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Abstract

Klishevich S.M. Massive Fields of Arbitrary Half-Integer Spin in Constant Electromagnetic Field:

IHEP Preprint 98-70. – Protvino, 1998. – p. 15, refs.: 21.

We study the interaction of gauge fields of arbitrary half-integer spins with the homogeneous
electromagnetic field. We reduce the problem of obtaining the gauge-invariant Lagrangian and

transformations of the half-integer spin fields in the external field to a purely algebraic problem
of finding a set of operators with certain features using the representation of the higher-spin

fields as vectors in a pseudo-Hilbert space. We consider such construction at linear order in
the external electromagnetic field and also present an explicit form of interaction Lagrangians

and gauge transformations for the massive particles of spins 3
2
and 5

2
in terms of symmetric

spin-tensor fields. The obtained result is valid for space-time of arbitrary even dimension.

aNNOTACIQ

kLI[EWIˆ s.m. mASSIWNYE POLQ PROIZWOLXNOGO POLUCELOGO SPINA W POSTOQNNOM “LEKTRO-
MAGNITNOM POLE: pREPRINT ifw— 98-70. – pROTWINO, 1998. – 15 S., BIBLIOGR.: 21.

mY IZUˆAEM WZAIMODEJSTWIE MASSIWNYH KALIBROWOˆNYH POLEJ PROIZWOLXNYH POLUCELYH

SPINOW S ODNORODNYM “LEKTROMAGNITNYM POLEM. oSNOWYWAQSX NA PREDSTAWLENII POLEJ WY-
SOKIH SPINOW W WIDE WEKTOROW NEKOTOROGO PSEWDOGILXBERTOWOGO PROSTRANSTWA, MY SWODIM

PROBLEMU POLUˆENIQ KALIBROWOˆNO-INWARIANTNOGO LAGRANVIANA POLEJ POLUCELYH SPINOW

WO WNE[NEM POLE K ˆISTO ALGEBRAIˆESKOJ ZADAˆE OTYSKANIQ NEKOTOROGO NABORA OPERATOROW

S OPREDELENNYMI SWOJSTWAMI. mY RASSMATRIWAEM TAKOE POSTROENIE W LINEJNOM PORQDKE PO

NAPRQVENNOSTI “LEKTROMAGNITNOGO POLQ I PRIWODIM QWNYJ WID LAGRANVIANOW WZAIMODEJ-

STWIQ DLQ MASSIWNYH ˆASTIC SO SPINAMI 3
2

I 5
2

W TERMINAH SIMMETRIˆNYH SPIN-TENZORNYH

POLEJ. pOLUˆENNYJ REZULXTAT IMEET MESTO DLQ POIZWOLXNOGO PROSTRANSTWA-WREMENI ˆETNOJ

RAZMERNOSTI.
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1. Introduction

At present there are a lot of different approaches to the description of free higher-
spin fields (see for, example, [1]-[7]). But the investigation of interactions usually faces
significant difficulties. Very often the study of the higher-spin fields ends at the free level.
In this work we develop the algebraic approach that allows us to construct an interaction
for all the massive half-integer spin fields at once.
As is well-known, the massless fields of spins s ≥ 3

2
do not have the ”minimal” in-

teraction with electromagnetic field in asymptotically flat space-time. This is related to
the impossibility to construct linear approximation in such a case [8]. But the massive
higher-spin fields can have the interaction [9]-[12]. Therefore, we will study the massive
case only.
In the literature the electromagnetic interaction of arbitrary spin fields was consid-

ered at the lowest order [13]. Investigating the interactions, the authors start from the
free theory of massive fields in the conventional form [1]. The ”minimal” introduction of
the interaction leads to contradictions. Therefore, it is necessary to include non-minimal
terms into an interaction Lagrangian. Since the massive Lagrangian for the higher-spin
fields [1] is not gauge invariant, there are no restrictions on the form of the non-minimal
interaction in such approach and additional restrictions have to be proposed in order to
build a consistent theory. So, for instance, studying the electromagnetic interaction,[13]
the authors have used the requirement that tree-level scatering amplitudes must possess
a smooth M → 0 fixed-charge limit for any theory describing the interaction of arbitrary-
spin massive particles with photons. Under such requirement, the amplitudes do not
violate unitarity up to center-of-mass energies E � M/e. This restriction leads to the
gyromagnetic ratio g = 2 for massive particles of any spin. In Ref. [14] the authors were
investigating the electromagnetic interaction of massive spin-2 field using the compactifi-
cation of the 5 dimension gravity. But that approach does not work (in any case in the
asymptotically flat space) for the fields of the higher spins since it implies the existence
of an consistent theory of the interaction for the massless higher-spin fields. In Ref. [9]
the way to obtain the e.m. interaction of the massive fields of arbitrary spins has been
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proposed. This method is founded on the formulation of the open bosonic string in the
external constant field. But in Ref. [11] it has been shown that such approach allows one
to get the e.m. interaction of the fields for the whole string mass level rather than for
the single massive field, because the presence of the interaction mixes the states of given
mass level.
Here we go along the line of Ref. [12] where the massive integer-spin fields were inves-

tigated. We consider the interaction of massive fields of arbitrary half-integer spin with
the the homogeneous electromagnetic field at linear order.
We represent free state with the half-integer spin s+ 1

2
as state |Ψs〉 in a pseudo-Hilbert

space1. This space contains the bosonic one [12] as subspace. Coefficient functions of the
state |Ψs〉 are spin-tensor fields corresponding to a particle of spin s+ 1

2
. In the considered

Fock space we introduce a set of even and odd operators. By means of these operators we
define the gauge transformations and the necessary constraints for the state |Ψs〉. Like
the bosonic case the gauge-invariant Lagrangian has the form of the expectation value of
a Hermitian operator in state |Ψs〉 but the operator is odd in this case.
In the considered approach the gauge invariance is a consequence of commutation

relations of the introduced operators. The introduction of the interaction by means of the
”minimal” coupling prescription induces a change of algebraic features of the operators
and, as a consequence, leads to the loss of the gauge invariance. The problem of restoring
the invariance is reduced to the algebraic problem of finding such modificated operators
that restore the initial commutation relations. We should note that in the massless case
one cannot realize such a construction. This relates to the fact that when the interaction
is present, the massless limit does not exist.
In section 4 we construct the set of the operators having the necessary features at

linear order in the external e.m. field. Besides in the next section we give an explicit form
of the interaction Lagrangian and the transformations for the massive spin-3

2
and spin-5

2

fields in this approximation.

2. Gauge Massive Fields with Integer Spins

Here we will briefly discuss a description of the massive fields with an integer spin
using an auxiliary Fock space.
Let us consider the Fock space generated by creation and annihilation operators āµ,

aµ with a Lorentz vector index and by the scalar ones b̄ and b. These operators have the
commutation relations

[aµ, āν] = gµν , a†µ = āµ,[
b, b̄
]
= 1, b† = b̄. (1)

where gµν is the metric tensor on space-time MD of arbitrary dimension D with the
signature‖gµν‖ = diag(−1, 1, 1, ..., 1). Since the metric is indefinite, the Fock space, which
1In a similar way the representation of massless free fields was considered in Refs [7,15] for an arbitrary

integer spin and in Ref. [16] for any half-integer spin.
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realizes the representation of the Heisenberg algebra (1), is pseudo-Hilbert. Therefore,
to exclude states with negative norms, we have to impose additional conditions on the
physical states.
We will consider the states of type

|Φs〉 =
s∑
n=0

Φµ1...µn(x)b̄
s−n

n∏
i=1

āµi|0〉, (2)

where |0〉 is the usual Fock vacuum. The coefficient functions Φµ1...µn(x) are symmetric
tensor fields of rank n onMD. At s→∞ such states span the whole Fock space.
In order to properly describe the physical state of spin s by vector (2), we should

impose a restriction on this state. For that we introduce in our pseudo-Hilbert space the
following operators:

L1 = pµa
µ +mb, L−1 = L

†
1 ,

L2 =
1
2
(aµa

µ + b2) , L−2 = L
†
2 , (3)

L0 = p2 +m2.

Here pµ = i∂µ is the momentum operator, which acts on the coefficient functions.
Operators (3) satisfy the following commutation relations:

[L1, L−2] = L−1, [L1, L2] = 0,
[L2, L−2] = N + D+1

2
, [L0, Ln] = 0,

[L1, L−1] = L0, [N,Ln] = − nLn, n = 0,±1,±2,
(4)

where N = āµa
µ + b̄b. Vectors of type (2) are eigenvector of this operator, i.e. N defines

the spin of the state
N |Φs〉 = s|Φs〉.

Let us impose the following condition on state (2)

(L2)
2|Φs〉 = 0. (5)

This corresponds to the usual condition that the tensor fields describing massive (massless)
higher-spin particles [10,12] is twice-traceless.
In order to avoid the presence of the redundant states, we must also have the gauge

transformations for state (2) in the form

δ|Φs〉 = L−1|Λs−1〉. (6)

Here the gauge Fock vector

|Λs−1〉 =
s−1∑
n=0

Λµ1...µn b̄
s−n−1

n∏
i=1

āµi|0〉, (7)
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is eigenvector of operator N with eigenvalue s− 1. This vector satisfies the condition

L2|Λ〉 = 0. (8)

It is easy to verify that these relations define the usual gauge transformations for the
coefficient functions.
The gauge Lagrangian for the massive fields with the integer spin can be written as

the expectation value of a Hermitian operator in state (2)

Ls = 〈Φs|L(L)|Φs〉, 〈Φs| = |Φs〉†, (9)

where

L(L) =
1

2
L0 −

1

2
L−1L1 − L−2L0L2 −

1

2
L−2L−1L1L2

+
1

2
{L−2L1L1 + h.c.} . (10)

Lagrangian (9) is invariant with respect to transformations (6) as a consequence of (8)
and of the relation

L(L)L−1 ∼ (...)L2.
In the free case one can regard this construction as the dimensional reductionMD+1 →

MD ⊗ S1 of the massless theory with the radius of the sphere R ∼ 1/m (refer also to
[7,15]). We should note that this statement is not valid when an interaction is present
because in this case the terms corresponding to the interaction are proportional to an
inverse degree of the mass parameter. For example, operator L1 deformed in the presence
of the constant electromagnetic field [12] has the following form at linear order

L
(1)
1 =

1

m
(1− d2) (ᾱFα)β +

1

m2

{
(PFα)

(
d1

(
1

2
− β̄β

)
e−2β̄β

+d2

(
1

2
+ β̄β

))
+ (ᾱFP)

(
d1e

−2β̄β + d2
)
b2
}
, (11)

where αµ and β are normal symbols of operators aµ and b, correspondingly. Obviously,
in linear approximation action (9) contains the terms proportional to the inverse degree
of mass parameter m as well. Thereby one cannot perform the smooth transition to the
massless case in the presence of the interaction.

3. Massive Half-integer spin fields

In this section we develop a similar construction for the gauge fields with half-integer
spins.
The massless fermionic gauge field with spin s+ 1/2 are usually described by means

of symmetric spin-tensor Ψµ1...µs .
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Henceforth we will use the following definition:

Ψ′ = γµΨµµ2...µs .

The massless gauge field satisfies the condition

Ψ′′′ = 0. (12)

The gauge transformation for this field is

δΨµ1...µs = ∂(µ1ξµ2...µs), (13)

where ξ is a fermionic gauge parameter, which obeys the condition

ξ′ = 0. (14)

Transformation (13) and conditions (12), (14) unambiguously determine the La-
grangian for the free fields up to surface terms

LFs+1/2 = i

{
ψ̄ · ∂̂ψ + sψ̄′ · ∂̂ψ′ − 1

4
s(s− 1)ψ̄′′ · ∂̂ψ′′

− 2sψ̄′ · (∂ · ψ) + s(s− 1)ψ̄′′ · (∂ · ψ′)
}
. (15)

One can easily see that the Lagrangian does not depend on space-time dimensionality
explicitly.
In Ref. [17] the authors derived a gauge description of the massive free half-integer

spin fields from the dimensional reduction of action (15). Our way to obtain the action
for the fermionic fields resembles this construction in non-interacting case but we use an
auxiliary Fock space for that (for the massless fields see also Ref. [16,18]).
In order to describe the massive fermionic fields in a Fock space, we enlarge the pseudo-

Hilbert space generated by operators (1) by means of the anticommuting operators which
obey the following relations

{Γµ,Γν} = 2gµν ,
{
Γµ, Γ̄

}
= 0, Γ̄2 = 1. (16)

We will consider these operators as the Hermitian ones. We will also consider space-time
of even dimensionality only. This implies that the operator Γ̄ is not independent

Γ ∼ Γ0Γ1...ΓD−1.

In order to realize a representation of algebra (16), we introduce a spinor vacuum
vector. This vector transforms as spinor under the Lorentz transformations and, therefore,
it carries spinor index

|0〉F = |0〉α (17)
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Let us define the action of operators (16) on the spinor vacuum by

Γµ|0〉α = (γ̄γµ)βα|0〉β ,
Γ̄|0〉α = γ̄βα|0〉β . (18)

Here, matrixes γµ and γ̄ have the usual properties

{γµ, γν} = − 2gµν , {γµ, γ̄} = 0, γ0γ
†
µγ0 = γµ,

γ = (−1) 14 (D−2)γ0γ1...γD−1, γ̄† = γ̄. (19)

We also define the dual vacuum vector and the scalar product in the following way:

α〈0|0〉β = (γ0γ̄)αβ , α〈0| = |0〉†α. (20)

From definitions (18-20) it is not difficult to check the operators Γµ and Γ̄ are Hermitian
indeed.
The whole vacuum vector in our Fock space is the tensor product of the bosonic and

fermionic vacua
|0〉 = |0〉B ⊗ |0〉F .

By means of operators (16) we define the following odd operators:

F1 =
1

2

(
â+ Γ̄b

)
,

F0 = p̂ +mΓ̄, (21)

where the notation Â = AµΓ
µ has been used.

Using relations (1), (3), (16) and (21), one can easily verify that operators Li and Fi
have the following commutation relations:{

F1, F̄0
}
= L1, F 20 = L0, F 21 =

1
2
L2[

L1, F̄1
]
= 1
2
F0,

[
L2, F̄1

]
= F1, [F1, L0] = 0. (22)

One can regard relations (4) and (22) as a finite-dimensional truncation of the infinite
superconformal algebra [19].
We will consider the fermionic state with spin s+ 1

2
in the form of a vector of type

|Ψs〉 =
s∑
n=0

Ψµ1...µn(x)b̄
s−n

n∏
i=1

āµi|0〉. (23)

Here we imply that coefficient functions Ψµ1...µn(x) are spin-tensor fields onMD, i.e. they
have a spinor index which contracts with the one of the fermionic vacuum. Henceforth
we will suppress the spinor index and will assume m = 1 as well.
Vector (23) contains an redundant states like the bosonic case. To eliminate them we

impose the condition
(F1)

3 |Ψ〉 = 0 (24)
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on state |Ψs〉 and require the presence of the gauge invariance

δ|Ψs〉 = L̄1|ξs−1〉, (25)

where gauge vector

|ξs−1〉 =
s−1∑
n=0

ξµ1...µn b̄
s−n−1

n∏
i=1

āµi|0〉 (26)

obeys condition
F1|ξ〉 = 0. (27)

In terms of the coefficient functions relations (24)-(27) look like (12)-(14), correspond-
ingly, after the dimensional reduction up to some redefinitions [17]. In limit m→ 0 they
restore its usual form. We would like to note that this transition is smooth, i.e. the num-
ber of physical degree of freedom does not change in contrast to the classical non-gauge
formulation [1].
Like the bosonic case we will search for the Lagrangians for the massive half-integer

spin fields in the form of the expectation value of a Hermitian operator2in state (23)

L = 〈Ψs|L(F, L)|Ψs〉. (28)

Operator L(F, L) is defined by gauge transformation (25) and conditions (24), (27) un-
ambiguously and have the form

L(F, L) = F0 + 4F̄1F0F1 − L̄2F0L2 − 2
(
L̄1F1 − L̄2F1L1 + h.c.

)
(29)

Having calculated expectation (28) we shall obtain the Lagrangians for the fermions in
terms of the spin-tensor fields. This corresponds to the dimensional reduction of action
(15) in space-time with odd dimensionality D + 1. Similar to the bosonic case we have
this correspondence only in non-interacting case.

4. Electromagnetic Interaction of Massive Half-Integer Spin
Fields

In this section we will construct the interaction of the fermionic fields of any spins
with homogeneous e.m. field in the gauge-invariant manner in the linear approximation.
We introduce the interaction by means of the ”minimal” coupling prescription, i.e.

we replace the usual momentum operators by the U(1)-covariant ones pµ → Pµ. The
commutator of the covariant momenta defines the electromagnetic field strength

[Pµ,Pν] = Fµν . (30)

For convenience we have included the imaginary unit and the coupling constant into the
definition of the strength tensor.

2Such an operator must be odd in the fermionic case.
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In the definition of operators (3) and (21) we replace the usual momenta by the
covariant ones as well. As a result the operators cease to obey algebra (4), (22) and,
correspondingly, Lagrangian (28) loses the invariance under transformations (25).
In order to restore the gauge invariance, we do not need to restore whole algebra (4)

and (22) it is sufficient to ensure the existence of the following relations:

[L1, L−1] = L0, [L2, L−1] = L1, F 20 = L0,

[L1, F−1] =
1

2
F0, [L0, F1] = 0. (31)

In order to restore the relations, we represent operators (3) and (21) as normal ordered
functions of the bosonic creation and annihilation operators, the odd ones Γµ, Γ̄ as well
as of the electromagnetic field, i.e.

Li = Li
(
āµ, b̄, aµ, b,Γµ, Γ̄, Fµν

)
,

Fi = Fi
(
āµ, b̄, aµ, b,Γµ, Γ̄, Fµν

)
. (32)

The exact form of these operators will be defined from the condition of restoring commu-
tation relations (31). We should note that it is sufficient to define the form of operators
L1, L2, and F1, since the others can be determined from (31).
Since we consider the deformation3of the operators we should take into account an

arbitrariness in the definition of operators a, b, and Γ which have also appeared. Besides,
in the right-hand side of (1) and (16) we should admit the presence of arbitrary operator
functions depending on a, b, Γ, and Fµν. In this, one must require the condition that
the deformed operators would not break the Jacobi identities and they restore the initial
algebra in the limit Fµν → 0. The subsequent analysis shows that the Jacobi identities
and the arbitrariness in the definition of operators a, b, and Γ allow one to restore initial
algebra (1) and (16) at linear order. This means that we can consider the deformation of
operators Li and Fi only.
We shall search for operators L1, L2, and F1 as series in the strength tensor of e.m.

field that is equivalent to the expansion in coupling constant.
Let us consider linear approximation.
Operator L1 should be no higher than linear in operator Pµ, since the presence of a

greater number of these operators changes the type of gauge transformations (25) and, as
a consequense, changes the number of the physical degrees of freedom. Therefore, at this
order we shall search for them in the form

L
(1)
1 = (āF a)h0(b̄, b)b+ (PFa)h1(b̄, b) + (āFP)h2(b̄, b)b2 + F̂h3(b̄, b)b

+(aFΓ)Γ̄h4(b̄, b) + (āFΓ)Γ̄h5(b̄, b)b
2 + (PFΓ)Γ̄h6(b̄, b)b, (33)

where F̂ = (ΓFΓ). At the same time the operators L2 and F1 can not depend on the
momentum operators at all, since conditions (5) and (24) must define purely algebraic

3The deformation means that we have passed to the extended universal enveloping algebra of the
Heisengerg ones.
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constraints on the coefficient functions. Therefore, at this order we choose the operators
in the following form:

L
(1)
2 = (āF a)h7(b̄, b)b

2 + F̂ h8(b̄, b)b
2 + (aFΓ)Γ̄h9(b̄, b)b

+(āFΓ)Γ̄h10(b̄, b)b
3

F
(1)
1 = (aFΓ)h11(b̄, b) + (āFΓ)h12(b̄, b)b

2 + (āF a)Γ̄h13(b̄, b)b

+F̂ Γ̄h14(b̄, b)b (34)

Here hi(b̄, b) are normal ordered operator functions of type

hi(b̄, b) =
∞∑
n=0

hinb̄
nbn,

where hin are the arbitrary real coefficients. We consider only the real coefficients since the
operators with purely imaginary coefficients do not give any contribution to the ”minimal”
interaction.
Let us define a particular form of functions hi from the condition restoring commuta-

tion relations (31) by operators (33) and (34).
Having calculated (31) and passing to normal symbols of the creation and annihila-

tion operators, we get a system of linear differential equations of the second order for
functions hi(x), where x = β̄β and β is the normal symbol of operator b. The number of
the equations is 36 for 20 unknowns. We will not write down them here.
Of course, the system of linear differential equations is overdetermined but nevertheless

it is solvable. From these equations we obtain as a result

L
(1)
2 = − 2c2 (ΓFα) Γ̄e−2β̄ββ

L
(1)
1 = (1 + 2c1) (ᾱFα)β − c1 (PFα)

(
1 + 2β̄β

)
+ 2c1 (ᾱFP)β2

+ (ΓFα) Γ̄
(
1

4
+ c2

(
1− 2β̄β

)
e−2β̄β

)
+ (PFΓ) Γ̄

(
c1 + c2e

−2β̄β
)
β

− 2c2 (ᾱFΓ) Γ̄e−2β̄ββ2 +
1

2

(
1

4
+ c1

)
F̂β

F
(1)
1 = c2 (ᾱFα) Γ̄e−2β̄ββ +

1

2
c2F̂ Γ̄e

−2β̄ββ − 1
2
c2 (ΓFα) e−2β̄β

F
(1)
0 =

(
1

2
+ 2c1

)
(ᾱFα) Γ̄− 1

2

(
1

4
− c1

)
F̂ Γ̄ +

{
(ΓFα) β̄

(
1

2
− 2c2e−2β̄β

)

− 2 (PFα) Γ̄
(
c1 − c2e

−2β̄β
)
+ h.c.

}
. (35)

Thus, we have obtained the general form of operators Li and Fi which satisfy relations
(31) in linear approximation. This means that Lagrangian (29) is invariant under trans-
formations (25) at this order. In this, our solution has the two-parametric arbitrariness.
In conclusion of this section we note that it is possible to restore whole algebra (4),

(22) if one sets c2 = 0.
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5. Examples

Here we apply the general result of the previous section to the description of the
electromagnetic interaction of massive fields with spins 3

2
and 5

2
.

Spin 3
2
. The massive spin-3

2
field is the simplest one among the other gauge

fermionic fields. Besides, interactions of this field are the best-studied in the literature
Therefore, it is useful to represent the interaction Lagrangian that one can derive in our
approach.
The state that corresponds to the massive spin-3

2
field is

|3/2〉 =
(
(χ · ā) + ηb̄

)
|0〉, (36)

while the gauge vector is
|Λ, 3/2〉 = ξ|0〉.

Having calculated expectation value (28) in this state, we easily derive the free Lagrangian
for the massive field with spin 3

2

L(0)3/2 = χ̄ · (p̂ + 1)χ + η̄ (p̂ + 1)− (χ̄′ + η̄) (p̂− 1) (χ′ + η)

−{((χ̄ · p) + η̄) (χ′ + η) + h.c.} . (37)

Here the ”hat” denotes the contraction of a vector index with the usual γ-matrixes.
The kinetic terms of (37) are non-diagonal4 but one can diagonalize them by the field
redefinition of type χ→ χ+ γη.
Then, from (25) we obtain the following gauge transformations for the coefficient

functions of state (36)

δ0χµ = pµξ,

δ0η = ξ.

One can easily see from the transformations that field η can be completely gauged away.
Having performed this, we obtain the usual Rarita-Schwinger action [20] for the massive
field with spin 3

2
.

As the next step we calculate the Lagrangian of the interaction and the transformations
in the linear approximation. For that we have to modify operators Fi and Li according to
solution (35) and keep only linear in the strength of the e.m. field terms in operator (29).
Then, having computed the expectation value of this deformed operator in state (36) one
derives the interaction Lagrangian

L(1)3/2 =
(
1

2
+ 2c1

)
(χ̄Fχ) +

1

2

(
1

4
− c2

) (
χ̄F̂χ + χ̄′F̂ χ′

)
+
1

4
η̄F̂ η

+
{
c2 ((χ̄ · P)− χ̄′ − η̄)

(
(γFχ) + F̂ η

)
− (c1 − 2c2)η̄ (PFχ)

4This is an usual situation for the dimensional reduction.
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+χ̄′ (c1 (PFχ) + (c1 + c2) (PFγ)η) +
3

4
η̄ (γFχ)

+
(
1

4
+ c2

)
χ̄′F̂ η +

1

4
χ̄′ (γFχ) + h.c.

}
.

Applying (25) to state (36) we obtain the following expression for the gauge transformation

δ1χµ = c1 (PF )µ ξ +
(
1

4
+ c2

)
(Fγ)µ ξ,

δ1η = (c1 + c2) (γFP) ξ −
1

2

(
1

4
+ c1

)
F̂ ξ. (38)

Obviously, constraints (24) and (27) are trivial for the case of the massive spin-3
2
field.

One can notice that the Lagrangian and the transformation formally contain one
derivative more then in the supergravity theories with spontaneous breaking.
It would be interesting to investigate the causality of the obtained construction. Such

an exploration will be made elsewhere.

Spin 5
2
. Now we pass to the description of the massive field with spin 5

2
. This case

is less studied and therefore, it is even more interesting.
A state describing the massive field with spin 5

2
has the form:

|s = 5/2〉 =
(
(ā ·Ψ · ā) + (χ · ā)b̄+ ηb̄2

)
|0〉, (39)

where Ψµν is a symmetric spin-tensor. At the same time the corresponding gauge vector
is

|Λ, 5/2〉 =
(
(ξ · ā) + εb̄

)
|0〉. (40)

Constraint (24) is still trivial for state (39), while (27) imposes on the coefficient
functions of (40) the following restriction:

ξ′ + ε = 0. (41)

We discard ε by means of this relation.
Having calculated expectation value (28) in state (39), we derive the Lagrangian de-

scribing the propagation of the free massive spin-5
2
field

L(0)5/2 = 2Ψ̄ (p̂ + 1)Ψ + χ̄ (p̂ + 1)χ+ 2η̄ (p̂+ 1) η

−
(
2Ψ̄′ + χ̄

)
(p̂− 1) (2Ψ′ + χ)− (χ̄′ + 2η̄) (p̂− 1) (χ′ + 2η)

−
(
Ψ̄′′ − η̄

)
(p̂+ 1) (Ψ′′ − η)

+
{(
2
(
Ψ̄ · p

)
+ χ̄

)
(2Ψ′ + χ) + ((χ̄ · p) + 2η̄) (χ′ + 2η)

+
(
Ψ̄′′ − η̄

)
(2 (p ·Ψ′) + (p · χ) + χ′ + 2η) + h.c.

}
. (42)
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And having computed (25) in a proper way, we obtain the free gauge transformations

δΨµν = p(µξν),

δχµ = − pµξ
′ + ξµ,

δη = − ξ′.

The same result can be obtained up to insignificant redefinitions by the dimensional
reduction [21].
Now let us pass to the case when the interaction is present.
According to the general scheme we have to use the deformed operators. Keeping in

(28) the linear in the strength terms we arrive at the result

L(1)5/2 =
(
1

4
− c1

)(
Ψ̄F̂Ψ+

1

2
χ̄F̂χ + η̄F̂ η

)
+ 2 (1 + 4c1) Ψ̄

′FΨ′

+
(
1

2
− 2c1

)
Ψ̄′F̂Ψ′ − 1

8
(1− 4c1)

(
Ψ̄′′ − η̄

)
F̂ (Ψ′′ − η)

+
(
1

2
+ c1

)
χ̄Fχ+

1

2

(
1

4
− c1

)
(χ̄′ + 2η̄) F̂ (χ′ + 2η)

+
{
(1− 4c2)χ̄ (γFΨ)− 4(c1 − c2)χ̄ (PFΨ)

+ (χ̄′ + 2η̄) ((1− 4c2) (γFΨ′)− 2(c1 − c2) (PFΨ′))

+ 2c1
(
Ψ̄′′ − η

)
(P̂ + 1) (γFχ) +

(
1

2
+ 2c2

)
Ψ̄′ (γFΨ)

+ 2c2Ψ̄
′(P̂ − 1)

(
(γFΨ)− 2 (Fχ)− F̂ χ

)

+ 2c2
(
2
(
Ψ̄ · P

)
+ χ̄

)(
(γFΨ)− (Fχ)− 1

2
F̂χ

)

+ 2(c1 + c2)Ψ̄
′ (PFγ)χ− 2(1 + 2c1)

(
Ψ̄Fχ

)

+
(
1

4
+ c1

)
Ψ̄′F̂ χ− 8c1

(
Ψ̄′FP

)
η − 2c2

(
Ψ̄′Fγ

)
η

+ 2c2
(
2
(
Ψ̄ · P

)
+ χ̄

)(
(γFΨ)− (Fχ) +

1

2
F̂χ

)

+ (Ψ̄′′ − η̄)
(
2c2(γF (P ·Ψ)) + 3c1(PFχ) + c2F̂ (P · χ)

− (c1 + c2)(PFγ)χ′ − 2(3c1 − c2)(PFγ)η

−
(
1

4
+ c2

)
(γFΨ′)−

(
3

4
+ 2c1 − 4c2

)
(γFχ)

+
1

2

(
1

4
+ c1

)
F̂ χ′ +

(
1

4
+ c1 − 2c2

)
F̂ η

)

+ 2c2 (χ̄F γ) (2 (P ·Ψ) + (P · χ) + χ′ + 2η)
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− 4(c1 + c2)η̄ (PFχ) + (1 + 4c2)η̄ (γFχ)

− c2 (χ̄
′ + 2η̄) (P̂ − 1)

(
(γFχ)− 2F̂ η

)

+ ((χ̄ · P) + 2η̄)
(
(γFχ)− 2F̂ η

)

+ (χ̄′ + 2η̄)
(
3c1 (PFχ) +

(
1

4
+ 3c2

)
(γFχ)

+ 2(c1 − c2) (PFγ)η +
(
1

4
+ c1

)
F̂ η

)

− ((χ̄ · P) + 2η̄)
(
(γFχ)− 2F̂ η

)
+ h.c.

}
. (43)

And from (25) we get the deformed gauge transformation of the component fields

δ1Ψµν = c2(PF )(µξν) +
(
1

2
+ c2

)
(Fγ)(µξν),

δ1χµ =
1

2
c2Pµ(γFξ)− 1

2
c2F̂Pµξ′ + (c1 + c2)(γFP)ξµ + 3c2(FP)µξ′

+ (1 + 2c1)(Fξ)µ −
1

2

(
1

4
+ c1

)
F̂ ξµ −

(
1

4
− 3c2

)
(γF )µξ

′

δ1η = 2c1(PFξ) + (c1 − c2)(PFγ)ξ′ − 3
2
c2(γFξ)

+
1

2

(
1

4
+ c1 − c2

)
F̂ ξ′. (44)

In this, we have resolved the following relation with respect to ε

ξ′ − 1
2
c2(γFξ) +

(
1− 1

2
c2F̂

)
ε+O

(
F 2
)
= 0, (45)

which corresponds to (41) in the linear approximation.
Having compared the considered cases, one can see that the case of the massive spin-3

2

field is rather marginal, because transformations (38) can be reduced to the trivial ones
by the redefinition of field χµ, η of type

χµ → s1χµ + s2γµη,

η → s3η + s4χ
′,

i.e. in the presence of the constant electromagnetic field all the information about the non-
minimal interaction can be transferred into the Lagrangian. In this sense the situation
for the spin-5

2
and higher-spin fields is different, because from (44) it is clear that this

transformation cannot be reduced to the trivial ones by any redefinitions of the fields.

6. Conclusion

Here we have extended the algebraic framework of the description of the massive
bosonic fields of any spins to the case of the massive fermionic ones. In such a framework
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we have got the explicit form of the operators by means of which we have obtained the
Lagrangian and the gauge transformations describing the interaction of arbitrary massive
half-integer fields with constant electromagnetic field in linear approximation. We have
also applied our approach to the particular cases of the spin-3

2
and spin-5

2
fields and have

derived the explicit gauge-inariant Lagrangian and the transformations for each case at
linear order in the external e.m. field Fµν.
Of course, there are open important questions: the existence of next approximation

and the causality. We hope the subsequent investigations will shed light upon these
questions.
It is worth noting that the case of the constant Abelian field can be easily extended to a

non-Abelian case. If so, we have to consider the external field as covariantly constant one.
In this, one should take the whole vacuum as |0〉 ⊗ ei, where ei are basis vectors in space
of linear representation of a non-Abelian group. The covariant derivative has the form
∂µ + AaµT

a, where T a are the operators realizing the representation. Such modification
does not change the algebraic features of our scheme in linear approximation. Therefore,
all the results derived are valid as well.
In conclusion we would like to note that our approach allows one to construct not only

the electromagnetic interaction for the fields of an arbitrary spin, but it also allows one
to describe the propagation of the fields in a special Riemann space. For the integer spin
fields such a construction will be considered elsewere.
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