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Abstract

Kiselev V.V., Onishchenko A.I. Two-loop anomalous dimensions for currents of baryons with
two heavy quarks in NRQCD: IHEP Preprint 98-64. – Protvino, 1998. – p. 13, figs. 1, refs.: 22.

We present analytical results on the two-loop anomalous dimensions of currents for baryons,
containing two heavy quarks J = [QiTCΓτQj ]Γ

′
qkεijk with arbitrary Dirac matrices Γ and Γ

′
in

the framework of NRQCD in the leading order over both the relative velocity of heavy quarks
and the inverse heavy quark mass. It is shown, that in this approximation the anomalous
dimensions do not depend on the Dirac structure of the current under consideration.
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Introduction

The necessary feature of QCD applications to various fields of particle physics is the
study of a scale dependence for operators as it is governed by the renormalization-group
(RG). In the present paper we investigate the RG properties of currents for baryons
with two heavy quarks in the framework of Non-Relativistic Quantum Chromodynamics
(NRQCD) [1],[2] and its dimensionally regularized version [3]. In the two-loop approxima-
tion we analytically calculate the anomalous dimensions of currents associated with the
ground-state baryons, containing two heavy quarks1. The dependence of QCD operators
and matrix elements on the relative velocity v of heavy quarks inside the hadron as well
as on the inverse heavy quark mass 1/MQ can be systematically treated in the framework
of justified effective expansions in QCD. So, we apply the expansion in 1/MQ, as it was
developed in Heavy Quark Effective Theory (HQET) [7,8,9] for operators, corresponding
to the interaction of heavy quarks with the light quark. For the heavy-heavy subsystem,
a powerful tool is the NRQCD-expansion in both the relative velocity and the inverse
mass. Here we consider the leading order in both v and 1/MQ, which can serve as a good
approximation for the anomalous dimensions of currents under consideration.

The anomalous dimensions of composite operators can be desirably used in QCD sum
rules [10], which will allow us to evaluate the masses of these baryons together with their
residues in terms of basic non-perturbative QCD parameters. For example, calculating
the two-point correlators of baryonic currents in the Operator Product Expansion (OPE)
in NRQCD, we have to insert the anomalous dimensions, obtained here in the static
approximation, to relate the result to QCD.

This procedure is caused by a different ultraviolate behaviuor of loop corrections in
the full QCD and the effective theory. The latter contains the divergences absent in QCD,
since it was constructed in the way to provide correct infrared properties of local QCD
fields. The regularized quantities of effective theory depend on the normalization point
under the RG equations with the corresponding anomalous dimensions. The ambiguity
in the initial conditions of such differential equations is eliminated by the matching to
the full QCD at a scale, which is generally chosen as the heavy quark mass. The latter

1We do not consider the problems concerning the spectroscopy, decays and production mechanisms of
baryons with two heavy quarks. This can be found in [4],[5] and [6], correspondingly.
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procedure means, that using the effective theory, we can systematically take into account
the virtualities greater than the heavy quark mass. So, the knowledge of the two-loop
anomalous dimensions is also important, when one discusses the matching of baryonic
currents, obtained in this approximation with the corresponding currents in the full QCD.

Our analysis in this paper is close to what was presented in [11], devoted to the
baryons with a single heavy quark2. While being very similar, these analyses also have
some differences, which we would like to stress. The main technical obstacle of calculations
is related to the fact that the kinetic term is thought to be a necessary ingredient in a
quark propagator for the evaluation of RG quantities in NRQCD, unlike HQET,

1

k0 + iε
−→ 1

k0 − k2

2m
+ iε

. (1)

If a hard cut-off is used (µ � m), we can easily see that such NRQCD-calculations can
be performed just like in HQET, since k0 � k2/m in the ultraviolet regime. However, if
the dimensional regularization is used, the high energy modes (k > m) are not explicitly
suppressed and they give non-vanishing contributions. This can be seen because the
behavior of the NRQCD propagator changes at energies greater than the mass. In spite
of this, one would like to use dimensional regularization because it keeps all of the QCD
symmetries and, moreover, the calculations are technically simpler.

The difference between NRQCD and HQET can be explicitely highlighted in the con-
sideration of an effective Lagrangian, derived at the tree level in the 1/m-expansion:

LNRQCD = ψ†


iD0 +

D2

2m


ψ +

1

8m3
ψ† D4ψ − gs

2m
ψ†σ · Bψ

− gs
8m2

ψ†
(
D · E − E · D

)
ψ − igs

8m2
ψ†σ ·

(
D × E − E × D

)
ψ

+O(1/m3) + antiquark terms + Llight. (2)

For a single heavy quark, interacting at low virtualities D ∼ ΛQCD, the kinetic term is
suppressed and can be treated perturbatively. This results in the HQET prescription to
the heavy quark propagator. However, in the heavy-heavy system there is the Coulomb-
like interaction, wherein D0 ∼ D2/m ∼ α2sm. Therefore, we must include the kinetic term
into the initial ”free” Lagrangian of NRQCD. So, the loop corrections in αs look different
in HQET and NRQCD. Nevertheless, the physical reason to distinguish these effective
theories is still the Coulomb-like corrections near the production threshold, which should
make no influence on the ultraviolate properties. We would note that the question is, in a
sense, analogous to that in the theory of massive gauge fields in the spontaneously broken
theories, where the explicite introduction of mass seems to destroy good RG properties of
massless vector fields (the question was removed by the appropriate redefinitions of fields
due to the surviving of the gauge invariance).

2We generally accept a set of basic notations used in [11].

2



Several authors have approached a similar problem of NRQCD in connection with
matching calculations [12], and recently an appealing solution has been proposed [13]:
It is claimed that the matching in NRQCD, which use the dimensional regularization,
should be performed just as in HQET, namely, the kinetic term must be treated as a
perturbation vertex

1

k0 − k2

2m
+ iε

=
1

k0
+

k2

2m(k0)2
+ ... (3)

The derivation is based on the appropriate redefinition of the heavy quark field [13]

Q −→ [1− D2⊥
8m2

− gσαβG
αβ

16m2
+

Dα
⊥(iv ·D)Dα⊥

16m3
+

gvλD⊥αG
αλ

16m3
(4)

−i
σαβD

α
⊥(iv ·D)Dβ

⊥
16m3

− i
gvλσαβD

α
⊥G

βλ

16m3
]Q,

where the σ matrices are projected by PvσPv, Pv = 1+v̂
2

and Dµ
⊥ = Dµ − vµv · D. The

substitution converts the HQET Lagrangian into the NRQCD one, so that the loop renor-
malization of perturbative terms is the same.

Here, we propose to use the same prescription for the heavy quark propagator as it
stands in (3), not only in the matching procedure, but also for the calculations of anoma-
lous dimensions for the NRQCD currents in MS-renormalization scheme. To support this
point, let us consider the matching procedure in more detail. The matching condition can
be written down as

Z−1J,QCDZon−shell2,QCD Zh.m.V,QCDΓ
′
QCD = C0Z

on−shell
2,NRQCDZ

−1
J,NRQCDΓ

(0)
NRQCD, (5)

Zh.mV,QCDΓ
′
QCD = Γ

(0)
QCD, (6)

where Zh.m.V denotes the poles, associated with the hard momenta region for the bare

single-particle irreducible vertex Γ
(0)
QCD in full QCD, ZJ,QCD and ZJ,NRQCD are the renor-

malization constants of currents in QCD and NRQCD, correspondingly, Z2,QCD and

Z2,NRQCD include the renormalization of wave functions, and, finally, Γ
(0)
NRQCD denotes

the bare vertex in NRQCD. At this stage we use prescription (3) for treating the heavy
quark propagators. On the other hand, one can write the following indentity:

ΓQCD = Z−1J,QCDZMS2,QCDZh.m.V,QCDZs.m.V,QCDΓ
′′
QCD, (7)

where we have collected all the divergences in Z-factors and used the convention of (3)
for the expansion of heavy quark propagators in powers of the kinetic term. The Zs.m.V,QCD

denotes the contribution from a small momenta region. Calculating the contribution from
the small momenta, we have to set the external legs to be off-shell in order to exclude the
contribution from the infrared region as it was done in the case of matching. To proceed
further, let us introduce the following definitions:

Zon−shell2,QCD = ZMS2,QCDZinf.r., (8)

Zon−shell2,NRQCD = ZMS2,NRQCDZinf.r., (9)
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where Zinf.r. is the contribution to the wave-function renormalization from the infrared
region, which is the same in both theories. Using these notations and the fact that
Zon−shell2,NRQCD = 1, we can rewrite Eq. (7) as

ΓQCD = Z−1J,QCDZon−shell2,QCD Zh.m.V,QCDZs.m.V,QCDZMS2,NRQCDΓ
′′

QCD. (10)

Now we can easily see from Eqs. (5) and (10), that the NRQCD anomalous dimensions in
the MS-renormalization scheme can be computed in two ways: Either from the matching
condition (5) or using the HQET Feynman rules and setting the external legs off-shell
in order to avoid the infrared divergencies. We have explicitly checked this conjecture
to one-loop for the heavy-heavy vector current, however, for a full confidence we feel the
need for such a check in the two-loop approximation.

So, in our approach we exploit the same reasoning for the calculation of RG quantities
and work in the leading order of this expansion. Moreover, it is theoretically sound,
because in the MS-renormalization scheme used, the anomalous dimensions of currents
do not depend on the masses of particles. The following fact also supports our claim: The
values of Wilson coefficients, calculated in the matching procedure, are directly connected
to the anomalous dimensions of operators multiplying these coefficients in the Lagrangian.
And, finally, the high energy behavior in the effective theory with several scales does not
depend on a relative weight of the lower scales. Thus, we only need

m� |p|, E,ΛQCD, (11)

where there is no matter what the relations between |p|, E and ΛQCD are.
So, in our calculations we use the HQET propagators for the heavy quarks, setting

the quark momenta in a way to avoid infrared divergencies. As will be explained in
detail below, the two-loop contribution to the anomalous dimensions of currents under
consideration consists of three parts. The first corresponds to the set of graphs, wherein
the two-loop contributions are associated with one of the heavy-light subsystems. For
this contribution we use the result of [11]. Then, there is the subset of two-loop graphs
that are associated with the heavy-heavy system. The expression for this contribution
is a generalization of what was obtained in [14]. And, finally, there are the irreducible
contributions, where the two-loops connect the three quark lines. This contribution is
calculated in this paper. We evaluate the two loop diagrams with the use of package,
written by us on MATHEMATICA, and the recurrence-relations in HQET [15].

This paper is organized as follows. In section 1 we discuss the choice of currents for the
baryons with two heavy quarks and give some comments on the renormalization properties
of composite operators under consideration. In section 2 we furnish some remarks on the
anomalous dimensions and present the results on the one-loop anomalous dimensions. In
section 3 we discuss general features of two-loop renormalization procedure and present
our two-loop results. We work in the MS-renormalization scheme throughout the paper.
As concerning the treatment of γ5 we will show that the final expression does not depend
on the scheme used. In Conclusion the results are summirized.
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1. Baryonic Currents

The currents of baryons with two heavy quarks Ξ�cc, Ξ�bb and Ξ′�bc, where � means
different charges depending on the light quark charge, are associated with the spin-parity
quantum numbers jPd = 1+ and jPd = 0+ for the heavy diquark system with the symmetric
and antisymmetric flavor structure, respectively. Adding the light quark to the heavy
quark system, one obtains jP = 1

2

+
for the Ξ′�bc baryons and the pair of degenerate states

jP = 1
2

+
and jP = 3

2

+
for the baryons Ξ�cc, Ξ

�
bc, Ξ

�
bb and Ξ∗�cc , Ξ

∗�
bc , Ξ

∗�
bb . The structure of

baryon currents with two heavy quarks is generally chosen as

J = [QiTCΓτQj]Γ
′
qkεijk. (12)

Here T means transposition, C is the charge conjugation matrix with the properties
CγTµC

−1 = −γµ and CγT5 C
−1 = γ5, i, j, k are colour indices and τ is a matrix in the

flavor space. The effective static field of the heavy quark is denoted by Q. To obtain
the corresponding NRQCD currents one has to perform the above-mentioned redefinition
of the local field. But as we are working in the leading order over both the relative
velocity of heavy quarks and their inverse masses, this local redefinition does not change
the structure of the currents.

Here, unlike the case of baryons with a single heavy quark, there is the only indepen-
dent current component J for each of the ground state baryon currents. They equal

JΞ′�
QQ′

= [QiTCτγ5Q
j′]qkεijk,

JΞ�
QQ

= [QiTCτγQj] · γγ5qkεijk, (13)

JΞ∗�
QQ

= [QiTCτγQj]qkεijk +
1

3
γ[QiTCγQj] · γqkεijk,

where JΞ∗�
QQ

satisfies the spin-3/2 condition γJΞ∗�
QQ

= 0. The flavor matrix τ is anti-

symmetric for Ξ′�bc and symmetric for Ξ�QQ and Ξ∗�QQ. The currents written down in Eq.
(6) are taken in the rest frame of hadrons. The corresponding expressions in a gen-
eral frame moving with a velocity four-vector vµ can be obtained by the substitution of
γ → γµ⊥ = γµ − v̂vµ.

Now we would like to give some comments on the renormalization properties of these
currents. As we have the only light leg in this problem, all of γ matrices, which will appear
in calculations, will stay on a single side of our composite operators, without touching
their Dirac structure. This will lead to the fact that the anomalous dimensions of all our
currents in this approximation are the same, i.e. they do not depend on Γ-matrices in
(4). From this reasoning, we also can conclude that the result does not depend on the γ5
scheme used.

2. Common notations in renormalization

The local operators O0 composed of bare physical fields contain the ultra-violet di-
vergences, which can be absorbed by the renormalization factors ZO, being a series in
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powers of coupling constant, so that O = ZOO0 is a finite quantity, while the regulariza-
tion parameters do not tend to peculiar values. In the dimensional regularization using
the MS-scheme of subtractions in D = 4− 2ε dimensions [16], ZO is expanded in inverse
powers of ε, so that

Z = 1 +
∞∑
m=1

m∑
k=1

(
αs

4π

)m 1

εk
Zm,k = 1 +

∞∑
k=1

1

εk
Zk. (14)

The dependence on the dimensionful subtraction point µ defines the anomalous dimension
of renormalized operator O

γ =
d lnZ(α(µ), a; ε)

d ln(µ)
, (15)

where a is the renormalized gauge parameter in the general covariant gauge (with a gluon
propagator proportional to −gµν +(1− a)kµkν/k

2) and α(µ) is the renormalized coupling
constant in four-dimensional space, so that

α0 = α(µ)µ2εZα(α(µ), a; ε), a0 = aZ3(α(µ), a; ε), (16)

and the corresponding Z{α,3}-factors determine the anomalous dimensions, which are gen-
erally denoted by {−β,−δ}, respectively.

The γ-quantities are finite at D → 4, so we define the coefficients of series

γ =
∞∑
m=1

(
αs

4π

)m
γ(m). (17)

One can check that [17]

γ = −2 ∂Z1
∂ lnαs

, (18)

and for k > 0

− 2
∂Zk+1

∂ lnαs
=

(
γ − β

∂

∂ lnαs
− δ

∂

∂ ln a

)
Zk. (19)

The latter provides the consistency condition, when the former produces a simple extrac-
tion of the anomalous dimensions to the two-loop accuracy

γ(1) = −2Z1,1 and γ(2) = −4Z2,1. (20)

2.1. One-loop result

Consider the one-loop renormalization of currents of baryons with two heavy quarks.
In the MS-scheme with D = 4 − 2ε space-dimensions, we have the following squares of
renormalization factors for the bare quark fields:

Zq = 1− a0
g20CF

(4π)2ε
, ZQ = 1 + (3− a0)

g20CF

(4π)2ε
, (21)
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where we use the usual definitions for SU(N), i.e. CF = (N2c − 1)/2Nc, CA = Nc, CB =
(Nc + 1)/2Nc, and TF = 1/2 for Nc = 3, NF being the number of light quarks. One-loop
MS-results for the factors Zα and Z3 have been given e.g. in [17]

Zα = 1− αs

4πε

[
11

3
CA −

4

3
TFNF

]
, (22)

Z3 = 1 +
αs

4πε

[
13− 3a

6
CA −

4

3
TFNF

]
. (23)

The bare current is renormalized by the factor ZJ

J0 = (QT
0CΓτQ0)Γ

′q0 = ZQZ
1/2
q ZV J = ZJJ, (24)

which straightforwardly means that

γJ = 2γQ + γq + γV , (25)

i.e. the anomalous dimension of the full current J is a sum of three terms given by the
renormalization of the light and heavy quark fields, and the renormalization of the vertex.

For the vertex (QT
0CΓτQ0)Γ

′q0, we find

ZV = 1 +
αsCB

4πε
(3a− 3), (26)

which results in
γ
(1)
V = −2CB(3a− 3). (27)

The one-loop anomalous dimensions γ(1)q and γ
(1)
Q are equal to

γ(1)q = CFa, γ
(1)
Q = CF (a− 3). (28)

Thus, the one-loop anomalous dimension of the baryonic current is given by

γJ =
αs

4π

(
− 2CB(3a− 3) + 3CF (a− 2)

)
+ O(α2s). (29)

3. Two-loop calculations

In this section we apply the two-loop renormalization of the baryon current with two
heavy quarks in the MS-scheme and restrict ourselves by the Feynman gauge. The two-
loop anomalous dimensions of the quark fields are given by [15,18,19,20,21]

γ(2)q = CF

(
17

2
CA − 2TFNF −

3

2
CF

)
, γ

(2)
Q = CF

(
−38

3
CA +

16

3
TFNF

)
. (30)

Since the baryonic currents are renormalized multiplicatively in the effective theory3,
the Dirac structure of vertex repeats the Born-term. Technically we perform the calcu-
lations in terms of bare coupling and gauge parameter, so that to isolate the two-loop

3See discussion in ref.[11].
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contribution to the anomalous dimension, we need also the one-loop result, wherein we
have to include the one-loop expressions written down through the renormalized quan-
tities αs and a, which will add the contribution to the corresponding α2s/ε-term. The
procedure described leads to the relations

Z1,1 = V1,1, Z2,2 = V2,2, Z2,1 = V2,1 − V1,1V1,0. (31)

As expected, Z2,1 has to include the one-loop contributions.
In the Introduction we have described three subgroups of two-loop diagrams for the

vertex, which can be expressed as

V0 = 2V
(hl)
0 + V

(hh)
0 + V

(ir)
0 , (32)

whose evaluation is presented in the rest of this section.

3.1. The heavy-light subsystem

As for the problem of evaluation the bare proper vertex V (hl) of composite operator
(qQ) with a massless quark field q and the effective static heavy quark field Q, we can
easily see that the result does not depend on the Dirac structure of the vertex. For this
reason, in our calculations we have used the result of [11], where this vertex was calculated
to two-loop order in the Feynman gauge (a = 1) with the use of algorithm developed in
[15]:

V
(hl)
1,1 = CBa, V

(hl)
1,0 = 0, (33)

V
(hl)
2,2 = CB(

1

2
CB − CA), V

(hl)
2,1 = −CB(CB(1− 4ζ(2)) −CA(1− ζ(2))).

Then from relations (31) one can calculate the coefficients Zn,k, which determine the
two-loop anomalous dimension for the subset of the heavy-light graphs

γ
(2)
(hl) = C2B(4− 16ζ(2)) − CBCA(4− 4ζ(2)). (34)

It is worth noting that this expression was calculated for antisymmetric baryonic color
configuration qiQjQkεijk unlike the case of colour-singlet q̄iQjδij mesonic configuration.
The expression for the latter case can be obtained by the substitution of CB → CF , which
reconstructs the required results, as it was checked by the authors of [11].

3.2. The heavy-heavy subsystem

To evaluate this contribution we have used the results of [14], where the expression
for the anomalous dimension of NRQCD mesonic vector current was presented

γMJ = 2γQ + γ(hh) =
d lnZJ

d lnµ
(35)

= −CF (2CF + 3CA)
π2

6

(αs
π

)2
+ O(α3s).
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In our case we have a similar problem, but a different color structure. Thus, following
[14] we can consider the matching of QCD vector current with the antisymmetric color
structure on the NRQCD one. Unlike the meson case with the singlet-color structure,
the QCD vector current with the antisymmetric color structure need not be conserved, so
we allow for its renormalization. In terms of the on-shell matrix elements, the matching
equation can be written down as4

Z2,QCDZ−1J,QCDΓQCD = C0Z2,NRQCDZ
−1
J,NRQCDΓNRQCD + O(v2), (36)

where ZJ,QCD has the following expression [11]

ZJ,QCD = 1− CBCF
ε2

(
αs
4π

)2
+

1

ε
((CB − CF )

(
αs
4π

)
+

(−1

4
CB(−17CA + 3CB + 4(1 +NF )TF ) (37)

+
1

4
CF (−17CA + 3CF + 4(1 +NF )TF ))

(
αs

4π

)2
).

The anomalous dimension of NRQCD current, obtained in this way, may be used in
the calculations of anomalous dimensions for the baryonic currents with two heavy quarks,
as it does not depend on the Dirac structure of the vertex. The contributions of different
two-loop diagrams with the antisymmetric color structure of the vertex qiQjQkεijk in the

notations of [14] are shown in Appendix. To obtain the anomalous dimension γ
(2)
(hh) of

composite operator under consideration, one has to perform the following steps.
1) To sum up all of these contributions, including the one-loop term, multiplied by the

two-loop QCD on-shell wave function renormalization constant [22], Z−1J,QCD and one-loop
NRQCD-current renormalization constant,

2) To carry out the one-loop renormalization of coupling and mass.
After these manipulations the coefficient at 1

ε
multiplied by −4 will give us the sum

γ
(2)
(hh) + 2γ

(2)
Q . For the two-loop anomalous dimension γ

(2)
(hh) in the heavy-heavy subsystem,

we find the following result:

γ
(2)
(hh) = −4

3
CB((−19 + 6π2)CA + 4(π2CB + 2NFTF )). (38)

3.3. The light-heavy-heavy irreducible vertex

In this case one needs to calculate the three-quark irreducible vertex V
(ir)
0 . There are

8 diagrams in the two-loop order. We have shown four of them in Fig. 1, the other four
can be obtained by exchanging two heavy quark legs. We set the heavy quarks off shell in
order to avoid any infrared singularities. Using the partial fractioning of the integrand in

4Since the matching coefficient contains only short-distance effects, the matching can be done by
comparing the matrix elements of these currents over a free quark-antiquark pair of the on-shell quarks
at a small relative velocity.
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momentum integrals and recurrence-relations of [15], we arrive at the following expressions
for the diagrams depicted on Fig.1:

V
(ir)[1]
0 = 2C2B

(
αs

4π

)2(1
2

1

ε2
− (1 +

π2

3
)
1

ε
+

216 + 35π2 − 48ψ(2)(1)− 96ψ(2)(2)

36

)
,(39)

V
(ir)[2]
0 = 0, (40)

V
(ir)[3]
0 = 2C2B

(
αs

4π

)2(
− 1

ε2
− 2

ε
− 4− π2

6

)
, (41)

V
(ir)[4]
0 = 2C2B

(
αs
4π

)2(
− 1

ε2
+

2

ε
− 4− 3π2

2

)
, (42)

where ψ(n)(z) = dnψ(z)/dzn, ψ(z) = Γ
′
(z)/Γ(z) and the factor of 2 accounts for the

contributions of the remaining four reflected diagrams not included in Fig.1. For the
Z-factors and anomalous dimension, we obtain

Z
(ir)
22 = −3 · C2B, (43)

γ
(2)
(ir) = −4Z(ir)2,1 = 8 · C2B(1 +

π2

3
). (44)


 



 


(1) (2)

(3) (4)

Fig. 1. The two-loop contribution to the light-heavy-heavy irreducible vertex with the spinor

lines directed outside.
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3.4. Anomalous dimension combined

Now we are ready to calculate the anomalous dimension of baryonic currents with two
heavy quarks. As we have already said above it does not depend on the Dirac structure of
the current under consideration. Collecting the results for the heavy-light, heavy-heavy
and irreducible light-heavy-heavy vertices, we find

γ
(2)
V = −4

3
CB((−13 + 30ζ(2))CA + 6(−2 + 6ζ(2))CB + 8NFTF ). (45)

And, finally, to obtain the full two-loop result for the anomalous dimension, one has to
add the anomalous dimensions of heavy and light quarks. The result is

γ
(2)
J =

1

6
(−48(−2 + 6ζ(2))C2B + CA((104− 240ζ(2))CB − 101CF ) (46)

−64CBNFTF + CF (−9CF + 52NF TF)).

With this formula we are finishing our analytical calculations.
Turning to the SU(3) group of QCD, we get

γ(1) = −4, (47)

γ(2) = −254

9
− 152π2

9
+

20

9
NF ≈ −194.909 + 2.222NF , (48)

which indicates a rather strong sensitivity of those currents to the choice of reference scale
µ.

Conclusions

We have calculated the two-loop anomalous dimensions of NRQCD baryonic currents
with two heavy quarks in the leading order in both the relative velocity of heavy quarks
and the inverse heavy quark mass. It is shown, that the results do not depend on the
Dirac structure of the currents and on the γ5 prescription used in the calculations. These
results will be useful for the derivation of QCD sum rules for baryons with two heavy
quarks in the same static approximation in both the leading and next-to-leading orders.
We suppose to approach this problem in the nearby future.

The authors are grateful to E.Gorina for valuable remarks, which have improved the
presentation.
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4. Appendix

In this appendix we present the generalization of expressions for the hard contributions to
the diagrams of Fig. 1 of [14] with the antisymmetric color structure of vertex evaluated at the

threshold q2 = 4m2. Below you can find the coefficients of (αs/π)
2(eγEm2Q/(4πµ

2))−2ε

D1 = C2B

[
9

32ε2
− (

27

64
+
5π2

24
)
1

ε
− 81

128
− 133π2

96
− 5π2 ln 2

12
− 35ζ(3)

8

]
, (49)

D2 = CBCF

[
− 3

16ε2
− 43

32

1

ε
+

733

192
+

971π2

576

]
, (50)

D3 = CBCA

[
15

32ε2
− (

5

64
+
π2

16
)
1

ε
+

715

384
− 319π2

576
− π

2 ln 2

8
− 21ζ(3)

16

]
, (51)

D4 = CB(CA − 2CB)

[
(
3

16
− π

2

16
)
1

ε
− 39

32
− 251π2

1152
− 3π2 ln 2

8
− 31ζ(3)

16

]
, (52)

D5 = CB(CA − 2CF )

[
− 9

32ε2
− 19

64

1

ε
+
761

384
+

1157π2

1152
+
π2 ln 2

6
− 3ζ(3)

4

]
, (53)

D6 = CBTFNF

[
− 1

8ε2
+

5

48

1

ε
− 355

288
− 5π2

48

]
, (54)

D7 = CBCA

[
19

128ε2
− 53

768

1

ε
+
6787

4608
+

95π2

768

]
, (55)

D8 = CBCA

[
1

128ε2
+

1

768

1

ε
+

361

4608
+

5π2

768

]
, (56)

D9 = CBTF

[
− 1

4ε2
+

13

48

1

ε
− 145

96
+

5

72

]
. (57)
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