
����
STATE RESEARCH CENTER OF RUSSIA

INSTITUTE FOR HIGH ENERGY PHYSICS

IHEP 98-87

S.I. Alekhin, A.L.Kataev

THE NLO DGLAP EXTRACTION OF αs AND HIGHER

TWIST TERMS FROM CCFR xF3 AND F2 STRUCTURE

FUNCTIONS DATA FOR νN DIS

Submitted to Phys. Lett. B

Protvino 1998



UDK 539.171.12/.6. m–24

Abstract

Alekhin S.I., Kataev A.L. The NLO DGLAP extraction of αs and higher twist terms from CCFR

xF3 and F2 structure functions data for νN DIS: IHEP Preprint 98-87. – Protvino, 1998. – p. 9,
figs. 1, tables 2, refs.: 37.

We perform a detailed NLO analysis of the combined CCFR xF3 and F2 structure functions

data and extract the value of αs, parameters of distributions and higher-twist (HT) terms using
a direct solution of the DGLAP equation. The value of αs(MZ) = 0.1222 ± 0.0048(exp) ±
0.0040(theor) is obtained. Our result has a larger central value and errors than the original one
of the CCFR collaboration due to model independent parametrization of the HT contributions.

The x-shapes of the HT contributions to xF3 and F2 are in agreement with the results of other
model-independent extractions and are in qualitative agreement with the predictions of the

infrared renormalon model. We also argue that the low x CCFR data might have inaccuracies,
since their inclusion into the fits leads to the following low x-behaviour of the gluon distribution
xG(x, 9 GeV2) ∼ x0.092±0.0073, in contradiction with the results of its extraction from low x

HERA data.

aNNOTACIQ

aLEHIN s.i., kATAEW a.l. iZWLEˆENIE αs I WKLADA WYS[IH TWISTOW IZ DANNYH CCFR PO

STRUKTURNYM FUNKCIQM GLUBOKO NEUPRUGOGO νN RASSEQNIQ F2 I xF3 W NELIDIRU@]EM PORQD-
KE DGLAP: pREPRINT ifw— 98-87. – pROTWINO, 1998. – 9 S., 1 RIS., 2 TABL., BIBLIOGR.: 37.

pROWEDEN DETALXNYJ ANALIZ DANNYH CCFR PO STRUKTURNYM FUNKCIQM F2 I xF3 S IS-
POLXZOWANIEM RE[ENIJ URAWNENIJ DGLAP I IZWLEˆENY WELIˆINA αs, PARAMETRY RASPREDE-
LENIJ I WKLAD WYS[IH TWISTOW (wt). pOLUˆENA WELIˆINA αs(MZ) = 0.1222±0.0048(“KSP)±
0.0040(TEOR.). sREDNEE ZNAˆENIE I O[IBKI “TOJ WELIˆINY BOLX[E, ˆEM REZULXTAT SAMOJ

KOLLABORACII CCFR IZ-ZA TOGO, ˆTO W NA[EM ANALIZE WKLAD wt UˆTEN W MODELXNO NEZAWI-

SIMOJ FORME. zAWISIMOSTX WKLADA wt OT x SOGLASUETSQ S REZULXTATAMI DRUGIH MODELXNO-
NEZAWISIMYH ANALIZOW I NE PROTIWOREˆIT PREDSKAZANIQM MODELI INFRAKRASNOGO RENORMALO-

NA. oTMEˆENO, ˆTO DANNYE CCFR W MALYH x MOGUT IMETX NETOˆNOSTI, T.K. POWEDENIE GL@ON-
NOGO RASPREDELENIQ W MALYH x, OPREDELQEMOE “TIMI DANNYMI xG(x, 9 GeV2) ∼ x0.092±0.0073,
PROTIWOREˆIT REZULXTATAM ANALIZA DANNYH HERA.

c© State Research Center of Russia
Institute for High Energy Physics, 1998



1. Study of the possibility to separate power suppressed terms (namely, higher-twist
(HT) effects) from the perturbation theory logarithmic corrections in the analysis of scal-
ing violation of the deep-inelastic scattering (DIS) processes has a rather long history (see
e.g. Refs. [1,2,3] and Ref. [4] for the review). In the recent years interest to this problem
was renewed, mainly due to the possibility to model the HT terms in different processes
using the infrared-renormalon (IRR) technique (see e.g. Refs. [5]-[10],[11] and, especially,
Ref. [12] for the review).

On the other hand, the experimentalists improve their data precision and achieve,
sometimes, a percent level of accuracy. For example, very precise data on xF3 and F2
from the νN DIS experiment, performed at Tevatron by the CCFR collaboration, re-
cently appeared [13,14]. The CCFR data on xF3 were analyzed in Ref. [15] in the leading
order (LO), with inclusion of the next-to-leading-order (NLO), and with an approximate
next-to-next-to-leading order (NNLO) corrections. For the latter the NNLO QCD cor-
rections to the coefficient function [16] were taken into account. The NNLO corrections
to the anomalous dimensions of a limited set of even non-singlet moments [17] were also
taken into account. The NNLO corrections to the anomalous dimensions of odd mo-
ments, which are not still explicitly calculated, were obtained using smooth interpolation
procedure proposed in Ref. [18] and improved in Ref. [19]. The aim of Ref. [15] was
to attempt the first NNLO determination of αs(MZ) from DIS and to extract the HT
terms from the data on xF3 within the framework of the IRR-model [7]. Alongside, the
model-independent extraction of the HT terms was made, similarly to the analysis of
the combined SLAC-BCDMS data [20], which was performed in the NLO approxima-
tion. Theoretical uncertainties of the analysis of Ref. [15] were further estimated in Refs.
[21,22] in the N3LO approximation using the method of Padé approximants. It has been
found in Refs. [15,21,22] that the inclusion of the NNLO corrections leads to the decrease
of the HT terms, so that at the NNLO its x-shape come closer to zero.

In these analyses only statistical errors of data were taken into account. However, the
systematic errors of the CCFR data are not small [14] and can dominate some parameters
errors. In this paper we filled in this gap and performed the NLO analysis of the CCFR
data with the help of QCD DGLAP evolution code, developed in Ref. [23]. (Remind that
the analyses of Refs. [15,21,22] were performed with the help of the Jacobi polynomial vari-
ant [24,25,26] of the DGLAP equation [27]). In addition, we included in our analysis the
CCFR data on the singlet structure function F2. It should be stressed that the code [23]
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was tested using the procedure proposed in Ref. [28] and demonstrated the accuracy at
the level of O(0.1%) in the kinematic region covered by the analyzed data. It was already
applied to the nonsinglet DGLAP analysis of the combined SLAC-BCDMS data on F2 [29].

2. Our fits were made in the NLO approximation within the modified-minimal-
subtraction (MS) factorization and renormalization schemes. The Q2 dependence of
the strong coupling constant αs was defined from the following equation:

1

αs(Q)
− 1

αs(MZ)
=
β0

2π
ln
(
Q

MZ

)
+ β ln

[
β + 1/αs(Q)

β + 1/αs(MZ)

]
, (1)

where β = 4πβ1
β0

and β0 and β1 are the coefficients of the QCD β-function, defined as

β(αs) =
1

4π
µ
∂αs

∂µ
= −2

∑
i≥0

βi(
αs

4π
)i+2, (2)

where β0 = 11 − (2/3)nf and β1 = 102 − (38/3)nf . Note that the explicit solution of
Eq.(1) can be expressed through the Lambert function [30]. However, we did not use this
explicit representation and solved Eq.(1) numerically. The effective number of flavours nf
was chosen to be nf = 4 for Q2 less than the definite scale M2

5 and increased to nf = 5 at
larger values of Q2 keeping the continuity of αs [31]. The value of the effective matching
scale M5 was varied from M5 = mb to M5 = 6.5mb. The latter choice was advocated in
Ref. [32] on the basis of the DIS sum rules consideration. The dependence of the fit results
on the choice of the matching point gives one of the sources of theoretical uncertainties
inherent to our analysis.

The leading twist term xF LT3 (x,Q) was obtained by direct integration of the DGLAP
equation [27]

dxqNS

d lnQ
=
αs(Q)

π

∫ 1
x
dzPNSqq (z)

x

z
qNS(x/z,Q), (3)

where PNSqq (x) denotes the NLO splitting function, taken from Ref. [34]. The function xF3
is determined by the subsequent convolution with the NLO coefficient function C3,q(x):

xF LT3 (x,Q) =
∫ 1
x
dzC3,q(z)

x

z
qNS(x/z,Q). (4)

The boundary condition at the reference scale Q20 = 5 GeV2 was chosen in the form
analogous to the ones, used in Refs. [14,15]:

xqNS(x,Q0) = ηNSx
bNS(1− x)cNS(1 + γx)

3

ANS
, (5)

where
ANS =

∫ 1
0
xbNS−1(1− x)cNS(1 + γx)dx, (6)

and ηNS is the measure of the deviation of the Gross-Llewellyn Smith integral [35] from
its quark-parton value equal to 3. The expression for the xF3 that includes the HT
contribution looks as follows:

xFHT3 (x,Q) = xF LT,TMC3 (x,Q) +
H3(x)

Q2
, (7)

where F LT,TMC3 (x,Q) is F LT3 (x,Q) with the target mass correction [36] applied.
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At the first stage of this work, in order to perform the cross-checks with the results
of Refs. [14,15], we fitted the data on xF3 in the kinematical region Q2 > 5 GeV2,
W 2 > 10 GeV2, x < 0.7 (the number of data points (NDP) is 86). We made three fits
with various ways of taking into account the HT effects. The first fit with no HT, i.e.
H3(x) = 0, was performed to compare our results with the Table 1 of Ref. [15], which was
obtained using different method [24,25,26] and different computer code. In the second fit
HT contribution was chosen as one-half of the IRR model predictions [7], i.e.

H3(x) = A′2

∫ 1
x
dzCIRR2 (z)

x

z
F LT3 (x/z,Q), (8)

where
CIRR2 (z) = − 4

(1− z)+
+ 2(2 + z + 2z2)− 5δ(1− z)− δ′(1− z) (9)

and A′2 = −0.1 GeV2, as advocated for the first time in [8]. The aim of this fit was to
compare our results with Table 7.9 of Ref. [14], where the computer code developed by
Duke and Owens [33] was used. In the third fit we used the model independent HT-
expression, i.e. H3(x) parametrized at x = 0., 0.2, 0.4, 0.6, 0.8 with linear interpolation
between these points. It was performed to compare our results with Table 3 of Ref. [15].

All results of these our fits are given in Table 1. We observed a good agreement of our
results on αs with those from referenced papers. However, we found a certain discrepancy
of the x-shape parameters values with the results of Ref. [15]. In particular, the value of
γ, as given in column I of Table 1, is γ = 0.26±0.30, meanwhile the analogous parameter
in Ref. [15] is γ = 1.96±0.36. At the same time our x-shape parameters are in agreement
with those, given in Ref. [14], within errors. In addition, we made the fit releasing
parameter A

′
2 and obtained the value of A

′
2 = −0.12 ± 0.05 that agrees with the results

of Ref. [15].

Table 1. The results of the fits to data on xF3 with statistical errors only; I) without HT-

terms; II) with HT accounted as one-half of the IRR model predictions; III) with
model independent HT-contributions, H

(0),(2),(4),(6),(8)
3 are the values of H3(x) at x =

0., 0.2, 0.4, 0.6, 0.8.

I II III

χ2/NDP 88.5/86 81.9/86 70.3/86

b 0.789± 0.024 0.786± 0.024 0.805± 0.067

c 4.02± 0.11 4.00± 0.11 4.24± 0.21

γ 0.29± 0.30 0.26± 0.30 0.61± 0.71

ηNS 0.927± 0.014 0.949± 0.014 0.927± 0.030

αs(MZ) 0.1193± 0.0025 0.1219± 0.0024 0.1216± 0.0066

H
(0)
3 – – 0.18± 0.19

H
(2)
3 – – −0.26± 0.12

H
(4)
3 – – −0.21± 0.31

H
(6)
3 – – 0.11± 0.26

H
(8)
3 – – 0.90± 0.47
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3. The next step of our analysis was to take into account the point-to-point correlations
of the data due to systematic errors, which, as we have mentioned above, can be crucial
for the estimation of total experimental errors of the parameters (see, in particular, Ref.
[29], where the value αs(MZ) = 0.1180 ± 0.0017 (stat+syst) was obtained as a result of
the combined fit to the SLAC-BCDMS data with HT included). The systematic errors
were taken into account analogously to the earlier works [23,29]. The total number of the
independent systematic errors sources for the analyzed data is 18 and all of them were
convoluted into a general correlation matrix, which was used for the construction of the
minimized χ2. The results of the fits to xF3 data with the model independent HT and
with the systematic errors taken into account are given in the first column of Table 2.
One can see that the account of systematic errors leads to a significant increase of the
experimental uncertainties of the HT parameters and the shift of their central values
(compare the first column of Table 2 with the third one of Table 1). However, even in
this case, there is a definite agreement with the results on HT-behaviour of Ref. [15],
obtained in NLO. Moreover, these results do not contradict the IRR-model prediction of
Ref. [7], since, releasing A

′
2, we obtained A

′
2 = −0.10± 0.09.

Table 2. The results of the fits with account of systematic errors and model independent HT-

effects. H
(0),(2),(4),(6),(8)
2,3 are the values of H2(x) and H3(x) x = 0., 0.2, 0.4, 0.6, 0.8; I)

xF3 with the cut Q2 > 5 GeV2, Q20 = 5 GeV2; II) xF3&F2 with the cut Q2 > 5 GeV2,

Q20 = 9 GeV2; III) xF3&F2 with the cut Q2 > 1 GeV2, Q20 = 9 GeV2.

I II III

χ2/NDP 55.7/86 154.9/172 204.2/220

cNS 4.24± 0.21 4.060± 0.068 4.131± 0.056

γ 0.75± 0.79 0. 0.

ηNS 0.945± 0.043 0.922± 0.027 0.920± 0.025

αs(MZ) 0.1269± 0.0065 0.1248± 0.0048 0.1131± 0.0045

ηS – 0.1785± 0.0077 0.1796± 0.0065

bS – 0. −0.034± 0.023

cS – 8.37± 0.21 8.00± 0.29

bG – 0. 0.092± 0.073

cG – 7.5± 2.6 11.50± 0.90

ηG – 0.69± 0.35 1.08± 0.19

H
(0)
2 – −0.23± 0.56 0.09± 0.11

H
(2)
2 – −0.28± 0.18 −0.239± 0.094

H
(4)
2 – −0.14± 0.18 0.17± 0.13

H
(6)
2 – −0.03± 0.13 0.204± 0.097

H
(8)
2 – 0.21± 0.18 0.14± 0.18

H
(0)
3 0.28± 0.21 0.34± 0.11 0.115± 0.031

H
(2)
3 −0.22± 0.19 −0.24± 0.16 −0.16± 0.16

H
(4)
3 −0.42± 0.35 −0.22± 0.22 0.28± 0.19

H
(6)
3 −0.09± 0.28 −0.05± 0.17 0.19± 0.15

H
(8)
3 1.21± 0.50 0.89± 0.44 0.88± 0.44
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Trying to minimize the errors of the parameters, we added the CCFR data on the
structure function F2 to the analysis. To perform the QCD evolution of F2, one is to
involve into the analysis the singlet and gluon distributions:

F LT2 (x,Q) =
∫ 1
x
dz
[
C2,q(z)

x

z
(qNS(x/z,Q) + qPS(x/z,Q)) + C2,G(z)

x

z
G(x/z,Q)

]
. (10)

The distributions qPS(x,Q) and G(x,Q) were obtained by integrating the system

dxqPS

d lnQ
=
αs(Q)

π

∫ 1
x
dz
[
PPSqq (z)

x

z
qPS(x/z,Q) + PqG(z)

x

z
G(x/z,Q)

]
(11)

dxG

d lnQ
=
αs(Q)

π

∫ 1
x
dz
[
PGq(z)

x

z
qPS(x/z,Q) + PGG(z)

x

z
G(x/z,Q)

]
(12)

with the boundary conditions

xqPS(x,Q0) = ηSx
bS(1− x)cS/AS , (13)

xG(x,Q0) = ηGx
bG(1− x)cG/AG, (14)

where

AS =
∫ 1
0
xbS(1− x)cSdx, (15)

AG =
1− < xQ(x) >∫ 1
0 x
bG(1− x)cGdx

(16)

and < xQ(x) > is the total momentum carried by quarks.
In order to provide the straightforward way for comparison of our results with Ref.

[23], the initial reference scale Q20 = 9 GeV2 was chosen. In addition to the point-to-point
correlation of the data due to systematic errors, the statistical correlations between F2
and xF3 were also taken into account. Performing the trial fits we got convinced that
the introduction of the factor (1 + γx) into the reference expressions for the the gluon
and singlet distributions do not improve the quality of the fit. Also, we fixed parameters
γNS, bS and bG at zero because this increase the value of χ2 by few units only while
χ2/NDP remained less than unity. The HT contribution to F2 was accounted analogously
to xF3:

FHT2 (x,Q) = F LT,TMC2 (x,Q) +
H2(x)

Q2
,

where H2(x) was parametrized in the model independent form. The results of the fit on
H2(x) and H3(x) parameters are given in the second column of Table 2 and in Fig. 1.
One can note that, comparing with the fit to xF3 data only, the HT parameters errors
decrease. Within the errors, the parameters that describe the boundary distributions
are compatible with ones of Ref. [14]. The H3(x) coefficients are in agreement with the
NLO results of Ref. [15] and the behaviour of H2(x) qualitatively reproduce the HT
contribution to F2 that was obtained from the combined fits to the SLAC-BCDMS data
on F2 [20,29].
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Fig. 1. The high-twist contribution to the structure functions F2 F3.

When the matching scale M5 was changed from mb to 6.5mb, the value of αs(MZ)
shifted down by 0.0052 and, hence, the theoretical error in αs(MZ) due to uncertainty of
b-quark threshold can be estimated as 0.0026. This uncertainty is in agreement with the
results of the NLO Jacobi-polynomial fits to the CCFR data obtained within the so-called
spline MS prescription [37]. One more source of the theoretical uncertainty due to the
truncation of higher QCD orders was evaluated following the way, which was proposed
in Ref. [20]. In accordance with their procedure, one can introduce renormalization scale
kR into QCD evolution equations in the way, given below for non-singlet evolution:

dxqNS

d lnQ
=
αs(kRQ)

π

∫ 1
x
dz

{
PNS,(0)qq (z)+

+
αs(kRQ)

2π

[
PNS,(1)qq (z) + β0P

NS,(0)
qq (z) ln(kR)

]}x
z
qNS(x/z,Q), (17)

where PNS,(0) and PNS,(1) denote the LO and the NLO parts of the splitting function
PNS. The dependence of the results on kR would signal an incomplete account of the
perturbation series. The shift of αs(MZ) resulting from the reasonable variation of kR
leads to an additional error of over 0.003 due to the renormalization scale uncertainty.
Having taken Q20 = 20 GeV2 as an initial scale, we checked that our results obtained were
quite stable to the variation of the factorization point.

The NLO value of αs is finally given as

αs(MZ) = 0.1222± 0.0048 (stat + syst)± 0.0040 (thresh + ren.scale) (18)

It differs a bit from the NLO value αs(MZ) = 0.119 ± 0.002 (stat+syst)±0.004 (theory)
obtained in the CCFR analysis [13]. The increase of the experimental error is due to that
CCFR group used model-dependent form of the HT contributions, while we considered
them as the additional free parameters and extracted them from the fit.
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In order to decrease the errors further, we repeated the fits to the combined xF3 and
F2 data, applying the less stringent cut Q2 > 1 GeV2. The obtained results are given in
the third column of Table 2. In this fit the parameters bs and bG were released since their
values turned out to be statistically different from zero. We found that the values of αs
and bG were correlated (the correlation coefficient was equal to –0.65). When we had fixed
bG at zero, the value αs(MZ) = 0.1172± 0.0029 was obtained, and when we had kept bG
as the free parameter, we obtained a low value of αs, namely αs(MZ) = 0.1131 ± 0.0045.
The analogous effect of correlations was observed for the fits with the cut Q2 > 5 GeV2,
although with less statistical significance. It should be underlined that when we had re-
leased bG in the fit with the cut Q2 > 1 GeV2, another problem was faced: bG value turned
out to be bG = 0.092 ± 0.073, which is in the evident contradiction with the results ob-
tained in the analysis of HERA data (for example, the combined analysis of DIS data from
HERA and CERN-SPS gives the value bG = −0.267± 0.043 [23]).This problem might be
related to the well-known discrepancy between CCFR and NMC-BCDMS data at small x.

In conclusion, we would like to stress that in order to perform a similar analysis at
the NNLO level, it is necessary to calculate yet unknown Altarelli-Parisi kernels to the
corresponding DGLAP equations. Therefore, we are unable to obtain the results similar to
the NNLO ones of Refs. [15,22]. We hope that future progress of theoretical calculations
will allow us to generalize our results up to the NNLO approximation.
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