ. Hence,

n(µ, λ) = −

∂VµL(Σ)∂µ

+
∂VµL(Σ)

∂Σ

∂Σ

∂µ



∣∣∣∣∣∣
Σ=Σ(µ,λ)

=
λ

2π

∞∑
n=0

αnΘ(µ−
√
Σ2(µ, λ) + (2πλn)2 )(µ2 − Σ2(µ, λ) − (2πλn)2 ). (21)

Using in (21) the Poisson summation formula (17) [2], we see that at µ = const and
L→∞

n(µ, λ) =
(µ2 −m2(µ))3/2

3π2
+ λ2

[
m(µ)(µ2 −m2(µ))

µf ′(m(µ))
− 2

√
µ2 −m2(µ)

]
·

·
∞∑
n=1

cos(n
√
µ2 −m2(µ)L)
π2n2

+ o(λ2), (22)

where m(µ) is the fermion mass at λ = 1/L = 0 (see (19)), f(m) is defined in (20). From
(22) one can easily see that the particle density in the ground state of the NJL model

oscillates with frequency
√
µ2 −m2(µ)/(2π).

Oscillations of the pressure. Let us suppose that µ > µc(0). Then for the sufficiently
large values of L the global minimum point of the effective potential equals zero. In this
case the TDP of the model is equal to VµL(0). So, at L→∞ the TDP Ω(µ, λ) oscillates
with frequency µ/(2π), because it looks like [2]:

Ω(µ, λ) = VL(0)−
µ4

12π2
−
∞∑
k=0

[
4λ4

π2k4
− 2µλ

3

π2k3
sin(µkL) − 4λ4

π2k4
cos(µkL)

]
.
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In our case the pressure in the system is defined as p = −∂(LΩ)/∂L. Using the above
expression for Ω(µ, λ), we see that the pressure in the vacuum of the NJL model also
oscillates with frequency µ/(2π).

One can interpret the case under consideration as the ground state of the NJL system,
located between two parallel plates with periodic boundary conditions. The force which
acts on each of plates is known as a generalized Casimir force. Evidently, this force is
proportional to the pressure in the ground state of the system. Hence, at a nonzero
chemical potential the Casimir force of the constrained fermionic vacuum oscillates at
L→∞.

3. Phase structure of the NJL model at µ �= 0 and in the

presence of external magnetic field

In the present section we shall study the magnetic properties of the NJL vacuum. At
µ = 0 this problem was considered in [6,8]. It was shown in [6] that at G > Gc the chiral
symmetry is spontaneously broken for arbitrary values of external magnetic field H, and
even for H = 0. At G < Gc the NJL system has a symmetric vacuum at H = 0. However,
if the external (arbitrary small) magnetic field is switched on, then for all G ∈ (0, Gc)
one has a spontaneous breaking of initial symmetry [8]. This is the so called effect of
dynamical chiral symmetry breaking catalysis by external magnetic field.

The brief history of this effect is the following: First of all, such property of external
magnetic field was discovered in (2+1) - dimensional Gross-Neveu (3DGN) model [17,18].
At H = 0 there exist two phases in the 3DGN model: one of which is a massless chirally
invariant phase (G < Gc), and the other is a massive phase with spontaneously broken
chiral symmetry (G > Gc). However, for each value of H �= 0 as well as for all the
values of the bare coupling constant G > 0, the symmetric phase is absent in the 3DGN
theory, and the chiral symmetry is broken down [17,18] 2. Of course, in [17,18] special
consideration was taken for the case G < Gc, where the magnetic field induces the DCSB
even for the weakest attractive interaction between fermions (the magnetic catalysis of
DCSB). It turns out, that the external chromomagnetic field is also a magnetic catalyst of
DCSB [19]. The influence of temperature and chemical potential on this effect has been
studied in [18]-[21], where the restoration of chiral symmetry at sufficienly large values
of T and µ was predicted. Later, in [22] the explanation of this phenomenon on the
basis of dimensional reduction mechanism was found in the framework of 3DGN model.
The magnetic catalysis takes place in the four-dimensional NJL model [8,23,24] as well
as in other theories, and now it is under intensive consideration (see, e.g. [10,25,26] and
references therein).

(Authors of [24,26] declare that in our paper [18] only a ”fact that external magnetic
field enhances a fermion dynamical mass” was established. Hence, they assert that in

2The consideration in [18] is performed in terms of parameter g, such that 1g =
1
g(m) −

2m
π , where m is

a normalization point, g(m) is a renormalized coupling constant. The connection between g and G was
established in [19]: 1g =

1
G −

1
Gc

. So, at g < 0 and g > 0, one has G > Gc and G < Gc, respectively.
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[18] only the case G > Gc was considered. In fact, in [17,18,19] the action of external
(chromo-)magnetic field on the 3DGN model was studied for the arbitrary values of bare
coupling constant. The spontaneous breakdown of chiral symmetry was found there for
all G ∈ (0,∞), including the case G < Gc, and even the case of arbitrary small values of
G > 0 (the magnetic catalysis of DCSB).)

In the present section we continue the investigation of magnetic catalysis effect and
this time turn to the consideration of the four-dimensional NJL model at H, µ �= 0.

3.1 Magnetic catalysis at µ �= 0

Let us recall some aspects of the problem at µ = 0. Using a well-known proper-time
method [27] or momentum-space calculations [28], one can find the effective potential
VH(Σ) of the NJL model at H �= 0:

VH(Σ) =
Σ2

2G
+
eH

8π2

∫ ∞
0

ds

s2
exp(−sΣ2) coth(eHs).

After identical transformations we have

VH(Σ) = V0(Σ) + ṼH(Σ) + Z(Σ), (23)

where

V0(Σ) =
Σ2

2G
+

1

8π2

∫ ∞
0

ds

s3
exp(−sΣ2),

Z(Σ) =
(eH)2

24π2

∫ ∞
0

ds

s
exp(−sΣ2),

ṼH(Σ) =
1

8π2

∫ ∞
0

ds

s3
exp(−sΣ2)

[
(eHs) coth(eHs)− 1− (eHs)

2

3

]
. (24)

The potential V0(Σ) in (24) up to an infinite additive constant is equal to function (4).
Hence, the UV-regularized expression for it looks like (5).

The function Z(Σ) is also an UV-divergent one, so we need to regularize it:

Z(Σ) =
(eH)2

24π2

∫ ∞
0

ds

s
(exp(−sΣ2)− exp(−sΛ2)) + (eH)2

24π2

∫ ∞
0

ds

s
exp(−sΛ2)

= −(eH)
2

24π2
ln
Σ2

Λ2
+
(eH)2

24π2

∫ ∞
0

ds

s
exp(−sΛ2). (25)

The last infinite term in (25) contributes to the renormalization of an electric charge and
magnetic field as well, similar as it occures in quantum electrodynamics [27].

The potential ṼH(Σ) in (25) has no UV divergences, so it is easily calculated with the
help of the table of integrals [29]. The final expression for VH(Σ) is:

VH(Σ) = V0(Σ)−
(eH)2

2π2

{
ζ ′(−1, x)− 1

2
[x2 − x] lnx+ x2

4

}
, (26)

11



where x = Σ2/(2eH), ζ(ν, x) is the generalized Riemann zeta-function and ζ ′(−1, x)=
dζ(ν, x)/dν|ν=−1 . The global minimum point of this function is the solution of the sta-
tionary equation:

∂

∂Σ
VH(Σ) =

Σ

4π2
{F (Σ)− I(Σ)} = 0, (27)

where F (Σ) is given in (6), and

I(Σ) = 2eH{ln Γ(x)− 1
2
ln(2π) + x− 1

2
(2x− 1) ln x}

=
∫ ∞
0

ds

s2
exp(−sΣ2)[ eHs coth(eHs)− 1]. (28)

For the arbitrary fixed values of H,G there is only one nontrivial solution Σ0(H) of
equation (27), which is the global minimum point of VH(Σ).

Hence, at G < Gc and H = 0 the NJL vacuum is chirally symmetric one, but an
arbitrary small value of external magnetic fieldH induces the DCSB, and fermions acquire
nonzero mass Σ0(H) (the effect of magnetic catalysis of DCSB).

In the present paper we shall consider only the case G < Gc. Therein, Σ0(H) is a
monotonically increasing function versus H. Besides, at H →∞

Σ0(H) ≈
eH

π

√
G

12
(29)

and at H → 0

Σ20(H) ≈
eH

π
exp{− 1

eH
(
4π2

G
− Λ2)}. (30)

Now let us consider a more general case, when H �= 0, µ �= 0. In one of our prevoius
papers [21] the effective potential of a 3DGN model at nonzero H, µ and T was obtained.
Similarly, one can find an effective potential in the NJL model at H, T, µ �= 0:

VHµT (Σ) = VH(Σ) −
TeH

4π2

∞∑
k=0

αk

∫ ∞
−∞

dp ln
{[
1 + exp−β(εk+µ)

] [
1 + exp−β(εk−µ)

]}
, (31)

where β = 1/T , αk = 2− δ0k, εk =
√
Σ2 + p2 + 2eHk, and a function VH(Σ) is given in

(26). With the temperature in (31) tending to the zero, we have the effective potential of
NJL model at H, µ �= 0:

VHµ(Σ) = VH(Σ)−
eH

4π2

∞∑
k=0

αk

∫ ∞
−∞

dp(µ − εk)θ(µ− εk), (32)

which can be easily transformed to the form

VHµ(Σ) = VH(Σ)−
eH

4π2

∞∑
k=0

αkθ(µ − sk)

µ
√
µ2 − s2k − s2k ln


µ+

√
µ2 − s2k
sk




, (33)
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where sk =
√
Σ2 + 2eHk. Finally, let us present the stationary equation for the potential

(33):

∂

∂Σ
VHµ(Σ) =

Σ

4π2


F (Σ)− I(Σ) + 2eH

∞∑
k=0

αkθ(µ− sk) ln

µ +

√
µ2 − s2k
sk




 = 0. (34)

In order to get a phase portrait of the model, one should find a one-to-one correspondence
between points of the (µ,H)-plane and global minimum points of function (33), i.e. we
need to solve equation (34), find a global minimum Σ(µ,H) for potential (33), to study
properties of Σ(µ,H) versus (µ,H).

In order to greatly simplify this problem, let us divide the plane (µ,H) into a set of
regions ωk:

(µ,H) =
∞⋃
k=0

ωk; ωk = {(µ,H) : 2eHk ≤ µ2 ≤ 2eH(k + 1)}. (35)

In the region ω0 only a first term is nonzero from a series in (34-35). So, one can find that
for the points (µ,H) ∈ ω0 which are above the line L={(µ,H) : µ = Σ0(H)}, the global
minimum is at the point Σ = 0. Just under the curve L the point Σ = Σ0(H) is a local
minimum of the potential (33), and Σ = Σ0(H) transforms to the global minimum when
(µ,H) lies under the critical curve of the first order phase transitions µ = µc(H), which
is defined by the following equation:

VHµ(0) = VHµ(Σ0(H)). (36)

In the region ω0 one can easily solve this equation:

µc(H) =
2π√
eH

[VH(0)− VH(Σ0(H))]1/2. (37)

Hence, we have shown that at µ > µc(H) (G < Gc) there is a massless symmetric phase
of the NJL model (numerical investigations of (33-34) give us the zero global minimum
point for the potential VHµ(Σ) in other regions ω1, ω2, ... as well). The external magnetic
field ceases to induce the DCSB at µ > µc(H) (or at sufficiently small values of magnetic
field H < Hc(µ), where Hc(µ) is the inverse function to µc(H)). But, under the critical
curve (37) (or at H > Hc(µ)) due to the presence of external magnetic field the chiral
symmetry is spontaneously broken. Here magnetic field induces dynamical fermion mass
Σ0(H), which is not µ-dependent value.

At last, we should remark that in the NJL model the magnetic catalysis effect takes
place only in the phase with zero particle density, i.e. at µ < µc(H). If µ > µc(H), we
have a symmetric phase with nonzero particle density, but here the magnetic field cannot
induce DCSB.
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3.2 Magnetic oscillations

In a previous case we have shown that points (µ,H), which are above the critical curve
µ = µc(H), correspond to the chirally symmetric ground state of the NJL model. One-
fermionic excitations of such a vacuum have zero masses. At first sight, properties of this
symmetric vacuum slightly vary, when parameters µ and H change. However, this is not
the case and in the region µ > µc(H) we have infinitely many massless symmetric phases
of the theory as well as a variety of critical curves of the second order phase transitions.
In the experiment this cascade of phases is identified with oscillations of such physical
quantities as magnetization and particle density. Let us prove it.

It is well-known that the state of the thermodynamic equilibrium (≡ the ground
state) of arbitrary quantum system is described by the thermodynamic potential (TDP)
Ω, which is a value of the effective potential in its global minimum point. In the case
under consideration the TDP Ω(µ,H) at µ > µc(H) has the form

Ω(µ,H) ≡ VHµ(0) = VH(0)−

− eH

4π2

∞∑
k=0

αkθ(µ− εk){ µ
√
µ2 − ε2k − ε2k ln[(

√
µ2 − ε2k + µ)/εk] }, (38)

where εk =
√
2eHk. We shall use the following criterion of the phase transitions: If,

at least, one first (second) partial derivative of Ω(µ,H) is a discontinuous function at a
point, then it is a point of the first (second) order phase transition.

Using this criterion let us show that the boundaries of ωk regions (35), i.e. lines
lk = {(µ,H) : µ =

√
2eHk} (k = 1, 2, ...), are the critical lines of second order phase

transitions. In the arbitrary region ωk the TDP (38) has the form:

Ω(µ,H)
∣∣∣
ωk
≡ Ωk = VH(0)−

− eH

4π2

k∑
i=0

αiθ(µ − εi)

 µ

√
µ2 − ε2i − ε2i ln


(
√
µ2 − ε2i + µ)

εi




. (39)

From (39) one can easily find

∂Ωk
∂µ

∣∣∣∣∣
(µ,H)→lk+

− ∂Ωk−1
∂µ

∣∣∣∣∣
(µ,H)→lk−

= 0, (40)

as well as:

∂2Ωk
(∂µ)2

∣∣∣∣∣
(µ,H)→lk+

− ∂
2Ωk−1
(∂µ)2

∣∣∣∣∣
(µ,H)→lk−

= − eHµ

2π2
√
µ2 − ε2k

∣∣∣∣∣
µ→εk+

→ −∞. (41)

Equality (40) means that the first derivative ∂Ω/∂µ is a continuous function on all lines lk.
However, the second derivative ∂2Ω/(∂µ)2 has an infinite jump on each line lk (see (41)),
so these lines are the critical curves of the second order phase transitions. (Similarly, one
can prove the discontinuity of ∂2Ω/(∂H)2 and ∂2Ω/∂µ∂H on all lines ln.)
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Let the chemical potential be fixed, i.e. µ = const. Then on the plane (µ,H) we have
a line, that crosses critical lines l1, l2, ... at points H1, H2, ... correspondingly. The particle
density n and the magnetization m of any thermodynamic system are defined by the TDP
in the following way: n = −∂Ω/∂µ, m = −∂Ω/∂H. At µ = const these quantities are
continuous functions over external magnetic field only, i.e. n ≡ n(H), m ≡ m(H). We
know that all the second derivatives of Ω(µ,H) are discontinuous on every critical line ln.
So, functions n(H) and m(H), continuous on the interval H ∈ (0,∞), have derivatives
broken on infinite set of points H1, ..., Hk, ... . According to the definition given in section
2.1, the particle density and magnetization oscillate at H → 0.

In order to present oscillating parts of n(H) and m(H) in a manifest analytical form,
we shall use the technique elaborated in [15], where a manifest analytical expression was
found for oscillating part of Ω(µ,H) for perfect relativistic electron-positron gas. This
technique can be used without any difficulties in our case as well.

Hence, one can rewrite the TDP (38) in the following form:

Ω(µ,H) = Ωmon(µ,H) + Ωosc(µ,H), (42)

where (ν = µ2/(eH)):

Ωmon = VH(0)−
µ4

12π2
− (eH)

2

4π3

ν∫
0

dy
∞∑
k=1

1

k
P (πky), (43)

Ωosc =
µ

4π3/2

∞∑
k=1

(
eH

πk

)3/2
[Q(πkν) cos(πkν + π/4) + P (πkν) cos(πkν − π/4)]. (44)

(To find (43-44) it is sufficient to bring the electronic mass to zero in formula (19) from
[15].) Functions P (x) and Q(x) in (43-44) are connected with Fresnel’s integrals C(x)
and S(x) [30]:

C(x) =
1

2
+

√
x

2π
[P (x) sinx+Q(x) cosx]

S(x) =
1

2
−
√
x

2π
[P (x) cosx−Q(x) sinx].

They have at x→∞ the following asymptotics [30]:

P (x) = x−1 − 3
4
x−3 + ..., Q(x) = −1

2
x−2 +

15

8
x−4 + ...

Formula (44) presents the exact oscillating part of the TDP (38) for the NJL model at
G < Gc. Since in the present case the TDP is propotional to the pressure of the system,
one can conclude that the pressure in the NJL model oscillates, when H → 0. It follows
from (44) that frequency of oscillations at large values of a parameter (eH)−1 equals µ2/2.
Then, starting from (44) one can easily find a manifest expression for oscillating parts of
n(H) and m(H). These quantities oscillate at H → 0 with the same frequency µ2/2 and
have rather involved form, so we do not present it here.
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