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Abstract

Maisheev V.A. γ-Beam Propagation in the Anisotropic Medium: IHEP Preprint 98-79. –

Protvino, 1998. – p. 13, figs. 4, tables 1, refs.: 18.

Propagation of γ-beam in the anisotropic medium is considered. The simplest example of
this medium of a general type is a combination of the two linearly polarized monochromatic

laser waves with different frequencies (dichromatic wave). The optical properties of this combi-
nation are described with the use of the permittivity tensor. The refractive indices and polar-

ization characteristics of normal electromagnetic waves propagating in the anisotropic medium
are found. The relations describing variations of γ-beam intensity and Stokes parameters as

functions of the propagation length are obtained. The influence of laser wave intensity on the
propagation process is calculated.

The γ-beam intensity losses in the dichromatic wave depend on the initial circular polariza-
tion of γ-quanta. This effect also applies to single crystals which are oriented in some regions of

coherent pair production. In principle, the single crystal sensitivity to circular polarization can
be used for determination of polarization of high energy ( in tens GeV and more) γ-quanta and
electrons.

aNNOTACIQ

mAI[EEW w.a. rASPROSTRANENIE PUˆKA γ-KWANTOW W ANIZOTROPNOJ SREDE: pREPRINT

ifw— 98-79. – pROTWINO, 1998. – 13 S., 4 RIS., 1 TABL., BIBLIOGR.: 18.

rASSMOTpENO pASPpOSTpANENIE PUˆKA γ-KWANTOW W ANIZOTpOPNOJ SpEDE. ppOSTEJ[IM

PpIMEpOM TAKOJ SpEDY OB]EGO WIDA QWLQETSQ KOMBINACIQ DWUH LINEJNO-POLQpIZOWANNYH

MONOHpOMATIˆESKIH LAZEpNYH WOLN S pAZNYMI ˆASTOTAMI (DIHpOMATIˆESKAQ WOLNA). oPTI-
ˆESKIE SWOJSTWA TAKOJ KOMBINACII OPISANY S POMO]X@ TENZOpA DI“LEKTpIˆESKOJ PpONICA-
EMOSTI, ˆTO POZWOLILO OPpEDELITX POKAZATELI PpELOMLENIQ I POLQpIZACIONNYE HApAKTE-

pISTIKI γ-KWANTOW, pASPpOSTpANQ@]IHSQ W ANIZOTpOPNOJ SpEDE. pOLUˆENY SOOTNO[ENIQ,
OPISYWA@]IE IZMENENIE INTENSIWNOSTI I PApAMETpOW sTOKSA PUˆKA γ-KWANTOW W ZAWISI-

MOSTI OT KOOpDINATY. rASSMOTpENO WLIQNIE INTENSIWNOSTI LAZEpNOJ WOLNY NA PpOCESS

pASPpOSTpANENIQ PUˆKA.

pOKAZANO, ˆTO POTEpI INTENSIWNOSTI PUˆKA γ-KWANTOW ZAWISQT OT EGO NAˆALXNOJ POLQpI-
ZACII. —TOT “FFEKT IMEET MESTO I DLQ MONOKpISTALLOW OpIENTIpOWANNYH W NEKOTOpYH

OBLASTQH, GDE IMEET MESTO KOGEpENTNYJ MEHANIZM OBpAZOWANIQ “LEKTRON-POZITpONNYH PAp.
tAKAQ ˆUWSTWITELXNOSTX KpISTALLOW K CIpKULQpNOJ POLQpIZACII γ-KWANTOW MOVET BYTX

ISPOLXZOWANA DLQ EE OPpEDELENIQ DLQ PUˆKOW S “NEpGIQMI W DESQTKI g“w.

c© State Research Center of Russia
Institute for High Energy Physics, 1998



1. Introduction

Polarization phenomena [1,2] arising from the visible light propagation in the
anisotropic or gyrotropic medium are well-known. Theory [3] makes prediction of the
analogous phenomena for γ-quanta with energy > 1 GeV propagating in single crystals,
which are anisotropic media by their very nature. The main absorption process of γ-
quanta in the single crystals is the electron-positron pair production. The cross section
of this process depends on the linear polarization of γ-beam with respect to crystallo-
graphic planes. As a result of interaction with the electric field of the single crystal,
a monochromatic, linearly polarized γ-beam comprises two electromagnetic waves with
different refractive indices, so that linear polarization is transformed into circular polar-
ization or vice versa.

On the other hand, the process of e+e−-pair production in single crystals is similar to
the same process in a linearly polarized laser wave [4]. A possibility to use a bunch of
linearly polarized laser photons as a ”single crystal” is pointed out in [5], but no actual
estimates of the effect are given.

In the recent paper [6] it has been shown that the polarization effects such as birefrin-
gence and rotation of polarization plane for γ- beams with energies of tens GeV or more
take place for short (about some picoseconds) laser bunches with parameters whithin the
realm of present-day engineering capabilities. In the cited paper the differential equations
which determine the variation of Stokes parameters and intensity of γ-quanta traversing
a bunch of arbitrary polarized laser photons are obtained. For these calculations the
well-known scattering amplitudes for the process of elastic scattering light by light [7,8]
were used. Then in [9] the process of γ-beam propagation in the field of a laser wave was
investigated with the use of traditional optical methods. Bisides, the transformation of
γ-beam linear polarization into circular in the anisotropic medium was discussed in [10].

The case of γ-quanta propagation in single crystals described in [3] is a special case
of such a process. The general case of γ-propagation in single crystals oriented in the
angle region corresponding to process of the coherent pair production was considered in
[5]. In this paper it is shown that the propagating γ-beam is a superposition of the two
elliptically polarized waves but the description of variation of the γ-beam polarization is
unavailable.
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In the present paper we study a general case of high energy γ-quanta propagation
through the anisotropic medium. The anisotropic medium is determined as medium,
whose optical properties can be described using a symmetric permittivity tensor [1,2]. As
will be indicated the simplest example of the anisotropic medium of a general type is a
superposition of the two linearly polarized laser waves with different frequencies moving
in the same direction. We will study in detail the γ-quanta propagation in this combined
laser wave with the goal of better understanding of this process in more complicated cases,
such as with single crystals.

2. Permittivity tensor in anisotropic medium

We write the equations of the electromagnetic field in a medium (γ-beam propagating
in a laser wave, single crystal, and the like) in the following form [1,2]:

rot �B =
1

c

∂ �D

∂t
, div �D = 0 ,

rot �E = −1

c

∂ �B

∂t
, div �B = 0 , (1)

�E is the intensity of electric field and �D and �B are the electric and magnetic induction
vectors, t is the time, c is the speed of light. All the properties of the medium are
reflected in the relation between �B, �E and �D. Eqs.(1) would suffice to describe the γ-
beam propagation in a medium and such a property as the intensity of magnetic field is
not needed [1,?]. We represent the relation between �D and �E in the form

Di(ω) = εijEj(ω) , (i, j = 1, 2, 3) , (2)

where εij = ε′ij+iε′′ij is the complex permittivity tensor and ω is the frequency of γ-quanta.
By the example of the anisotropic medium let us consider the superposition of the

two linearly polarized laser waves, moving in the same direction. The frequencies of these
waves (photon energies) are different. In order to determine the permittivity tensor in

the case of a monochromatic field (high energy γ-beam) �E0e
i(�k�r−ωt), propagating in the

above-mentioned laser medium, where �k is the wave vector of the γ-quanta, we find the
average energy lost by the electromagnetic wave per unit volume V and per unit time
[1,2]

q̃ =
1

4πV

∫
V

�E
∂ �D

∂t
dV =

iω

16π
(ε∗ij − εji)E

∗
jEi . (3)

The mechanism whereby the wave loses energy is e+e−-pair production in the field of
the laser wave [11]. The process is determined primarily by the transverse part of the
permittivity tensor, while the longitudinal components of the tensor are higher-order
infinitesimals in the interaction constant α [4,12]. Taking this into account, and in the
coordinate system one axis of which is oriented parallel to the wave vector of γ-quanta,
we have from (3)

2



q̃ =
iωJ

4
{(ε11∗ − ε11)(1 + ξ3) + (ε12

∗ − ε21)(ξ1 − iξ2) + (ε21
∗ − ε12)(ξ1 + iξ2) +

(ε22
∗ − ε22)(1− ξ3)} , (4)

where J = (E1E1
∗ + E2E2

∗)/8π, ξi are the Stokes parameters of γ-beam. On the other
hand, knowing the cross section σγγ of the pair production process, we can write

q̃ = 2cJ{nl,1σγγ,1 + nl,2σγγ,2} , (5)

where nl,1 is the number of photons per volume unit of the laser wave with the linear
polarization equal to Pl,1, and nl,2 is the similar number for the second wave with the
linear polarization equal to Pl,2, σγγ,1 and σγγ,2 are the corresponding cross sections for
e+e− -pair production in γγ -interactions, P1,1, P3,1 and P1,2, P3,2 are the Stokes parameters
of the laser waves (P 21,1 + P 23,1 = P 2l1, P

2
1,2 + P 23,2 = P 2l2). Factor 2 in this formula is due

to the counter-motion of the γ-beam and laser wave. Note, that Eq.(5) is true, when the
intensity of laser wave are not high (see below).

We can write the cross section of e+e−-pair production in the following form [4,6,7,11]

σγγ(z) = σ0(z) + σl(z)(ξ1P1 + ξ3P3) , 0 < z ≤ 1 , (6)

σ0(z) = πr2ez{(1 + z − z2/2)L −
√
1− z(1 + z)} , (7)

σl(z) =
πr2ez

3

2
(L + 2

√
1− z/z) , (8)

L = ln
1 +
√
1− z

1−
√
1− z

,

where z = m2c4

EγEl
is the invariant variable, Eγ is the γ-quantum energy, m and re are the

mass and classical radius of electron, El and P1, P3 are the energy and Stokes parameters
of the laser photon. It is well known that the pair production is a threshold process and,
because of this, the laser wave is a transparent medium for γ-beam , when EγEl < m2c4 or
z > 1. There are two different photon energiesEl,1 and El,2 in the case of dichromatic laser
wave. Because of this, it is convenient to use the two corresponding invariant variables
z1 =

m2c4

EγEl,1
and z2 =

m2c4

EγEl,2
. It is evident that z1/z2 = El,2/El,1. Comparing Eqs.(4) and

(5), we can find the components of permittivity tensor caused by γ-quanta absorption.
Then we can determine the other components of the tensor with the help of the

following dispersion relations [2]:

ε′ij − δij =
2

π
P
∫ ∞
0

xε′′ij(x) dx

x2 − ω2
, (9)

ε′′ij = −
2ω

π
P
∫ ∞
0

(ε′ij − δij) dx

x2 − ω2
, (10)

where δij is the Kronecker δ-function. Comparing Eqs.(4) and (5), we get

ε′′11 + ε′′22 = 4c(nl,1σ0(z1) + nl,2σ0(z2))/ω , (11)
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ε′′11 − ε′′22 = 4c(nl,1σl(z1)P3,1 + nl,2σl(z2)P3,2)/ω , (12)

ε′′12 + ε′′21 = 4c(nl,1σl(z1)P1,1 + nl,2σl(z2)P1,2)/ω , (13)

ε′12 = ε′21 (14)

It easy to verify that ε12 = ε21. The same result is evident from the theory of generalized
susceptibilities [13].

The other components of the permittivity tensor can be calculated with the help
of relations (9)-(10). The calculational results of the components εij for the arbitrary
coordinate system, one axis of which is oriented parallel to the wave vector of the γ-
quanta, are presented below

ε′11 − ε′22 =
α

2πE2o
(< E21 > P3,1z

2
1F1

′(z1)+ < E22 > P3,2z
2
2F1

′(z2)) (15)

ε′11 + ε′22 = 2 +
2α

πE2o
(< E21 > z21F2

′(z1, 1)+ < E22 > z22F2
′(z2, 1)) , (16)

ε′12 = ε′21 =
α

4πE2o
(< E21 > P1,1z

2
1F1

′(z1)+ < E22 > P1,2z
2
2F1

′(z2)) (17)

ε′′11 − ε′′22 = −
α

4E2o
(< E21 > P3,1F1

′′(z1)+ < E22 > P3,2F1
′′(z2)) , (18)

ε′′11 + ε′′22 =
α

E2o
(< E21 > F2

′′(z1, 1)+ < E22 > F2
′′(z2, 1) , (19)

ε′′12 = ε′′21 = −
α

8E2o
(< E21 > P1,1F1

′′(z1)+ < E22 > P1,2F1
′′(z2)) , (20)

where < E2i >= 4πnl,i, El,i (i = 1, 2) is the mean square of intensity electric field for each
laser wave and the functions F ′1, F

′
2, F

′′
1 , F

′′
2 , are equal to

F1
′(z) =

{
[
√
1− z + z

2
L−]

2 + [
√
1 + z − z

2
L+]

2 − π2z2

4
, 0 < z ≤ 1,

−[
√
z − 1− z arccot

√
z − 1]2 + [

√
1 + z − z

2
L+]

2, z > 1.
(21)

F2
′(z, µ) =




−2− µ − (1 + µ(z − z2

2
))1
4
L2− − (1− µ(z + z2

2
))1
4
L2++

+ (1+µz)
√
1−z

2
L− − (µz−1)

√
z+1

2
L+ + π2

4
(1 + µ(z − z2

2
)), 0 < z ≤ 1,

−2− µ + (1 + µ(z − z2

2
)) arccot2(

√
z − 1)− (1− µ(z + z2

2
))1
4
L2++

+(1 + µz)
√
z − 1 arccot

√
z − 1− (µz−1)

√
1+z

2
L+, z > 1.

(22)

F1
′′(z) =

{
z4(L− + 2

√
1−z
z

), 0 < z ≤ 1,
0, z > 1.

(23)

F2
′′(z, µ) =

{
z2((1 + µ(z − z2

2
))L− −

√
1− z(1 + µz)), 0 < z ≤ 1,

0, z > 1
(24)

The function L+ is equal to

L+ = ln

√
1 + z + 1√
1 + z − 1

. (25)
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The constant Eo =
m2c3

eh̄
is the critical field of quantum electrodynamics. The presented

data determine completely the permittivity tensor for high energy γ-quanta traversing a
dichromatic linearly polarized bunch of laser photons.

In a number of problems in optics it is more convenient to employ the tensor ηij, which
is the inverse of the tensor εij. When |εij − δij| 
 1, these tensors are related by

ηij + εij = 2δij. (26)

The following peculiarities of the permittivity tensor should be noted:
1) Our description can be extended to the case when the laser bunch is the superposi-

tion of more a two linearly polarized waves. It is obvious that the analogous terms should
be added in the tensor components in these cases.

2) Let El,1 > El,2. Then the laser bunch is a transparent medium at z1 > 1. In this
case all the components ε′′ij are equal to zero.

3) In a general case the symmetric complex tensor ε′′ij is not reduced to principal axes
[1,2,5] (i.e., there does not exist a coordinate system in which the tensors ε′ij and ε′′ij are
both diagonal).

4) In the case, when the two waves have the same direction of linear polarization or
their polarizations are orthogonal, the tensor εij can be reduced to a diagonal form. The
permittivity tensor for monochromatic linearly polarized wave can be always reduced to
the diagonal form.

The above is also true for tensor ηij.

3. Refractive indices of γ-quanta

The main problem in the of anisotropic medium optics is to investigate the propagation
of monochromatic plane waves, characterized by definite values of the frequency ω and
wave vector �k. Such waves, satisfying a homogeneous wave equation, are called normal
electromagnetic waves [2], and they have the form

�E = �E0e
i(�k�r−ωt), �k = ωñ�s/c ,

where �E0 is the complex vector, independent of coordinates �r and the time, ñ is the
complex index of refraction and �s = �k/|k| is the real unit vector. The vectors �D and �B

have the same form.
From Maxwell’s equations (1) we obtain the wave equation

rotrot �E +
1

c

∂2 �D

∂t2
= 0 .

Taking into account the relation between �D and �E in a system of coordinates in which
the axis x is oriented parallel to the wave vector, we obtain

η11
∂2D1

∂x2
+ η12

∂2D2

∂x2
− 1

c2
∂2D1

∂t2
= 0,

η21
∂2D1

∂x2
+ η22

∂2D2

∂x2
− 1

c2
∂2D2

∂t2
= 0. (27)
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For a monochromatic plane wave it follows from these equations that

(ñ−2δij − ηij)Dj = 0, i, j = 1, 2. (28)

From the condition that the two homogeneous equations are compatible, we find the index
of refraction of the γ-quanta

ñ−2 =
S

2
±
√

S2

4
−Dη = (η11 + η22)/2±

√
(η11 − η22)2/4 + η12η21 , (29)

where S and Dη are, respectively, the trace and determinant of the matrix ηij. Thus, in
the general case the γ-beam propagates through the laser wave as the superposition of
two electromagnetic waves with different refractive indices. Note, that the two roots of
(30) which have the form −1 + small quantity, are superfluous. They correspond to the
γ-quanta motion in the opposite direction.

The refractive indices are complex quantities in the general case. However, they are
real values, when the laser bunch is a transparent medium for γ-quantum (all components
of the permittivity tensor are the real numbers in this case). Fig.1 illustrates the refractive
indices as functions of the invariant variable z1 (the laser wave parameters are in the
caption).

Fig. 1. The real (1) and imaginary

(2) parts of refractive indices
for dichromatic laser wave

(P1,1 = 1, P3,2 = 1, r =
0.658, z2/z1 = 2) as functions

of the invariant parameter z1.
For obtaining absolute quan-

tity the ordinate value is mul-
tiplied by the factor E2o/α <
E21 >.

4. Polarization properties of γ-beam propagation in laser wave

Here we consider the polarization properties of one of two normal electromagnetic
waves. From dispersion equations (29) we find the ratios of the components of the vector �D

D1

D2
= κ =

ñ−2 − η22

η21
=
|D1|
|D2|

eiδ, (30)
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where δ is the phase shift between D1 and D2. This ratio κ can be reduced to zero or to
the form κ = iρ (since |D1||D2| sin δ = b1b2, where b1 and b2 are the semiaxes of the ellipse
and |ρ| = b1/b2 [14]) by the rotation of the coordinate system around the wave vector of γ-
quanta (the x-axis is constantly aligned with the wave vector). The first case corresponds
to the propagation of a linearly polarized wave and the second case corresponds to an
elliptically polarized wave; in addition, ρ > 0(ρ < 0) corresponds to left (right) - hand
polarization of γ-quanta.

The different cases of γ-beam propagation in the anisotropic medium, whose optical
properties described by the symmetric tensor, were considered in [5]. In the case when
a permittivity tensor may be reduce to principal axes (i.e., there is a coordinate system
in which ε12 = 0) the normal electromagnetic waves are linearly polarized. In general
case the permittivity tensor is not reduced to principal axes and the normal waves are
elliptically polarized. The propagation of γ-beam, which is the superposition of the two
linearly polarized waves, was considered in [6,9,15]. Because of this, in the following we
will consider the case when γ-beam is the superposition of the two elliptically polarized
normal waves.

In the case under consideration the refractive indices are the complex values. Because
of this, the value κ is also complex and we get the following relation between two normal
waves

κ(1)κ(2) = −1 , (31)

where the indices in parentheses refer to the waves with refractive indices ñ1 and ñ2. In
what follows we will use only one of two values, namely, the κ = κ(1) (without pointing
any indices). In our case one can obtain

D
(1)
1 D

(2)
1 +D

(1)
2 D

(2)
2 = 0 , (32)

D
(1)
1 D

∗(2)
1 +D

(1)
2 D

∗(2)
2 = D

(1)
2 D

∗(2)
2 (κ∗ − κ)/κ∗ , (33)

where the indices in parentheses refer to the waves with refractive indices ñ1 and ñ2. Here-
from we can see that �D(1) and �D(2) vectors are orthogonal but �D(1) and �D∗(2) vectors are
not orthogonal if the value κ∗−κ is not equal to zero. Let us name the Stokes parameters
of the normal wave with the refractive indices ñ1 and ñ2 respectively as X1, X2, X3 and
Y1, Y2, Y3. Then we get

X1 =
κ+ κ∗

1 + κκ∗
, (34)

X2 =
i(κ− κ∗)

1 + κκ∗
, (35)

X3 =
κκ∗ − 1

1 + κκ∗
. (36)

We have also the following relations Y1 = −X1, Y2 = X2, Y3 = −X3. The angle of ellipse
turn ϕ is found from relation tg2ϕ = X1/X3 = Y1/Y3.

Fig.2 illustrates the results of calculations of |Pcirc| = |X2| as functions of the invariant
variable z1 under various conditions.
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Fig. 2. The absolute value of nor-

mal waves circular polar-
izition |Pcirc| = |X2| as func-

tion of the invariant param-
eter z1. The polarization

state of laser wave is as in
Fig.1. The ratios r are equal

to 0.658,0.5,1.0 and 4.12 for
curves 1-4. The ratio z1/z2 is
equal to 2.

5. γ-quanta propagation in the laser wave

Now we can find the relations describing the variations of intensity and Stokes param-
eters of γ-quanta propagating in the uniform (nl = const) laser wave. Then, representing
the γ-beam as the superposition of two normal waves corresponding to the polarization
state of a laser wave, we get the following relations:

Jγ(x) = J1(x) + J2(x) + 2J3(x) , (37)

ξ1(x) = (X1J1(x) + Y1J2(x) + p1J4(x))/Jγ(x) , (38)

ξ2(x) = (X2J1(x) + Y2J2(x) + p2J3(x))/Jγ(x) , (39)

ξ3(x) = (X3J1(x) + Y3J2(x) + p3J4(x))/Jγ(x) , (40)

where Jγ, ξ1, ξ2, ξ3 are the intensity and Stokes parameters of γ-quanta on the laser bunch
thickness equal to x. The partial intensities Ji(x), (i = 1−4) have the following form ( the

physical sense of these values is easy to understand, if the relation ( �D(1) + �D(2))( �D∗(1) +
�D∗(2)) is written in the component-wise form):

J1(x) = J1(0) exp(−2 Im(ñ1)ωx/c) , (41)

J2(x) = J2(0) exp(−2 Im(ñ2)ωx/c) , (42)

J3(x) = exp(− Im(ñ1 + ñ2)ωx/c){J3(0) cos(Re(ñ1 − ñ2)ωx/c) + (43)

+J4(0) sin(Re(ñ1 − ñ2)ωx/c)} ,

J4(x) = − exp(− Im(ñ1 + ñ2)ωx/c){J3(0) sin(Re(ñ1 − ñ2)ωx/c)− (44)

−J4(0) cos(Re(ñ1 − ñ2)ωx/c)} .
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Fig. 3. The Stokes parameters of initialy unpo-
larized γ-beam as functions of a laser
bunch thickness. The polarization state
of laser wave is as in Fig.1. The num-
ber near each curve corresponds to index
i of Stokes parameter ξi. The solid curves
correspond to z1 = 1.4. The curves
2′ and 2” correspond to z1 = 1.2, 1.6.
r = 0.658, z1/z2 = 2, nl,1 = 5 1025cm−3,
El,1 = 1eV .

Fig. 4. The intensity of γ-beam as function of the
laser bunch thickness. The polarization
state of laser wave is as in Fig.1. Curves
1-3 correspond to initial circular polariza-
tion ξ2(0) of γ-beam equal to 1, 0 and -1.
r = 0.658, z1/z2 = 2, nl,1 = 5 1025cm−3,
El,1 = 1eV .

The initial partial intensities are defined from the following relations:

J1(0) =
ξ2(0)− q

2(X2 − q)
+

ξ3(0)− fξ1(0)

2(X3 − fX1)
, (45)

J2(0) =
ξ2(0)− q

2(X2 − q)
− ξ3(0)− fξ1(0)

2(X3 − fX1)
, (46)

J3(0) = 1/2 − (ξ2(0) − q)

2(X2 − q)
, (47)

J4(0) =
ξ1(0)X3 − ξ3(0)X1

p1X3 − p3X1
. (48)

The relations between Xi and Yi values were used, because of this the Yi-values are absent
in Eqs.(45)-(48). Besides, we assume that Jγ(0) = 1. The parameters f, q, p1, p2, p3 have
the following form:

p1 =
2i(1− κκ∗)

κ∗ − κ
, p2 =

2i(1 + κκ∗)

κ∗ − κ
, p3 =

2i(κ+ κ∗)

κ∗ − κ
.

f = p3/p1 , q = p2/2 .
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Eqs.(37)-(40) describe the general case of γ-beam propagation, when the variations
intensity and Stokes parameters are determined by the imaginary values of refractive in-
dices and the difference of their real quantities. However, these equations do not described
these cases, when the relation κ − κ∗ = 0 takes place. In the case κ + κ∗ = 0, one can
use the known relations from papers [6,9,15] or one can find the limits of Eqs.(37)-(40)
obtained here. For example, one can offer κ = δ + iρ and δ direct to zero.

Figs.3,4 illustrate the variations of Stokes parameters and the intensity of an initially
unpolarized γ-beam moving in the dichromatic laser wave.

6. Influence of the laser wave intensity on γ-quanta propagation

The influence of the laser wave intensity on the e+e−-pair production was studied
in a number of papers (see Ref.[4] and literature therein). The degree of intensity of a
dichromatic laser wave can be characterized by the dimensionless parameter [4] ξ2 = ξ21+ξ22
where ξ21 =

<E21>

Eo
2
m2c4

El,1
2 and ξ22 =

<E22>

Eo
2
m2c4

El,2
2 . Here we have considered the case of a relatively

low-intensity of a laser wave, when ξ2 
 1. Previously obtained results [4,11] can be used
to write the components of the permittivity tensor with the allowance for series expansion
in ξ. A key issue in this treatment of the intensity is the replacement of the variables
zi, (i = 1, 2) by variables, which we denote by z̃i, (i = 1, 2), such that z̃i = zi(1 + ξ2).
On the whole, the corresponding components of the permittivity tensor retain their form,
but the variables zi are replaced by the variables z̃i, and the critical field Eo is replaced

by Ẽo =
m2c3(1+ξ2)

eh̄
. The functions F ′2(zi, 1), F

′′
2 (zi, 1), F

′
1(zi) and F ′′( zi) are replaced by the

functions F ′2(z̃i, µ), F
′′
2 (z̃i, µ), F

′
1(z̃i) and F ′′1 (z̃i), where µ = 1/(1+ξ2). A new condition for

the pair production threshold for components of the dichromatic wave is z̃i < 1. It means
that the threshold energy of γ-beam enhances (at the fixed frequency of laser photons). In
a strict sense the field of application of these more refined relations satisfies the condition
ξ2 
 1. Nevertheless, we can receive the important information in this case [9].

In the case, when the parameter ξ2 � 1, the pair production process is similar to an
analogous process in the constant electromagnetic field. The permittivity tensor for these
fields was found in Ref.[16] and some particular calculations of γ-quanta propagation are
in [17].

7. Discussion

The optical properties of an anisotropic medium can be described by the use of the
symmetric permittivity tensor. In the general case the tensor components are complex
values. It means, generally speaking, that the permittivity tensor is not reduced to princi-
pal axes with the result that the normal electromagnetic waves (the eigenfunctions of the
problem) present two elliptically polarized waves. Because of this some peculiarities in
γ-quanta propagation in anisotropic medium appeared. The simplest example of such a
medium of the general type is the dichromatic laser wave involving two linearly polarized
waves with different frequencies. The other example is a single crystal oriented in a re-
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gion of the coherent pair production process [4]. The permittivity tensor and polarization
characteristics of normal waves in single crystals were obtained in [5], and it was shown
that orientation regions were in single crystals, where the circular polarization of normal
waves was high (≈ 90% in maximum). However, in single crystals the components of
permittivity tensor are a sum of sufficiently large number of terms that makes the investi-
gation more difficult. Note that Eqs.(37-40) for variations of γ-beam intensity and Stokes
parameters are true for an arbitrary anisotropic medium, when κ− κ∗ �= 0

We made some calculations of γ-beam propagation in the field of dichromatic wave in
the case, when the frequency ratio El,2/El,1 is equal to 2 (see Figs.(1-4)). We take the
values P1,1 = 1, P3,2 = 1 for the polarization state of the dichromatic wave. It means that
the angle between directions of these two polarizations is equal to 45o. One can see from
Fig.2 that the value |Pcirc| = |X2| depends on the ratio of the electric field intensities

r =
√
< E22 > / < E21 > . The value |X2| = 1, when r=0.658 or 4.12 (curves 1 and 4 on

Fig.2). The refractive indices for r=0.658 are shown in Fig.1. One can see that the real
and imaginary parts of refractive indices of two normal electromagnetic waves are equal
in magnitude at z1 = 1.43. This is the so-called in classical crystal optics case of singular
axis [1,2].

Now we can make a conclusion that in single crystals the high degree of circular
polarization of normal waves [5] is due to the common action of the two ”strong” crys-
tallographic planes with the 45o angle between them. The (110) and (010) planes are
responsible for the effect under conditions of the cited paper.

Fig.3 illustrates the variations of Stokes parameters as functions of the laser bunch
thickness. The behavior of these curves is easily to understand. As has already been
noted, the γ-beam in a medium can be presented as a superposition of two normal elec-
tromagnetic waves with different refractive indices. Because of this, one normal wave
is adsorbed to greater extend than other one and after propagation of some thickness x
only this wave would then be left behind and ξ1(x) ≈ X1, ξ2(x) ≈ X2, ξ3(x) ≈ X3 or
ξ1(x) ≈ Y1, ξ2(x) ≈ Y2, ξ3(x) ≈ Y3. Referring to Fig.3 notice that such a thickness is
enough large when 1 < z1 < 1.45. The reason is that the difference of imaginary parts of
refractive indices is a small value in the pointed region of the variable z1(see Fig.1).

Table 1. The 50 GeV γ-beam intensities in Si single crystal as a function of thickness. Here
the value ξ2 is the initial circular polarization of the beam, and ξ1 = 0, ξ3 = 0.

The direction of motion of the beam is near < 001 > axis of the single crystal.
AS = |I(ξ2 = 1)− I(ξ2 = 0)|/I(ξ2 = 0) = |I(ξ2 = −1)− I(ξ2 = 0)|/I(ξ2 = 0).

x, cm I(ξ2 = 0) I(ξ2 = −1) I(ξ2 = 1) AS
0 1.000000 1.000000 1.000000 0.000

10 0.195701 0.197923 0.193479 0.0114

20 0.039152 0.040871 0.037433 0.0439
30 0.007990 0.008739 0.007242 0.0936

40 0.001658 0.001916 0.001401 0.1552
50 0.000349 0.000427 0.000271 0.2232
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The dichromatic wave or single crystals [5] are sensitive to the circular polarization
of γ-beam (see Figs.3,4). So, initially an unpolarized γ-beam moving in an anisotropic
medium become a circularly polarized one. This case differs from the known one [3]
of the γ-beam propagation in the anisotropic medium. As is shown in Ref.[3] the only
linearly polarized beam is transformed in a circularly polarized one. In principle, the single
crystal sensitivity to a circular polarization can be used for determination of polarization
of high energy ( in tens GeV and more) γ-quanta and electrons. Table 1 illustrates
the dependence of γ − beam intensity on the initial circular polarization in silicon single
crystals. The direction of motion of γ-beam is defined with the use of the angles φH =
θ cosα = 1.50mrad and φV = θ sinα = 1.78mrad, where the θ is the angle with respect
to < 001 > axis of the single crystal and α is the azimuth angle around this axis (α = 0,
when the γ-quanta momentum lies in (110) - plane). More detailed consederation of this
process in single crystals one can find in paper [18].

It is believed that a γ-beam propagation in the linearly polarized monochromatic
laser wave moving in the magnetic field (normally to it direction) is similar to such a
propagation in a dichromatic wave. Another analogous example is two monochromatic
laser waves with the equal frequencies moving at an nonzero angle between them.

The propagation of γ-quanta through a laser wave (when ξ2 
 1) is similar to the
same process in single crystals for the region of coherent pair production. For example,
the permittivity tensor in single crystals [5] is determined by the functions F ′1, F

′
2, F

′′
1 , F

′′
2

as in a laser wave. However, the existence of some frequencies of pseudophotons and
incoherent pair production in single crystals is the main difference between these two
cases. Note that the permittivity tensor components (see also Ref.[9]) can be presented
as a linear combinations of the invariant helicity amplitudes for the forward light by light
scattering [6,7,8].

Note that there are no experiments yet in support of the transformation of γ-beam
polarization in single crystals and laser waves. Nevertheless, a number of proposals on
the investigation and utilization of this phenomenon [12] is available.

The author would like to thank S.M.Darbinian and V.I.Kotov for useful discussion.
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