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Abstract
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A mechanism for the dynamical mass generation of a non-Abelian gauge field which is

based on taking into account the contributions of the gauge field vacuum configurations into
the formation of the physical vacuum is considered. For a model of the physical vacuum as a

superposition of Abelian configurations the gauge field propagator is calculated in the leading
order of 1/d-expansion (d is a space-time dimension). One-particle spectrum of the model

corresponds to the gauge sector of SU(2) Georgi-Glashow model.

aNNOTACIQ

rOˆEW w.e. oB ODNOM MEHANIZME DINAMIˆESKOJ GENERACII SU(2)-MODELI dVORDVI-gLE[OU:
pREPRINT ifw— 98-83. – pROTWINO, 1998. – 11 S., BIBLIOGR.: 9.

rASSMOTREN MEHANIZM DINAMIˆESKOJ GENERACII MASSY NEABELEWA KALIBROWOˆNOGO POLQ,
W OSNOWE KOTOROGO LEVIT UˆET WKLADOW WAKUUMNYH KONFIGURACIJ KALIBROWOˆNOGO POLQ W

FORMIROWANIE FIZIˆESKOGO WAKUUMA TEORII. w MODELI FIZIˆESKOGO WAKUUMA KAK SUPERPOZI-
CII ABELEWYH KONFIGURACIJ WYˆISLEN PROPAGATOR KALIBROWOˆNOGO POLQ W GLAWNOM PORQDKE

1/d-RAZLOVENIQ (d – RAZMERNOSTX PROSTRANSTWA-WREMENI). oDNOˆASTIˆNYJ SPEKTR MODELI

SOOTWETSTWUET KALIBROWOˆNOMU SEKTORU SU(2)-MODELI dVORDVI-gLE[OU.
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1. Introduction

In the Standard Model the central role belongs to the Higgs mechanism which gives the
masses to particles without violating the cardinal principles of theories, such as local gauge
invariance and renormalizability. The Higgs mechanism is a well adjusted and efficient
machine, and its description rightfully occupies its honorable place in any textbook on
the modern high energy physics. However, in spite of all experimental efforts, no traces
of the scalar sector of the Standard Model have been found hitherto, and the question on
searching alternatives to the Higgs mechanism is not academic at all.

The generation of mass of a gauge field and the spontaneous symmetry breaking
connected with it are defined by the structure of the ground state of the theory, that
is a physical vacuum. Modeling of this structure is the main problem of the dynamical
symmetry breaking description (see, for instance, [1]).

In this paper a mechanism for the dynamical mass generation of the non-Abelian
gauge field is considered which does not require entering a scalar field and other additional
fields. Here the gauge field itself, more exactly its vacuum constituent undertakes the role
of an order parameter, which is played by the vacuum expectation of a scalar field in
the usual Higgs mechanism. Appearance of such a vacuum constituent is a manifestation
of a nontrivial structure of physical vacuum of the quantum field theory. This vacuum
constituent arises quite naturally in constructing an iteration solution of the Schwinger-
Dyson equations by the method, suggested in [2], [3], which we shall use in the present
work as well.

To illustrate the method we examine the spontaneous symmetry breaking in the scalar
theory. (As is well known, this phenomenon is a foundation for the Higgs mechanism in
the Standard Model.) Consider the theory of a scalar field φ with the Lagrangian

L = ∂µφ
∗∂µφ−m2φ∗φ− λ

2
(φ∗φ)2. (1)

(We are working in the Minkowsky metric with g00 = 1, but will not distinguish between
the upper and lower indices to simplify the notations.)
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The Schwinger-Dyson equation (see, for instance, [4]) for the generating functional
G(j) of the Green functions of this model has the form

λ

i

δ3G

δj∗δjδj∗
− (m2 + ∂2)

1

i

δG

δj∗
+ jG = 0. (2)

Here j(x) is a source of the field φ∗(x). At λ = 0 eq.(2) has the unique (up to a normal-
ization factor) solution

Gpert = exp{i
∫

dxdyj∗(x)∆c(x− y)j(y)},

where ∆c = (m2 + ∂2)−1 is the free propagator.
This solution is a foundation for the iterative solution of eq.(2) in the form of the

perturbation series. At m2 < 0 such a solution is unstable — the physical vacuum in this
case differs from the trivial vacuum of the perturbation theory. To describe the solution in
this case, which corresponds the spontaneous symmetry breaking, let us consider another
iterative scheme: an expansion near the point j = 0. As a leading approximation, consider
the equation

λ

i

δ3G0

δj∗δjδj∗
− (m2 + ∂2)

1

i

δG0

δj∗
= 0, (3)

and the iterative expansion for the generating functional

G = G0 +G1 + · · ·+Gn + · · · ,

is constructed by the subsequent solution of the iteration scheme equations

λ

i

δ3Gn

δj∗δjδj∗
− (m2 + ∂2)

1

i

δGn

δj∗
= −jGn−1. (4)

Leading approximation equation (3) has the solution

G0(j) = exp i
∫

dx[v∗j + vj∗],

where v obeys the ”characteristic equation”

(λv∗v +m2 + ∂2)v = 0. (5)

Characteristic equation (5) has the form of a classical field equation of the theory with
Lagrangian (1), and its solution v is the vacuum expectation of the field φ in the leading
approximation of the given iteration scheme.

The trivial solution v ≡ 0 corresponds to the trivial perturbative vacuum, and the
corresponding iterative expansion is the perturbation series, i.e. the usual perturbation
theory is a partial case of the given iteration scheme. At m2 < 0, λ > 0, the Green func-
tions of the perturbation theory maintain tachyon poles, which indicates the instability
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of the trivial vacuum, but in this case another class of constant solutions of characteristic
equation (5) exists

v∗v = −m2/λ.

The iteration scheme based on this solution is a perturbation theory over spontaneously
broken non-perturbative vacuum. For the construction of the iterations in this case, it is
convenient to go over to the new sources

j+ =
1√
2v∗v

(v∗j + vj∗), j− =
−i√
2v∗v

(v∗j − vj∗).

In terms of these sources we obtain the solution of the first-step iteration scheme equations
as G1 = P1G0, where

P1 =
i

2

∫
dxdy{j+∆Hj+ + j−∆Gj−}.

Here ∆H = (2λv∗v+∂2)−1 is the Higgs boson propagator, and ∆G = ∂−2 is the Goldstone
boson propagator.

Therefore, the adequate choice of the vacuum constituent — the solution v of charac-
teristic equation (5) — defines the adequate structure of Green functions and one-particle
spectrum of the theory.

We shall apply this scheme to the construction of the iterative solution for a non-
Abelian gauge theory. Corresponding characteristic equations have a great number of
various solutions, and a choice of a class of the solutions, i.e. the vacuum constituents,
defines a choice of the candidate to the physical vacuum of the theory. Here we consider the
simplest non-trivial class of the solutions (”Abelian solutions”, see below) and demonstrate
that in the leading order of 1/d-expansion this class of solutions leads to the dynamical
realization of SU(2) Georgi-Glashow model [5].

2. Iteration scheme for non-Abelian gauge theory

Consider the theory of a gauge field Aµ ≡ Aaµ with the Lagrangian

L = −1
4
FµνFµν(A) − 1

2α
(∂µAµ)

2 − c̄∂µDµ(A)c. (6)

Here Fµν(A) ≡ F aµν(A) = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν is the gauge field tensor; Dµ(A) ≡

Dabµ (A) = δab∂µ − gfabcAcµ is the covariant derivative; α is a gauge parameter; c ≡ ca is
the Faddeev-Popov ghost field; fabc are structure constants of the gauge group.

Let us introduce the generating functional G(J) of Green functions which depends on
the gauge field source Jµ ≡ Jaµ and the ghost field sources j ≡ ja and j̄ ≡ j̄a. The
generating functional G is a solution of the system of equations in functional derivatives
— the Schwinger-Dyson equations:

Dν(A)Fνµ(A)G+
1

α
∂µ∂νAνG + gfC∂µC̄G + JµG = 0, (7)
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∂µDµ(A)CG = jG. (8)

Here the following notations are introduced

Aµ ≡ Aaµ =
1

i

δ

δJaµ
, C ≡ Ca =

1

i

δ

δj̄a
, C̄ ≡ C̄a = i

δ

δja
.

For solving equations (7)-(8) we shall use the iteration scheme of [2], [3]. The leading
approximation of this scheme is the system of equations

Dν(A)Fνµ(A)G0 +
1

α
∂µ∂νAνG0 + gfC∂µC̄G0 = 0, (9)

∂µDµ(A)CG0 = 0. (10)

The equations of the n-th step of the iteration scheme have the form

{
Dν(A)Fνµ(A) +

1

α
∂µ∂νAν + gfC∂µC̄

}
Gn = −JµGn−1, (11)

∂µDµ(A)CGn = jGn−1. (12)

The solution of leading approximation equations (9)-(10) is

G0 = exp i
{
Jµ �Vµ + j̄ � G + Ḡ � j

}
, (13)

where Jµ �Vµ ≡
∫

dx Jaµ(x)V
a
µ (x), etc.

Coefficient functions Vµ ≡ V aµ I G ≡ Ga (vacuum constituents) are solutions of the
system of characteristic equations

Dν(V)Fνµ(V) +
1

α
∂µ∂νVν + gfG∂µḠ = 0, (14)

∂µDµ(V)G = 0. (15)

The solution of the n-th-step equations of the iteration scheme has the form

Gn = PnG0,

and taking into account characteristic equations (14)-(15), we obtain the system of equa-
tions for the functional Pn

{(
Dν(V)− gfAν

)(
Dν(V)Aµ −Dµ(V)Aν + gfAµAν

)
− gfFµν(V)Aν

+
1

α
∂µ∂νAν + gf

(
C∂µC̄ + G∂µC̄ +C∂µḠ

)}
Pn = −JµPn−1,

∂µ

{(
Dµ(V)− gfAµ

)
C− gfAµG

}
Pn = jPn−1 .

Since P0 = 1, the solution of this system for any n is a polynomial in sources Jµ and
j. Coefficient functions of this polynomial define the Green functions. At each step the
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equations of the iteration scheme give a closed system of equations for these functions. The
solution of the first-step equations is a quadratic polynomial, defining two-point functions
(the propagators). At the second step the solution is a polynomial of the fourth degree,
defining three-and four-point functions, as well as corrections to the propagators, etc. To
eliminate ultraviolet divergences, it is necessary to modify the equations of the iteration
scheme by introducing the corresponding counterterms (see [2]). Note that functions of
the leading approximation and of the first step are ultraviolet-finite.

3. Physical vacuum and vacuum constituents

In the leading approximation of considered iteration scheme the ground state (the
physical vacuum of the theory) is defined by a choice of solutions of the characteristic
equation system (14)-(15). Each solution (Vµ,G) of the characteristic equation system
defines a partial solution G(J | V,G) of the iteration scheme. This solution will be referred
to as corresponding to a partial mode | V,G >.

The trivial solution Vµ = G = 0 corresponds to the leading approximation G0 = 1.
The iteration scheme based on this solution is a perturbation theory in the coupling
constant over the trivial perturbative vacuum. Nontrivial solutions of the characteristic
equations define non-perturbative modes. These solutions have a sense of the vacuum
constituents of the quantum fields Aµ and c, like the vacuum constituent v of scalar field
in the Higgs mechanism ( see Introduction).

The choice of the approximation for the description of the physical vacuum | 0 > must
ensure general physical requirements, such as Poincaré-invariance, cluster decomposition,

etc. In the Higgs mechanism it is sufficient to take the constant solution v =
√
−m2/λ

for this purpose.
In the case under consideration the situation is more complicated. Obviously, the

choice of a separate partial mode with Vµ = 0 as a leading approximation to the physical
vacuum (”a candidate for the physical vacuum”) does not ensure Poincaré-invariance
of the theory. Notice, however, that Schwinger-Dyson equations (7)-(8) are the linear
functional-differential equations for the generating functional, and any superposition of
partial solutions

∑
G(J | V,G) is also a solution of these equations. So we can choose

a superposition of partial modes as a candidate for the physical vacuum, and choose the
generating functional of the physical Green functions as the superposition

< 0 | 0 >J= G(J) =
∑
{V,G}

G(J | V,G),

corresponding to a class {V,G} of solutions of the characteristic equations. We shall
suppose this superposition can be chosen in such a way that all the contributions, breaking
the Poincaré-invariance, are mutually cancelled, and the resulting theory turns out to be
Poincaré-invariant. For instance, the expectation value of the gauge field must disappear

< 0 | Aµ | 0 >=
1

i

δG

δJµ

∣∣∣∣∣
J=0

= 0,
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in spite of the contributions of separate partial modes in this vacuum expectation can
be different from zero. Further, the higher derivatives of the physical generating func-
tional, defining multipoint functions, must be translational-invariant after switching off
the sources, etc. The set of these conditions will ensure the Poincaré-invariance of the
theory.

4. Ward-Slavnov-Taylor identities

Gauge invariance imposes the restrictions on Green functions which are known as
Ward-Slavnov-Taylor identities. From the Jacobi identities for the structure constants of
the gauge group the identity follows

Dµ(A)Dν(A)Fµν(A) ≡ 0. (16)

Acting by operator Dµ(A) on Schwinger-Dyson equation (7) and taking into account (16)
we obtain the generating relation for the Ward-Slavnov-Taylor identities

1

α
Dµ(A)∂µ∂νAνG+ gDµ(A)fC∂µC̄G = −Dµ(A)JµG. (17)

Differentiating this relation and switching off the sources, we get the desired restrictions
on the Green functions. As relation (17) is an identity, and G(J | V,G) is a solution of
Schwinger-Dyson equations, these restrictions must be fulfilled for each separate partial
mode.

If Vµ = 0 or G = 0 their form is certainly different from that of the usual Ward-
Slavnov-Taylor identities. Relation (17) must be fulfilled in each order of the considered
iteration scheme that is the chain of relations of type (17) must be satisfied, where in the
left hand side G is changed for Gn, while in the right hand side – for Gn−1. In the leading
approximation the consequence of (17) is the condition

1

α
Dµ(V)∂µ∂νVν + gDµ(V)fG∂µḠ = 0 (18)

on the solutions Vµ and G of characteristic equations (14)-(15).

5. Abelian configurations

Characteristic equations (14)- (15) possess a rich ensemble of various solutions, that is
a reflection of the complex vacuum structure of non-Abelian gauge theory. In this paper
we restrict ourselves to the analysis of the simplest solutions of these equations, bringing,
however, to nontrivial physical effects. First of all note that if we impose the subsidiary
condition

∂µVµ = 0, (19)

then, as is seen from (18), for the ghost vacuum field G we can restrict ourselves to the
trivial solutions G = Ḡ = 0 without contradicting the gauge invariance condition. Further,
there exist two classes of the simplest solutions of characteristic equation (14):
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I) Coordinate-independent solutions Vµ : ∂νVµ = 0. For such solutions eq.(14) re-
duces at G = Ḡ = 0 to the condition

fabcf cdhV bν V
d
ν V

h
µ = 0. (20)

(This class of solutions was considered in [3]).
II) ”Abelian” solutions, for which the dependencies on the space-time coordinates and

on isotopic variables are separated:

Vµ(x) = nVµ(x), (21)

where n is a unit vector in the isotopic space. For such vacuum configurations all nonlinear
(non-Abelian) terms in eq. (14) disappear, and, with condition (19) taken into account,
this equation becomes the d’Alambert equation ∂2Vµ = 0.

For the gauge group SU(2) the coordinate-independent solutions are a subset of
Abelian solutions. Really, it is easy to prove that for the group SU(2), when fabc = εabc,
condition (20) is equivalent to the relation εabcV bµV

c
ν = 0. This relation means that all

the vectors Vµ are collinear in the isotopic space, i.e. there exists a selected isotopic
direction, and choosing it as vector n we come to Abelian solutions (21).

6. First-step equations

Equations of the first step define gauge field and ghost field propagators. Polynomial
P1 is quadratic in sources and at G = Ḡ = 0 has the form

P1 =
1

2i
Jµ �Dµν � Jν + īj �D � j. (22)

Here Dµν ≡ Dabµν(x, y | V) is the gauge field propagator; D ≡ Dab(x, y | V) – the ghost
propagator.

The iteration scheme gives the following equation for D

∂µDµ(V)D = 1. (23)

From generating relation (17) one obtains the following relation for the longitudinal part
of Dµν

1

α
Dµ(V)∂µ∂νDνλ = Dλ(V). (24)

Since from subsidiary condition (19) it follows that [∂µ,Dµ(V)] = 0, then from (23) and
(24) we get

∂νDνλ = αD �Dλ(V). (25)

At Vµ = 0 : D = ∂−2, and identity (25) gains the familiar form

∂νDνλ = α
∂λ

∂2
.
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With taking into account (25), from the iteration scheme equations we obtain the equation
for Dµν:

Pµν(V)Dνλ = gµλ − ∂µD � Dλ(V), (26)

where Pµν(V) ≡
{
D2(V)gµν −Dµ(V)Dν(V) + 2

[
Dµ(V),Dν(V)

]}
.

As has been pointed above, the four-point and three-point functions enter the second-
step equations of the iteration scheme. So, for the four-point functions Fabcdµνσρ(x, y, z, t) of
the gauge field, we get the equation

Pµν(V)Fνλσρ(x, y, z, t) = −({gµλδ(x− y)1⊗Dσρ(z, t)}+
{y ↔ z, λ↔ σ}+ {y ↔ t, λ↔ ρ}). (27)

Below we shall work in the transverse gauge ∂νDνλ = 0. Besides, we restrict ourselves
to the consideration of Abelian configurations (21) of the gauge group SU(2). For the
Abelian configurations it is convenient to introduce the orthogonal basis

uab0 = nanb, uab± =
1

2
(δab − nanb ± iεabcnc). (28)

In basis (28) it is easy to separate the isotopic structure from the space-time one

Dµν = u0D
0
µν + u+Dµν + u−D̄µν ,

D = u0D
0 + u+D + u−D̄.

For D0µν I D0 we get the free propagator equations, that is

D0µν =
1

∂2
(gµν −

∂µ∂ν

∂2
), D0 =

1

∂2
.

The equation for D has the form

∂µDµ(V )D = 1. (29)

Here Dµ(V ) = ∂µ+ igVµ is the ”Abelian” covariant derivative. Equation for D̄ is obtained
from (29) by the substitution Dµ → D∗µ, D → D̄. For Dµν we get the equation:

{
D2(V )gµν −Dµ(V )Dν(V ) + 2

[
Dµ(V ),Dν(V )

]}
Dνλ = gµλ − ∂µD �Dλ(V ). (30)

The equation for D̄µν is obtained from (30) by the substitutionDµ → D∗µ, D → D̄, Dµν →
D̄µν .
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7. Vacuum of Abelian configurations and 1/d expansion

As has been pointed in Section 3, when considering the nonperturbative modes with
Vµ = 0 it is necessary to take a superposition of the non-perturbative modes as a
candidate for the physical vacuum | 0 > in order to preserve the Poincaré-invariance. As
the simplest nontrivial variant for such a superposition, we will consider in the leading
approximation a set of Abelian configurations {V} corresponding to Abelian solutions
(21):

G0(J) =
∑
{V}

G0(J | V) =
∑
{V}

exp iJµ �Vµ.

The operation
∑
{V} must be chosen in such a manner that all the Poincaré-non-invariant

contributions would disappear, in particular, the conditions below must be fulfilled

< 0 | Vµ | 0 >=
1

i

δG0

δJµ

∣∣∣∣∣
J=0

= 0, (31)

< 0 | Vµ(x)Vν(y) | 0 >= − δ2G0
δJν(y)δJµ(x)

∣∣∣∣∣
J=0

= n⊗ n · fµν(x− y). (32)

It is not difficult to make condition (31) true. For this we notice that for the Abelian con-
figurations −Vµ is a solution of the characteristic equation as well as Vµ is, so for obeying
(31) it is sufficient to take the superposition G0(J | V)+G0(J | −V) ∼ cos Jµ �Vµ, or, in
the general case,

∑
{V} cos Jµ�Vµ. Note, that simultaneously the vacuum expectations of

all the odd monomials in Vµ also turn to zero: < 0 | Vµ1 · · ·Vµ2n+1 | 0 >= 0. Require-
ment (32) is less trivial. It is clear that required operation

∑
{V} should be continual, i.e.,

should correspond to some integration. But for the calculation of the vacuum expectation
itself there is no necessity to specify this operation, if one is limited to configurations, for
which

V2 ≡ V aµ (x)V
a
µ (x) = V2 = const,

that are the ”equal-length” configurations 1. Really, due to the characteristic equations
and condition (19), the function fµν(x) must be a solution of the d’Alambert equation
∂2fµν = 0 with the subsidiary condition ∂µfµν = 0 and the initial condition fµµ(0) = V2.
The solution is unique

fµν =
V2
d

gµν . (33)

Similarly, for the four-point monomial we get:

< 0 | Vµ(x)Vν(y)Vρ(z)Vσ(t) | 0 >=
(V2)2

d(d + 2)
(gµνgρσ + gµρgνσ + gµσgνρ). (34)

Let us turn to propagators. It is clear that the solutions of equations (29) and (30)
can not be interpreted as particle propagators in the Poincaré-invariant theory. Physical

1The quantity V2 plays a role of the order parameter, and its sign must be defined from physical
considerations.
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propagators must be built by means of the same operations of partial mode superposition:
D(x − y | V2) =∑{V}D(x, y | V).

Full solving of eqs. (29) and (30) with consequent transition to the physical vacuum
presents a difficult problem. For its approximate solving notice that, as can be seen from
formulae (32), (33) and (34), in the vacuum of Abelian configurations a small parameter
arises, namely, 1/d, where d is the dimension of space-time. It is easy to see that if one
takes D(0) = ∂−2 as a leading approximation for equation (29), then after turning to the
physical vacuum all the subsequent terms in the iterative solution D = D(0) +D(1) + · · ·
have a higher order in the parameter 1/d. Slightly bulkier, but not complicated calculation
shows that for Dµν (see eq.(30)) the leading approximation of 1/d-expansion is D(0)µν =
(∂2 − g2V2)−1 � πµν (here πµν is a transverse projector).

Thus, in the leading order in 1/d, we get in the momentum space

D(p) = D̄(p) = − 1

p2
+O(1/d), (35)

Dµν(p) = D̄µν(p) = −
1

p2 + g2V2
(
gµν −

pµpν

p2

)
+O(1/d). (36)

Stress once again that, unlike the partial solutions of equations (29)-(30), formulae (35)
and (36) define the physical propagators of particles in the physical Poincaré-invariant
vacuum.

As is well known, (see, for instance, [6]) in the lattice theories the 1/d-expansion is, in
essence, the mean-field expansion. Probably, as in this instance, the vacuum of Abelian
configurations is a peculiar mean-field approximation to the true physical vacuum.

In the conclusion of this section let us touch on the cluster properties. For the scheme
based on an approximation of the physical vacuum by the superposition of partial modes
the cluster decomposition principle is a nontrivial property (see, for instance, [7]) and
requires checking at each stage of calculations. We can state that this principle is satisfied
for our model of physical vacuum at least in the leading order of 1/d-expansion. So, for
instance, from eq.(27) we get for the second-step four-point function Fµνσρ of the gauge
field in the leading order in 1/d: Fµνσρ = Dµν ⊗ Dσρ + {ν ↔ σ} + {ν ↔ ρ}, which is
the usual disconnected part of the four-point function, in correspondence with the cluster
decomposition principle.

8. Conclusion

In this paper it is found that for non-Abelian SU(2)-theories with the physical vacuum,
representing a superposition of Abelian partial modes, the gauge field propagator in the
leading approximation of 1/d-expansion is

Dabµν(p) =
{
− 1

p2
nanb +

1

µ2 − p2
(δab − nanb)

}(
gµν −

pµpν

p2

)
, (37)

where µ2 = −g2V2.
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If V2 > 0 the spectrum contains tachyons which is a sign of instability of this state [1].
At V2 < 0 this propagator corresponds to the mass spectrum of SU(2) Georgi-Glashow

model [5], and in this case the considered mechanism is a dynamical realization of the
gauge sector for this model. As is well known, this model cannot be incorporated in
the Standard Model phenomenology. From the viewpoint of our construction it means
that the real physical vacuum of the Standard Model has a more complicated structure,
and for its description it is necessary to take into account a wider (or other) class of
solutions of the characteristic equations — vacuum constituents of fields. The ensemble
of these solutions is highly extensive and various, and this variety allows one to hope for
a possibility of the dynamical description of the mass generation in the Standard Model
on the base of principles involved. Phenomenological consequences of the dynamical mass
generation in Standard Model (see, for instance, [8], [9]) lead to the interesting physical
results, and further studying of the dynamical mass generation mechanism seems quite
actual.
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