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The relativistic quantum string quark model, proposed earlier, is applied to all mesons, from
pion to Υ, lying on the leading Regge trajectories (i.e., to the lowest radial excitations in terms
of the potential quark models). The model describes the meson mass spectrum, and comparison

with measured meson masses allows one to determine the parameters of the model: current quark
masses, universal string tension, and phenomenological constants describing nonstring short-

range interaction. The meson Regge trajectories are in general nonlinear; practically linear are
only trajectories for light-quark mesons with non-zero lowest spins. The model predicts masses

of many new higher-spin mesons. A new K∗(1−) meson is predicted with mass 1910 MeV. In
some cases the masses of new low-spin mesons are predicted by extrapolation of the phenomeno-

logical short-range parameters in the quark masses. In this way the model predicts the mass of
ηb(1S)(0−+) to be 9500± 30 MeV, and the mass of Bc(0

−) to be 6400± 30 MeV (the potential

model predictions are 100 MeV lower). The relativistic wave functions of the composite mesons
allow one to calculate the energy and spin structure of mesons. The average quark-spin pro-
jections in polarized ρ-meson are twice as small as the nonrelativistic quark model predictions.

The spin structure of K∗ reveals an 80% violation of the flavour SU(3). These results may be
relevant to understanding the “spin crises” for nucleons.

aNNOTACIQ

sOLOWXEW l.d. mASSY I WNUTRENNQQ STRUKTURA MEZONOW W STRUNNOJ KWARKOWOJ MODELI.:

pREPRINT ifw— 99-10. – pROTWINO, 1999. – 32 S., 6 RIS., BIBLIOGR.: 13.

pREDLOVENNAQ RANEE RELQTIWISTSKAQ KWANTOWAQ STRUNNAQ KWARKOWAQ MODELX PRIMENQETSQ

KO WSEM MEZONAM, OT PIONA DO Υ, LEVA]IM NA GLAWNYH REDVEWSKIH TRAEKTORIQH (T.E. K NIZ-
[IM RADIALXNYM WOZBUVDENIQM W TERMINAH POTENCIALXNYH KWARKOWYH MODELJ). mODELX

OPISYWAET SPEKTR MASS MEZONOW, I SRAWNENIE S “KSPERIMENTOM POZWOLQET OPREDELITX PARAME-
TRY MODELI: TOKOWYE MASSY KWARKOW, NATQVENIE STRUNY I FENOMENOLOGIˆESKIE KONSTANTY,

OPISYWA@]IE NESTRUNNOE WZAIMODEJSTWIE NA MALYH RASSTOQNIQH. mEZONNYE REDVEWSKIE

TRAEKTORII W OB]EM SLUˆAE OKAZYWA@TSQ NELINEJNYMI, PRAKTIˆESKI LINEJNY LI[X TRAEK-

TORII S NENULEWYMI NIZ[IMI SPINAMI DLQ MEZONOW, SOSTOQ]IH IZ LEGKIH KWARKOW. mODELX

PREDSKAZYWAET MASSY MNOGIH NOWYH MEZONOW S WYS[IMI SPINAMI. pO-WIDIMOMU, SU]ESTWU-

ET NOWYJK∗(1−) MEZON S MASSOJ 1910 m“w. w NEKOTORYH SLUˆAQH UDAETSQ PREDSKAZATX NOWYE

MEZONY S MALYMI SPINAMI, “KSTRAPOLIRUQ FENOMENOLOGIˆESKIE PARAMETRY KAK FUNKCII

MASS KWARKOW. mODELX PREDSKAZYWAET MASSU ηb(1S)(0−+), RAWNU@ 9500±30 m“w, I MASSU

Bc(0
−), RAWNU@ 6400±30 m“w (PREDSKAZANIQ POTENCIALXNYH MODELJ NA 100 m“w NIVE). rE-

LQTIWISTSKIE WOLNOWYE FUNKCII SOSTAWNYH MEZONOW POZWOLQ@T WYˆISLITX “NERGETIˆESKU@

I SPINOWU@ STRUKTURU MEZONOW. sREDNIE PROEKCII SPINOW KWARKOW W POLQRIZOWANNOM ρ-
MEZONE WDWOE MENX[E, ˆEM W NERELQTIWISTSKOJ KWARKOWOJ MODELI. w SPINOWOJ STRUKTURE

K∗ PROISHODIT 80% NARU[ENIE SU(3) SIMMETRII AROMATOW. —TI REZULXTATY MOGUT POMOˆX

PONQTX TAK NAZYWAEMYJ “SPINOWYJ KRIZIS” DLQ NUKLONOW.
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1. Introduction

The naive quark model of hadron, attractive in its simplicity, is not so simple at
a closer consideration. It is not relativistic since it contains a confinement potential
proportional to a space distance. One can introduce a quasipotential dependent on the
distance and momentum, which makes the wave equation Lorentz covariant, but then the
phenomenological quasipotential is not simple. The model contains constituent quarks
which are purely phenomenological notions. Their masses are not fundamental and can
vary from mesons to hadrons and even from one meson to another. Their spins are
not fundamental either, and the “spin crises” for nucleons suggests that they should be
different from 1/2, or the naive quark model is too naive.

In Refs. [1,2] an alternative, a string quark model (SQM) has been proposed which
contains neither potential nor constituent quarks. The physical origin of confinement and
constituent quarks, the gluon field, is taken into account explicitly, in an approximation
of quantum Nambu-Goto string. The string provides a confinement mechanism and, since
the string is a physical object with its own energy-momentum and angular momentum,
the quarks at the ends of the string are fundamental quarks with current masses and spin
1/2.

The application of SQM in Ref. [1] was confined to a particular type of leading meson
Regge trajectories. Here we consider all the four types of them, obtain relativistic wave
functions of composite mesons, and calculate the internal (energy and spin ) structure of
mesons.

As in Ref. [1], we consider only the simplest string configuration — the rotating
straight line, which is responsible for the leading Regge trajectories of mesons. The
daughter trajectories (i.e., the higher radial excitations in terms of potential models)
correspond to vibrations of the string.

The model is quantized in accord with Poincaré invariance and, due to account of
quark spins, contains no tachyons.

The model predicts that the Regge trajectories for light-quark mesons with lowest spin
1 (ρ-type and b1-type) are practically linear. The corresponding trajectories for heavy-
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light-quark mesons are not linear, but, to a good approximation, can be represented by
straight lines for spins less than 6 by replacing the argument m2 by (m − mh)

2, where
mh is the heavy-quark mass. The slopes of these straight lines are bigger than for the
light-quark mesons, and increase with mh, the limit value being twice as big as for the
light-quark mesons. The trajectories for heavy quarkonia are essentially nonlinear.

The Regge trajectories with lowest spin 0 (π-type and a0-type) are always nonlinear
in the low-spin region.

The model describes masses of all the mesons, from pion to Υ, lying on the leading
Regge trajectories. The main parameters of the model, the universal string tension and
the current quark masses, have been determined in [1] by comparison with experimental
meson masses lying on the ρ-type trajectories. So, for each other trajectory (without
mixing), we have only one unknown short-range parameter. Experiment suggests that
these parameters for the π-type and the b1-type trajectories are equal. The short-range
parameters do not strongly depend on the quark masses, and in some cases can be obtained
from known parameters by a safe extrapolation in the quark masses.

As a result, the model predicts masses and other quantum numbers of many high-
spin mesons and some low-spin mesons. For instant, the model predicts a new K∗(1−)
meson with mass 1910 Mev (without extrapolation) and the masses of ηb(1S)(0−+) and
Bc(0

−) to be 9500± 30 MeV (bigger than the Υ-mass) and 6400± 30 MeV, respectively.
The corresponding predictions of a potential quark model (PQM) [5] are 100 MeV lower.
This number can characterize difference between many SQM and PQM predictions, so
that further systematic experimental study of meson spectrum with accuracy capable to
distinguish these predictions seems to be important for the understanding of confinement.

The SQM relativistic wave functions of composite mesons allow one to calculate the
meson internal structure. The separate string and quark contributions into meson masses
are obtained. The average spin projections of u- and d̄-quark in polarized ρ+, divided by
the same projection of the total meson spin, are found to be 0.22 and 0.23, respectively,
i.e., twice as small as the nonrelativistic quark model prediction 0.5.

The corresponding numbers for u- and s̄-quark within K∗+ are 0.22 and 0.42, respec-
tively. This means that the flavour SU3 is violated up to 80% for the spin structure in
the relativistic model.

The results on the meson spin structure suggest a new approach to understanding the
nucleon spin structure, obtained from polarized deep inelastic lepton-nucleon scattering
and extrapolated to low Q2 (the so called spin crises).

At the same time, the above numbers for the ρ spin structure are different from 0.17,
the number corresponding to vanishing quark masses, so that one can hope that future
polarization experiments will allow one to estimate the light-quark current masses from
experiment.

The outline of the paper is the following. In Sec. 2, the string physics is described
in the classical approximation. It follows, of course, from the string equations of Sec. 3,
but can be described in familiar terms of the pointlike-particle mechanics, if only few
basic properties of the string are taken from the equations. This description shows that
the string, presumably realized by the gluon field inside mesons, is quite a new object
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from mechanical viewpoint. Sec. 2 also clarifies the origin and properties of the string
functions, relevant to the quantum case.

In Sec. 3, the classical and quantum SQM is formulated and the meson wave functions
are obtained. To go from the classical SQM to the real one, we take into account quark
spins, canonical quantization and nonstring, short-range, quark-antiquark interaction. All
these effects are of the same order and all are necessary for consistency of the model. The
quark spins are introduced at the classical level with the help of anticommuting variables
obeying constraints [3]. We add a special term to the Lagrangian to ensure conservation
of the spin constraints, which renders the total SQM Lagrangian supersymmetric. The
canonical quantization implies finding out all the constraints between canonical variables,
and using a first form method [4] to obtain the Poisson brackets of physical variables. As
a result, the meson wave function satisfies two Dirac equations and a spectral condition,
into which we introduce a nonstring, short-range contribution. In general, the spectral
condition may contain contributions dependent on the meson spin. Since we believe
that the long-range contribution is given by the string term, then the additional short-
range contribution cannot increase with the meson spin. Experiment suggests that the
short-range contribution does not depend on the spin or, for heavy quarkonia, has an
additional, decreasing with the spin, term [1]. In this way we have phenomenological
short-range parameters which depend on the type of the trajectory (i.e., on the space
and charge-conjugation parity of the wave function) and on the quark masses. They obey
the chiral symmetry (then the model obeys this symmetry) and, at present, are to be
obtained from experiment.

In Sec. 4 and Appendix C, the spectral conditions for different meson wave functions
are compared with the experimental meson spectrum, the model parameters are obtained
and predictions of masses and other quantum numbers of new mesons are made. The
results of SQM are compared with that of a potential quark model [5].

Knowing the parameters of the model, we calculate in Sec. 5 the internal structure of
mesons: the average values of string and quark energies, and projections of quark spins
and orbital momentum for polarized mesons, as well as average total quark spin and
orbital momentum squared, and spin-orbit correlation.

Sec. 6 contains conclusions. Some mathematical and phenomenological details are
considered in Appendices A, B and C.

2. Classical string physics

The behaviour of a straight-line Nambu-Goto string, with or without point spinless
quarks at the string ends, follows from the Lagrangian of the next Section. This behaviour
can be described in terms of the point-particle relativistic mechanics if we take from the
Lagrangian three properties of the string. Let the string be in its rest frame, where the
string is at rest as a whole, i.e., its 4-momentum is (m, 0). The specific string properties
are the following:

I. The internal self-interaction string parameter a, called string tension, can be used
as a ”rest mass density” of the string.
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II. The ends of an open string move with the velocity of light perpendicular to the
string direction. The open string rotates in a plane around its center with an angular
velocity

ω = 2/d, (1)

where d is the string length, Fig. 1a.

Fig. 1. A stright-line Nambu-Goto string in its rest frame, open(a) and with current quarks
at the ends (b). O is the rotation center, m1 and m2 are the current quark masses and

d = l1 + l2 is the string length.

III. Point quarks at the ends of a rotating string do not move along the string. The
string with quarks rotates in a plane. Its angular velocity and position of the rotation
center are determined by equality of the centrifugal force and the string-tension force

miω
2li√

1− ω2l2i
= a

√
1− ω2l2i , (2)

Fig. 1b. For zero-mass quarks, Eq. (2) is equivalent to Eq. (1). For heavy quarks
ωli � 1, and Eq. (2) reduces to

miω
2li = a. (3)

We see that the main peculiarity of the string is that it always rotates, and cannot be
stopped. If the quarks at the string ends are heavy and move slowly, so that their velocities
vi → 0, then, from Eq. (3), li = v2i mi/a→ 0, and the string disappears. All the points of
the string cannot be at rest, and the notion “rest mass density” is not applicable literally
to the string. Property I above is a definition, following from the string Lagrangian. The
string dynamics cannot be reduced to the point-particle dynamics, although all other
properties of the string can be obtained with its help.

To make illustrative estimates, we shall use the experimental value of a

a = 0.176 GeV 2 ≈ 1 GeV/fm. (4)

It is a huge ”mass density” on the macroscopic scale.
Open string. From I and II, the energy of an open string in Fig. 1a, equal to its mass,

is

E0 = m =
∫ d/2

−d/2

adx√
1− ω2x2

=
1

2
πad, (5)

or the length of the string is proportional to its mass

d =
2

πa
m. (6)
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The heavier a light-quark meson, the bigger it is. The lightest meson, the pion, would
have d ≈ 0.1 fm.

From II, the angular velocity of the string is inversely proportional to its mass

ω =
πa

m
. (7)

For the pion it would be ω ≈ 20 fm−1 ≈ 1024 Hz. We shall see that the pion is not “the
smallest top”, but it is — “the fastest one”.

In the same way we can calculate the angular momentum of the string with respect
to its rotation center

L =
∫ d/2

−d/2
x

ωx√
1− ω2x2

adx =
πa

2ω2
, (8)

or

L =
1

2πa
m2. (9)

Both sides of this equation are observable. This is a well-known linearly (with respect to
m2) rising Regge trajectory.

For the pion Eq. (9) yields L ≈ 0.02, a comfortably small number.
Heavy-quark mesons. Let us introduce a meson mass excess

mE = m−m1 −m2, (10)

where m is the meson mass and m1 and m2 are the current quark masses, and let us
consider

mE/mi � 1. (11)

Then the motion is nonrelativistic, and the energies of the string and the quarks in Fig.
1b are

E0 = ad, (12)

Ei = mi +
1

2
ali. (13)

The last equation follows from Eq. (3). Summing all these equations, we get

d =
2

3a
mE . (14)

The contribution of the string energy to the meson mass is small, but the contribution
to mE is not small,

E0/mE = 2/3 = 67%, (15)

and do not depend on the quark masses.
Eq. (14) resembles Eq. (6), where m is replaced by mE and the slope is slightly bigger,

to the extent that 3 is smaller than π.
We see that the string length in this case can be very small if mE is small. Indeed,

for the strange-quark current mass 0.22 GeV (Sec. 4), the diameter of the η-meson is
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smaller than that of the pion by 20%. The smallest particle is Υ, the b-quark mass being
4.71 GeV (Sec. 4). The Υ diameter is 0.02 fm, 1/5 the pion’s diameter.

On the contrary, the behaviour of the angular velocity of the heavy-quark mesons is
quite different from the open-string case. From Eqs. (3) and (14) it is easy to get

ω =
a√
2
3
µmE

, (16)

where µ is the reduced quark mass

µ = m1m2/(m1 + m2). (17)

The angular velocity of Υ is 1/5 the pion’s velocity.
The string angular momentum is negligible in this case and the total angular momen-

tum is a sum of the quark angular momenta

L =
∑

miωl2i =
a2

ω3µ
, (18)

or

L =
1

a

(2
3
mE

)3/2
µ1/2. (19)

This is also an observable Regge trajectory, nonlinear in this case, but determined by the
same parameter a.

Asymmetric mesons. Let one quark, with mass m1, be heavy, and the other one be
very light, i.e.,

mE/m1 � 1, m2/mE � 1, (20)

where
mE = m−m1. (21)

The string and quark energies in Fig. 1b are

E0 = al1 +
1

2
πal2, (22)

E1 = m1 +
1

2
al1, (23)

where, to a first approximation, l1 can be neglected, and we obtain

d =
2

πa
mE, (24)

E0/mE = 1, (25)

ω =
πa

2mE

, (26)

L = L0 =
πa

4ω2
, (27)
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or

L =
1

πa
m2E. (28)

The diameter (24) has the same slope as that for the open string, Eq. (6), the string
gives the main contribution to the meson mass excess mE and the Regge trajectory (28),
as a function of m2E , has the slope twice as big as that for the open string, Eq. (9),
although the corrections to the first approximation, which can be easily worked out, are
not negligible in practice.

General mesons. For arbitrary quark masses

m = E0 +
∑

Ei = a
∫ l2

−l1

dx√
1− ω2x2

+
∑ mi√

1− ω2l2i
, (29)

L = L0 +
∑

Li = aω
∫ l2

−l1

x2dx√
1− ω2x2

+
∑ mil

2
iω√

1− ω2l2i
, (30)

where li is given by Eq. (2).
Introducing

l = 1/ω, (31)

li =
√

l2 + m2i /(4a
2) −mi/(2a), (32)

G(l) = a

l2∫
−l1

√
l2 − x2 dx +

∑
mi

√
l2 − l2i (33)

we can rewrite Eqs. (29) and (30) in the form

m = Gl(l) ≡ y
∑

(arctan ti + t−1i ), (34)

L = K(l) ≡ 1

2a
(ym−

∑
m2i ti), (35)

where index l means derivative with respect to l, y = al, ti = (ali/mi)
1/2 and

K(l) = lGl(l)−G(l). (36)

Eqs. (34) and (35) define a Regge trajectory as an implicit function

L = K(l(m)), (37)

where l(m) is the solution of Eq. (34), Fig. 2.
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Fig. 2. Three types of classical Regge trajectories: a is for light-quark mesons (m1 = m2 = 0),

b is for asymmetric mesons (m2 = 0) and c is for heavy quarkonia (m1 = m2). Masses
are in the

√
2πa units.

If the string moves as a whole with a velocity v, its rotation slows down: the angular
velocity acquires a factor

√
1− v2. Its length, in general, is not conserved. The length

oscillates between its minimal (rest-frame) value d, when the string is perpendicular to the

velocity, and its maximal value d/
√

1− v2pl, when the string is parallel to the projection
of the velocity on the rotation plane vpl.

The classical description might be not only illustrative for L	 1. To make the model
realistic, we must quantize it and take into account quark spins and nonstring short-range
interactions. This will be done in the next Section.

3. Quantum string physics

We shall use Lorentz- and gauge-covariant variables. The straight-line string is a
straight line in the 4-dimensional space-time

X(τ, σ) = r(τ ) + f(τ, σ)q(τ ), (38)

where τ and σ are time-evolution and space-position parameters, respectively, r is a
4-vector of a point on the straight line, q is an affine 4-vector of its direction, f is a
Lorentz scalar labelling points on the string, and fi = f(τ, σi), i = 1, 2 correspond to the
string ends. The covariant description introduces superfluous, from a physical viewpoint,
variables, therefore, the string action must be invariant with respect to three τ -dependent
gauge transformations: shift of r along q, multiplication of q by a function of τ , and
reparametrization of τ . The Lagrangian must be invariant with respect to the first two
transformations and have a property L(cż) = cL(ż), where ż is every τ -derivative and c is
a function of τ . There is only one string variable which is Poincaré- and gauge-invariant

l =
√

ṙ2⊥/b, (39)
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(not to consider higher τ -derivatives), where ṙµ⊥ is the string velocity, perpendicular to
the rotation plane,

ṙµ⊥ = (gµν + nµnν − ṅµṅν/ṅ2)ṙν , (40)

n = q/
√
−q2, (41)

and b is an angular velocity of the string with respect to the auxiliary time τ

b =
√
−ṅ2. (42)

b is gauge-dependent, but the condition

b �= 0, (43)

which we assume, is gauge-independent since τ is monotonous. Then there is a physically
distinguished point on the string, the instantaneous rotation center, and we can label the
points on the string, in a gauge-invariant way, with respect to this center

x =
√
−q2 f − ṙṅ/b2. (44)

The classical Lagrangian of a meson in SQM consists of three terms

L = Lstr +
∑
Li + Lss, (45)

the first one being the Nambu-Goto Lagrangian for a straight-line string, Eqs. (38)-(44),

Lstr = −ab

x2∫
x1

√
l2 − x2 dx, (46)

where a is a string-tension parameter.
The second term in Eq. (45) is sum of the Lagrangians for point massive spinning

quarks [BM] having velocities of the string ends

Li = −mi

√
Ẋ2i −

i

2
ξMi ξ̇iM − i


 Ẋiξi√

Ẋ2i

− ξ5i


 bλi, (47)

where mi is the quark current mass and ξMi and λi are quark-spin variables (M = µ, 5,
and gMN = diag{1,−1,−1,−1,−1}), which anticommute with each other (and commute
with other variables, including spin variables of the other quark).

The Lagrangian (47) contains spin-independent part

Li0 = −mi

√
Ẋ2i , (48)

spin-velocity term showing that the spin variables ξMi are canonically self-cojugate, and
spin-constraint term, proportional to a Lagrange multiplier λi. The spin constraints must
be conserved. To ensure this conservation, we shall find out the third term in Eq. (45)
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(which restores a supersymmetry of the total Lagrangian). Toward this end, let us first
consider the spin-independent part of the Lagrangian

L0 = Lstr +
∑
Li0. (49)

The quark velocity Ẋi must be perpendicular to the string direction. This is a property
of the minimal surface formed by straight lines, which follows from the Euler-Lagrange
equations for the full string under the assumption Eq. (38). The proof of this property is
given in Appendix A.

Introducing orthonormal vectors

v0 = ṙ⊥/(bl), v1 = ṅ/b, (50)

we can write
Ẋi = b(lv0 + xiv

1). (51)

The extremum condition for L0 with respect to xi yields

xi = (−1)ili, (52)

(Eq. (32)), and the Lagrangian takes the form

L0 = −bG(l), (53)

where G(l) is given by Eq. (33).
Let us rewrite this Lagrangian in the phase-space. The momenta conjugate to the

coordinates r and q
p = −∂L/∂ṙ, π = −∂L/∂q̇. (54)

are equal to
p = Gl(l)v

0, (55)

π = (−q2)−1/2((ṙv1/b)p + K(l)v1), (56)

where index l stands for derivative with respect to l and K(l) is given by Eq. (36). The
momentum p is conserved due to translation invariance. It is the total meson momentum,
and the meson mass is

m =
√

p2. (57)

We shall use the notations

n0 = p/m, πµ
p = (gµν − n0µn0ν)πν. (58)

From Eqs. (55) and (56)
πp = (−q2)−1/2Kv1. (59)

We see that the phase-space variables obey three constraints

pq = 0, πq = 0, (60)
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m = Gl(l), (61)√
q2π2p = K(l). (62)

The third constraint is given by two Eqs. (61) and (62): we must solve one of them (e.g.,
the first one) to find out l as a function of m, and put this solution into the second equation.
The l.-h.s. of Eq. (62) with constraints Eqs. (60) is (orbital) angular momentum of our
system √

q2π2p =
√
−L2, (63)

Lµ = εµνρσp
νLρσ/2m, Lµν = r[µpν] + q[µπν]. (64)

The canonical Hamiltonian of a τ -reparametrization-invariant system is zero, and the
Hamiltonian of our system is a linear combination of the constraint functions [6]. We can
rewrite the Lagrangian (49), (53) in the form

L0 = −(1/2)(pṙ − rṗ)− (1/2)(πq̇ − qπ̇)−
− c

(√
−L2 −K(l(m))

)
− c1pq − c2πq. (65)

where c, c1 and c2 are arbitrary (c = −b) and l(m) is given by Eq. (61).
From Eq. (48), we get the quark momenta

pi = miẊi/
√

Ẋ2i , (66)

which, from Eqs. (51), (52), (55), and (59), are equal to

pi = (ln0 + (−1)ilin
1)mi/

√
l2 − l2i , (67)

where l = l(m) is given by Eq. (61) and

n1 = πp/
√
−π2p. (68)

Now it is not difficult to introduce the quark spins in a consistent way. We add to the
r.-h.s of Eq. (65) the spin-velocity term and the spin-constraint term expressed through
the quark momenta (67), and, to ensure the spin-constraint conservation, we replace the
orbital angular momentum Lµ by total angular momentum

Jµ = εµνρσp
νMρσ/2m, (69)

Mµν = r[µpν] + q[µπν] − i
∑

ξµi ξ
ν
i . (70)

As a result, we obtain the SQM Lagrangian

L = −(1/2)(pṙ − rṗ)− (1/2)(πq̇ − qπ̇)− (i/2)
∑

ξMi ξ̇iM −
− i

∑
(piξi −miξ

5
i )λi − c

(√
−J2 −K(l(m))

)
− c1pq − c2πq. (71)
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One can express this Lagrangian through the configuration space variables by means of
the inverse Legendre transformation. We shall not use the configuration-space form of
the Lagrangian. For the sake of compliteness, it is given in Appendix B with an outline
of its derivation.

Besides quark-spin terms, a nonstring short-range interaction must enter into the
meson Lagrangian. This interaction cannot be fully described at the classical level and
will be taken into account in the quantum equations.

The first line of Eq. (71) corresponds to the first differential form of our system which
determines the Poisson brackets of the canonical variables [4]. Namely, if we denote
the variables by yn and the first form by (1/2)ωmnymẏn, then the Poisson brackets are
{ym, yn} = ωmn, where ωmn is inverse of ωmn. For instance, from Eq. (71),

{ξM , ξN} = igMN . (72)

The other brackets have the usual canonical form. In particular, the total spin Jµ has
zero Poisson brackets with Lorentz scalars, therefore, the spin constraint functions have
zero brackets with the Hamiltonian and are conserved. This justifies the choice of Lss

in the Lagrangian. The gauge constraint functions are in involution with respect to the
Poisson brackets, due to properties of the gauge transformations, and are also conserved.

The second line of Eq. (71) is minus Hamiltonian. We can exclude the constants c1
and c2 by choosing the gauge conditions

pπ = 0, π2 = −1. (73)

Their conservation yields c1 = c2 = 0, and we must solve Eqs. (73) together with the
corresponding constraints (60). Introducing four orthonormal vectors eα, α = 0, 1, 2, 3

e0 = p/m, eαeβ = gαβ , (74)

we can write the solution in the form (a, b, c = 1, 2, 3)

π = k(a)ea, q = εabck
(a)L(b)ec, L = L(a)ea. (75)

We shall use space-vector notations for the set {k(a)} and similar sets

{k(a)} = 3k. (76)

From Eqs. (73) and (64)
3k2 = 1, 3k3L = 0. (77)

Using expansions
J = J (a)ea, ξi = ξ

(α)
i eα , ξ

(5)
i = ξ5i , (78)

we can rewrite the Lagrangian (71) in the form (up to a total derivative)

L = −pż − [3k × 3L]3̇k − i

2

∑
ξi(M )ξ̇

(M )
i −

− c(

√
3J2 −K) +

∑
(p
(α)
i ξi(α) −miξ

5
i )λi, (79)

12



where the new string coordinate is

zµ = rµ +
1

2
εabce

ν
a

∂ebν

∂pµ
J (c) +

i

m

∑
ξ
(0)
i ξ

(a)
i eµa , (80)

and, in 4-vector notations,

p
(α)
i = (l, (−1)ili3k)mi/

√
l2 − l2i . (81)

The variables 3k and 3L are not independent, but using, e.g., spherical angles to solve
Eqs. (77), one can easily obtain from the Lagrangian (79) the following nonzero Poisson
brackets

{pµ, zν} = gµν (82)

{L(a), L(b)} = εabcL
(c), {L(a), k(b)} = εabck

(c) (83)

{ξ(M )i , ξ
(N)
i } = igMN . (84)

The Hamilton equations of motion can be easily solved. The solution for spinless
quarks was described in Sec. 2.

The quantization of our system is now straightforward. We replace p, z, 3L, 3k and
ξ
(M )
i by operators and their Poisson brackets by commutators or anticommutators for ξ′s

(multiplied by −i), e.g.,

[ξ
(M )
i , ξ

(N)
i ]+ = −gMN , [ξ

(M )
1 , ξ

(N)
2 ]− = 0. (85)

Assuming the second quark to be an antiquark, we take the following solution of these
equations

ξ
(µ)
1 =

1√
2
γ5γµ ⊗ I, ξ

(5)
1 =

1√
2
γ5 ⊗ I (86)

ξ
(µ)
2 = ξ

(µ)c
1 = I ⊗ 1√

2
γ5cγµc, ξ

(5)
2 = ξ

(5)c
1 = I ⊗ 1√

2
γ5c, (87)

where γc = CγC−1 and C is the charge-conjugation matrix.
The constraint functions become operators annihilating the wave function. In the

representation where p and 3k are diagonal the internal part of the wave function δ(p −
p′)Ψαβ(3k) satisfies the equations

(p̂1 −m1)Ψ = 0 , (88)

Ψ(p̂2 + m2) = 0 , (89)

(

√
3J2 −K −

4∑
n=1

anPn)Ψ = 0. (90)

In the third equation a new term has been introduced to account for the short-range
nonstring interaction. In this term, an can depend on J , and Pn are four independent

13



operators commuting with the Dirac operators in the first and second equations (for fixed
J �= 0 there are four independent states of two particles with spin 1/2).

Since an describes a short-range interaction, it cannot increase with J . For the ma-
jority of mesons we can take an as a constant independent of J . Only heavy quarkonia
demand more complicated an, containing a decreasing with J contribution [1].

The choice of Pn is connected with the choice of meson states at fixed J and will be
discussed after solving Eqs. (88) and (89).

The solution of the Dirac equations (88) and (89) is a 4× 4 matrix

Ψ =
1√

(1 + b21)(1 + b22)

(
−b2χ3σ3k χ

b1b23σ3kχ3σ3k −b13σ3kχ

)
(91)

where

bi =
li

l +
√

mili/a
, bi →

{
1, mi → 0
0, mi →∞

(92)

and χ is an arbitrary normalized 2× 2 matrix.
We shall take

χ = χjMlS, (93)

which are eigenfunctions of 3j2, j(3), 3L2 and 3s2 with eigenvalues j(j + 1),M, l(l + 1) and

S(S + 1), respectively, where 3j = 3L + 3s and 3s is a 2-dimensional quark spin

3s =
1

2
3σ ⊗ 1 +

1

2
1⊗ 3σc, 3σc = σ23σσ2 = −3σ∗ (94)

and 1 stands for the 2 × 2 unit matrix. These functions can be easily constructed with
the help of Clebsch-Gordon coefficients.

The corresponding functions Ψ, denoted by ΨjMlS, are eigenfunctions of 3J2 and J (3)

with eigenvalues j(j + 1) and M , respectively, and eigenfunctions of space and charge-
conjugation parities

PΨjMlS = −(−1)lΨjMlS, Ψc
jMlS = (−1)l+SΨjMlS. (95)

The parity transformations are defined by

PΨ(3k) = γ0Ψ(−3k)γ0, Ψc(3k) = CΨT (−3k)CT , (96)

where C is the charge-conjugation matrix. Dirac equations (88), (89) are charge-
conjugation-invariant for m1 = m2.

We shall assume that mesons in the states ΨjM,j−1,1 and ΨjM,j+1,1 do not mix.
This means that mesons with definite C or G-parity are described by the wave func-

tions ΨjMlS ≡ Ψn, and the operators Pn in Eq.(90) are the projection operators

PnΨm = δmnΨn. (97)
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The index n takes four (two) values for fixed j �= 0(j = 0) : n = 0 for l = j, S =
0; n = 1 for l = j, S = 1; and n = ± for l = j ± 1, S = 1. Eq. (90) for these states
takes the form √

j(j + 1) = K + an (98)

which is called the spectral condition. Here K is a function of m,m1, m2 and a, given by
Eqs. (36), (33), and (32).

As mentioned before, an can be taken independent of j for all mesons except cc̄- and
bb̄-mesons in the states with n = −, for which

a− = A +

(
8m1

m(2j + 1)2

)2
B , (99)

where A and B do not depend on j.
For strange, charmed and bottom mesons the states Ψ0 and Ψ1 can mix for j > 0, so

that the mesons are described by

Φ0 = cosα Ψ0 + sinα Ψ1
(100)

Φ1 = − sinα Ψ0 + cosα Ψ1,

and in the spectral condition (98) a0 and a1 are replaced by a0−d and a1+d, respectively,
where d is a mixing parameter

d = −b tanα =
1

2
(a0 − a1 ±

√
(a0 − aa)2 + 4b2) (101)

and an upper (lower) sign corresponds to a0 − a1 < 0(> 0).

4. Meson mass spectrum and model parameters

First comparison of the spectral condition (98) with experiment was made in Ref. [1,2].
Here we compare with more recent data available [7] and make predictions for mesons
with spin up to 7.

The light quark current masses give a very small contribution to the spectral condition
and cannot be determined from this condition. So, we use the linear chiral SU3 model
relations [8]

mu/md = 0.55, ms/md = 20.1 (102)

to express them through the strange quark mass which is determined from comparison
with experiment.

The best known meson Regge trajectories are described by the wave functions Ψ− and
have P = C = (−1)j and jmin = 1. The parameters a− or A in Eq. (99) depend very
weakly on the quark masses: a−(dū) = 0.88, a−(cū) = 0.90, A(cc̄) = 0.90, a−(bū) =
0.77, and A(bb̄) = 0.77. This means that the short-range contributions for the strange
quarks in these states are the same as for the light quarks: a−(sū) = a−(ss̄) = a−(dū),
a−(cs̄) = a−(cū), and a−(bs̄) = a−(bū).
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These trajectories allow one to determine the main parameters of the model [1,2]

a = 0.176± 0.002 GeV2

ms = 224± 7, mc = 1440 ± 10, mb = 4715 ± 20 (103)

mu = 6.2± 0.2, md = 11.1± 0.4

(masses in MeV), and the short-range parameters, Table 1C in Appendix C.
A simpler procedure, when one drops the second term in Eq. (99), uses a− independent

of the quark masses and applies the minimum-χ2-method [2], gives the same results for
the main parameters (103) with good χ2.

Fig. 3 shows some of these trajectories. For the light- and strange-quark mesons the
trajectories are practically linear.

Fig. 3. Regge trajectories for mesons with P = C = (−1)j and jmin = 1. The argument scales
are shifted for each group of mesons. The straight lines for cū- and bū-mesons are
drawn to show the deviation of the trajectories from linear ones.

For the light-heavy-quark mesons the trajectories are not linear but can be made
practically linear by replacing the argument m2 by (m − mh)

2 where mh is the heavy
quark mass (Fig. 4).

In the limit
2(m−mh)

πmh

� 1,
πml

2(m−mh)
� 1, (104)

where ml is the light-quark mass, they must be linear with the slope twice as big as for
the light-quark mesons. We see the trajectories are practically linear up to j = 5 with
bigger effective slopes, but the first condition (104) for the limit slope is not fulfilled.
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Fig. 4. The same as in Fig. 3 with changed arguments for cū- and bū-mesons.

Fig. 5. The same as in Fig. 3 for heavy quarkonia.

The trajectories for the heavy quarkonia are essentially nonlinear, Fig. 5.
Table 1C in Appendix C represents a detailed comparison of the model with experiment

and contains predictions for new mesons and comparison with potential model predictions
[5]. The B∗J (5732)-meson, found in ALEPH, DELPHI and OPAL experiments at CERN
(see page 574 of Ref. [7] for the References) agrees with SQM much better than with
PQM, Fig. 3 and Table 1C.

The prediction for the bc̄, 1−-meson is made under the simplest assumption a−(bc̄) =
a−(bū). The other assumptions: a−(bc̄) = a−(bb̄) or a−(cc̄) reduce its mass by 100 MeV.
The higher-spin bc̄-mesons do not practically depend on this assumption.
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The trajectories for Ψ0 states, C = −P = (−1)j and jmin = 0 are always nonlinear
near j = 0 due to the square root in the spectral condition (98), Fig. 6.

Fig. 6. Regge trajectories for light-quark mesons with −P = C = (−1)j(I), for strange mesons
with P = −(−1)j(II) and for light-quark (III) and ss̄-quark (IV) mesons with P = C =

(−1)j and jmin = 0. The straight lines near j = 0 are drawn to show the deviation of
the trajectories with the universal string tension from linear ones. The argument scales

are shifted for each group of mesons.

Only one parameter, the short-range contribution a0, is unknown for each of these
trajectories. It is determined from the mass of corresponding spin-0 meson.

We see that the nonlinear trajectory (98) with the universal slope describes quite well
the three mesons π, b1 and π2.

The constant a0 for the light-quark mesons is small. According to the linear chiral
SU3 model [8], it must be proportional to the light-quark masses ml. This property does

not contradict the spectral condition (98) where K is proportional to m
3/2
l .

There is not enough data to analyse Ψ1 states, P = C = −(−1)j and jmin = 1. So, we
assume that

a1 = a0 (105)

for all mesons except sū- and sd̄-mesons for which mixing is important. Experiment
confirms this assumption for known mesons composed by light, ss̄- and cc̄-quarks. If
Eq. (105) is fulfilled also for the bb̄-mesons, then using the known mass of χb1(1P ), we
can estimate the mass of a pseudoscalar bb̄-meson ηb(1S), 0−+ to be 9.50 GeV which is
bigger than the mass of Υ(1S).

Linearly extrapolating between a0(bū) = −0.55 and a0(bb̄) = −0, 091, obtained from
Eq. (105), we can find a0(bc̄) = −0.41 and estimate the mass of a pseudoscalar Bc-meson
to be 6.40 GeV, which is 0.13 GeV higher than in the potential model [5].
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We take into account the mixing of Ψ0 and Ψ1 states only for strange mesons. The
trajectories for Φ0 and Φ1 states (100) with a mixing angle 36◦ are shown in Fig. 6. The
detailed comparison with experiment and predictions for Ψ0,1 (Φ0,1) states are given in
Table 2C in Appendix C.

The behaviour of the trajectories for Ψ+ states, P = C = (−1)j and jmin = 0, is
similar to that for Ψ0, Fig. 6.

The X(1920), ???-meson, found in GAMC and VES experiments at IHEP, Protvino,
agrees quite well with SQM predictions and may be a 2++ trajectory partner of a0(980).

The strange mesons K∗0 (1430), 0
+ and K∗(1680), 1− are not described by the same

wave function Ψ+ (with different j). It seems probable that a new strange 1− meson
exists with mass 1900 MeV which is a partner of K∗0 (1430), see Table 3C in Appendix C.
On the other hand, the K∗(1680)-mass, 1717±17 MeV, is only half of its width, 322±110
Mev, lower than the SQM value 1910 Mev.

We can tentatively conclude that the SQM descrides masses and other quantum num-
bers of about 2/3 of established mesons, the rest being daughter, glueball, or exotic states.
The agreement with experiment for the former mesons is, in general, slightly better than
that for the PQM. It seems important to continue systematic experimental study of meson
mass spectrum where both models give different new predictions.

5. Internal structure of composite mesons

The model allows one to calculate quark velocities and energies and string energy in
mesons at rest, Eqs. (61) and (81):

vi = li/l, Ei = l(ami/li)
1/2, E0 = al

∑
arcsin vi, (106)

where li is given by Eq. (32) and l is a solution of Eq. (61), l = x/a and x is given for each
meson in Tables in Appendix C. The results for some mesons are collected in Table 1.

Table 1. Energy distribution inside mesons at rest. vi(Ei) is velocity in c (energy in MeV)
of the i-th quark, E0 is energy of the gluon string in MeV and mE = m−m1 −m2.

Particle,
quark content v1 v2 E1 E2 E0 E0/m,% E0/mE,%

ρ+, dū 0,98 0,99 53 39 679 88 90

π+, dū 0,88 0,93 23 16 99 72 82
B+, bū 0,07 0,99 4727 46 507 9.6 91

J/ψ(1S), cc̄ 0,22 0,22 1476 1476 146 4.7 67

Υ(1S), bb̄ 0,05 0,05 4720 4720 22 0.2 67
χb2(1P ), bb̄ 0,18 0,18 4795 4795 324 3.3 67

We see that the light quarks are relativistic and give noticeable contributions to the
meson masses. The main contribution to the mass “excess” of mesons mE = m−m1−m2
is given by the gluon string.

19



Let us consider a spin structure of mesons, i.e., average values of internal the angular
momentum variables. The SQM allows one to calculate the spin structure of each meson
on leading trajectories. The result depends on spin, parities and mass of the meson, string
tension and current masses of quarks composing the meson. For instance, an average value
of the third projection of the i-th-quark spin is given by

S
(3)
i = (Ψ, S

(3)
i Ψ) =

∫
SpΨ+S

(3)
i Ψd3k, (107)

where
3S1 =

1

2
3Σ⊗ I , 3S2 =

1

2
I ⊗ 3Σc, (108)

3Σ =

(
3σ o

0 3σ

)
, 3Σc =

(
σ23σσ2 0

0 σ23σσ2

)
= −3Σ∗. (109)

Introduce the notations

c = 2(b21 + b22)N, c1 = 4b21b
2
2N, c2 = 2(b22 − b21)N, (110)

N = 1/((1 + b21)(1 + b22)) (111)

where bi is given by Eq. (92). In the nonrelativistic limit (vi = 0, m1 + m2 = m) all c’s
vanish. In the ultrarelativistic limit (vi = 1, mi = 0) c = c1 = 1 and c2 = 0. Then, for a
polarized meson with J (3) = M , we obtain

Ψ0 = ΨjMj0, S
(3)
i = 0, (112)

Ψ1 = ΨjMj1, S
(3)
i =

M

2j(j + 1)
, (113)

Ψ− = ΨjM,j−1,1, S
(3)
i =

M

2

(
1

j
− 1

2j + 1
(c + c1 + (−1)ic2)

)
, (114)

Ψ+ = ΨjM,j+1,1, S
(3)
i =

M

2

(
− 1

j + 1
+

1

2j + 1
(c + c1 + (−1)ic2)

)
. (115)

S(3) =
∑

S
(3)
i , L(3) = M − S(3). (116)

In the same way, for squared quantities, we have

(Ψ0, 3S
2Ψ0) = c, (Ψ1, 3S

2Ψ1) = 2, (117)

(Ψ−, 3S
2Ψ−) = 2− j

2j + 1
c, (118)

(Ψ+, 3S
2Ψ+) = 2− j + 1

2j + 1
c. (119)

(Ψ0, 3L
2Ψ0) = j(j + 1) + c, (Ψ1, 3L

2Ψ1) = j(j + 1), (120)
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(Ψ−, 3L
2Ψ−) = j

(
j − 1 + c +

2j + 2

2j + 1
c1

)
, (121)

(Ψ+, 3L
2Ψ+) = (j + 1)

(
j + 2− c− 2j

2j + 1
c1

)
. (122)

3L3S = (1/2)
(
j(j + 1)− 3L2 − 3S2

)
. (123)

The spin structure of some mesons is presented in Tables 2 and 3.

Table 2. Spin structure of some mesons. Average values of internal angular momentum
variables are shown for polarized mesons with J (3) = M . nr is nonrelativistic limit, r is
real case and ur is ultrarelativistic limit.

S
(3)
1 /M S

(2)
2 /M S(3)/M L(3)/M

nr r ur nr r ur nr r ur nr r ur

ρ+, ud̄ 0,22 0,23 0,45 0,55
1/2 1/6 1/2 1/6 1 1/3 0 2/3

K∗+, us̄ 0,22 0,42 0,63 0,37

Table 3. Continuation of Table 2. Average values do not depend on the meson polarization.

�S2 �L2 �S�L

nr r ur nr r ur nr r ur

π+, ud̄ 0,83 0,83 -0,83
0 1 0 1 0 -1

K+, us̄ 0,79 0,79 -0.79

ρ+, ud̄ 1,68 1,87 -0,77
2 5/3 0 7/3 0 -1

K∗+, us̄ 1,70 1,17 -0,43

We see that the spin structure of light-quark mesons (114) is essentially different from
the nonrelativistic case: The average quark spin projections are twice as small. The spin
structure of ρ-meson in SQM is similar to the nucleon spin structure measured in the
experiment and different from the nonrelativistic quark model predictions.

The spin structure is also different from the ultrarelativistic case, when the light-
quark current masses are neglected. Unlike the spectral condition, the spin structure is
sensitive to the light-quark current masses. Measurement of the spin structure allows one
to estimate the light-quark current masses from experiment.

We see also that the flavour SU3 is badly broken in the spin structure of spinning
mesons. The average value of the s̄ spin projection in K∗ is 80% bigger than the d̄ spin
projection in ρ.

6. Conclusions

The gluon string in SQM can account for the quark confinement in mesons.
The string comprises two mechanisms of potential quark models (PQM): confinement

potential and constituent quark masses.
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Systematic experimental study of meson spectroscopy is important in checking the
SQM predictions in comparison with the PQM predictions.

Spin structure of light-quark vector mesons in SQM is different from the nonrelativistic
quark model (NQM): for the average light-quark spin projections S̄SQM

∼= 1
2
S̄NQM .

The flavour SU3 is badly broken in the spin structure in SQM: for s and d quarks
S̄s
∼= 2S̄d.
Experimental study of the spin structure may eventually provide experimental esti-

mation of the light-quark current masses.

The author is sincerely grateful to Professor A. D. Krisch for the kind hospitality at
the Spin Center of the University of Michigan.

Appendix A: Lagrangian for a straight-line string with massive
spinless quarks at the ends

This Lagrangian must give equations of motion which follow from the full-string La-
grangian with quarks at the ends, i = 1 or 2

(
∂L/∂Ẋ

)·
+ (∂L/∂X ′)

′
= 0, (124)

(−1)i
(
(∂L(σi)/∂Ẋ)σ̇i − ∂L(σi)/∂X ′

)
+
(
∂Li/∂Ẋi

)·
= 0, (125)

where L(Li) is the Nambu-Goto (the i-th-quark) Lagrangian, and the dot (prime) stands
for the derivative with respect to τ (σ). For a straight-line string in the notations of Sec.
3

X(τ, σ) = r(τ ) + (x(τ, σ) + z(τ ))n(τ ), (126)

z = ṙv1/b, (127)

w = ẋ + ż − ṙn, (128)

we can rewrite Eq. (124) in the form

(
x′(lv0+ xv1)/s

)·
−
(
w(lv0 + xv1)/s + bsn

)′
= 0, (129)

s =
√

l2 − x2. (130)

Using four orthonormal vectors v0, v1 (Eqs. (50)), n (Eq. (41)) and

v2µ = εµνρσv
0νv3ρv1σ, v3 = n, (131)

vavb = gab, a, b = 0, 1, 2, 3, (132)

we can expand the l.-h.s. of Eq. (129) with respect to these vectors and get three equations
(the fourth one, corresponding to the n-component, turns out to be an identity)

(x′l/s)
·
+ αx′x/s − (wl/s)′ = 0, (133)
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(x′x/s)
·
+ αx′l/s− (wx/s)′ = 0, (134)

βl + γx = 0, (135)

where
α = −v̇0v1, β = −v̇0v2, γ = −v̇1v2. (136)

Since x is the only function which depends on σ, we get from Eq. (135)

β = γ = 0. (137)

Eqs. (133) and (134) coincide

l̇x− α(l2 − x2) + (ż − ṙn)l = 0 (138)

and give
l̇ = α = ż − ṙn = 0. (139)

So, Eq. (124) for the straight-line string is equivalent to

l̇ = 0, v̇0 = 0, v̇1 = −bn, ż − ṙn = 0. (140)

Let us consider Eq. (125)

(−1)i
(
ẋi(lv

0 + xiv
1)/s + bsin

)
+ mi

(
Ẋi/

√
Ẋ2i

)·
= 0, (141)

where the dot means the total derivative with respect to τ ,

si =
√

l2 − x2i , (142)

and
Ẋi = b(lv0 + xiv

1) + (ẋi + ż − ṙn)n. (143)

Using Eqs. (140), we get
ẋi = 0, (144)

(−1)iasi −mixi/si = 0. (145)

Eq. (144) yields that the quarks cannot move along the straight-line string. Eq. (145)
coincides with Eqs. (52) and (32).

It is not difficult to check that the Lagrangian (49), (46), (48) and (51), used in Sec.
3, gives exactly the same equations of motion (140). (144) and (145).

Appendix B: The SQM Lagrangian in the configuration space

Neglecting a total τ -derivative, we can rewrite the SQM Lagrangian (71) in the form

L = −pṙ − πq̇ − (i/2)
∑

ξMi ξ̇iM −H, (146)
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H = c
(
J −K + i

∑
Fiac

a
i λi

)
+ c1pq + c2πq, (147)

where
cai = naξi, c5i = ξ5i , (148)

n0 = p/m, n1 = π1/
√
−π21, n2µ = εµνρσn

0νn3ρn1σ, (149)

n3 = qp/
√
−q2p, (150)

πµ
1 = (gµν − n0µn0ν + n3µn3ν)πν , ; qµp = (gµν − n0µn0ν)qν, (151)

cabi = cai c
b
i , cab,efi,j = cabi cefj , (152)

J =
√
−J2 = L(1 + t) + i

∑
c13i , t =

1

2L2
∑

(c12,12i,j + c23,23i,j ), (153)

L =
√

q2pπ
2
1, (154)

K = l̄m−G(l̄), m = Gl̄(l̄) (155)

Fi0 = l̄
√

ami/l̄i , Fi1 = (−1)i
√

amil̄i , Fi5 = −mi. (156)

Here l̄i is given by Eq. (32) with substitution of l̄ for l where l̄ is a solution of the second
Eq. (155).

The velocity variables are determined by the inverse Legendre transformation

ṙ = −H(p), q̇ = −H(π), (157)

where index in brackets means the corresponding derivative. We can use constraints
following from Eq. (147) after the differentiation. We get

ṙ = cl0n
0 + cy − c1q, (158)

l0 = l̄ + δ0, δ0 = −i
∑

Fia(m)c
a
i λi, (159)

y = −J(p) − i
∑

Fiac
a
i(p)λi, yn0 = 0, (160)

q̇ = cαπ1 + c
√
−q2 γn2 − c2q, (161)

α =
√

q2pπ
2
1 (1− t). (162)

γ = i
∑(

1

J
c13i +

1

L
Fi1c

2
iλi

)
. (163)

Eqs. (146), (147), (158) and(161) yield

L = −c
(
G(l̄) + δ0m + 2Lt + i

∑
(c13i + Fiac

a
i λi)

)
− (i/2)

∑
ξMi ξ̇iM . (164)

From Eq. (161), we get
c = b(1 + δb), (165)
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δb = t− (1/2)γ2, (166)

v1 = (1− (1/2)γ2)n1 + γn2. (167)

Eqs. (158), (160) and (161) make it possible to find out l and v0:

l =
√

ṙ⊥ /b = l0(1− δl), (168)

δl = −δb + (1/2)ε2, (169)

ε = (b2 − b1γ)/l, (170)

b1 =
1

m

∑[
ic03i −

1

L
c02,12i,j + i(Fi0c

1
i + Fi1c

0
i )λi

]
, (171)

b2 =
1

m

∑[
1

L
(c01,12i,j − c03,23i,j ) + iFi0c

2
iλi

]
, (172)

v0 = (1 + (1/2)ε2)n0 + ε(−γn1 + n2). (173)

Since v3 = n3 on the constraints surface, we can use Eqs. (167), (173) and (131) to
get

v2 = (1 + (1/2)ε2 − (1/2)γ2)n2 − γn1 + εn0. (174)

The next step is to express all the functions of l̄ as functions of l using Eqs. (159) and
(169),

l̄ = l + l1, (175)

l1 = −δ0 + lδl, (176)

and the property of the Grassmann variables

l41 = 0. (177)

Finally, we must express cai and their products through the velocity variables

ua
i = vaξi, a = 0, 1, 2, 3, u5i = ξ5i , (178)

uab
i = ua

i u
b
i , uab,ef

i,j = uab
i uef

j , (179)

where va are given by Eqs. (50), (41), (131), (167), (173), (174) and (175). Using the
properties of the Grassmann variables, we obtain the Lagrangian (45), (46), (47) and (51)

L = −b
(
G(l) + i

∑
Fiau

a
i λi

)
− (i/2)

∑
ξMi ξ̇iM + Lss, (180)

where
Lss = −b

(
A + i

∑
Biλi + Cλ1λ2

)
, (181)

A = i
∑

u13i −K−1u12,121,2 , (182)

Bi =

(
− 1

lG′K
Fi0 +

l

K2
F ′i0

)
u012,12i,j − i

K
Fi1

(
u2,23i,j −

2

lG′K
u012,0123i,j

)
, (183)
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C = − 1

G′′

∑
a,b

F ′iau
a
i F
′
jbu

b
j +

(
1

lG′
Fi0Fj0 +

1

K
Fi1Fj1

)
u2,2i,j +

+
i

K
S

[(
1

G′′
F ′i1 −

l

K
Fi1

)
F ′j0 +

1

lG′
Fi1Fj0

]
u2,023i,j +

+
i

K
S

[(
1

G′′
F ′i1 −

l

K
Fi1

)
F ′j1 −

1

K
Fi1Fj1

]
u2,123i,j − (184)

− 2Fi1Fj1

(
1

lG′K2
u023,023,i,j +

1

K3
u123,123i,j

)
−

−
[

2

lG′K2
Fi1Fj1 +

1

lG′K

(
1

G′
+

l

K

)
SFi0F

′
j0 +

l

G′′K2
SF ′i0F

′′
j0 +

+
(
− 2l2

K3
+

1

G′′K

(
1

K
− lG′′′

KG′′
− 2

lG′

))
F ′i0F

′
j0

]
u012,012i,j .

Here all the functions depend on l, the prime stands for the derivative with respect to
l and

SXij = Xij + Xji. (185)

The conserved spin constrains are

∑
a

Fiau
a
i + Bi − iCλj = 0, (186)

where i = 1 or 2 and j �= i.

Appendix C: Comparison with experiment and potential quark
model, parameters and predictions.

Comparison of the SQM with the experimental meson spectrum and potential quark
model, SQM parameters and predictions are collected in Tables 1C, 2C and 3C below
for different meson trajectories called in correspondence with their lowest states

q stands for quarks composing mesons; jPC means jP for mesons not having C- or
G-parity;

y (in GeV) is the main kinematical parameter of each meson, y = al, where l is the
solution of Eq.(61) and a is the string tension. Knowing y, one can easily calculate all
the other parameters of the meson wave function. In the classical approximation, a/y is
angular velocity of the string;

m (in MeV) is the SQM prediction for meson mass;
mEXP (in MeV) is experimantal meson mass from Ref. [7] if no reference is indicated;
• indicates particles that appear in the Meson Summary Tables [7];
mP (in MeV) is a potential quark model prediction from Ref. [5];
n is a meson name; and question marks stand for experimentally unknown jPC .
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Table 1C. Vector trajectories (wave functions ΨjM,j−1,1, P = C = (−1)j, jmin = 1).

q jPC y m mEXP mP n
dū 1−− 0.2450 771 •770.5± 0.8 770 ρ(770)

•781.94± 0.12 780 ω(782)
2++ 0.4196 1319 •1318.1± 0.6 1310 a2(1320)

•1275.0± 1.2 f2(1270)
3−− 0.5383 1692 •1691± 5 1680 ρ3(1690)

•1667± 4 ω3(1670)
4++ 0.6346 1994 •2060± 20[9] 2010 h/f4 (2050)

•2010± 20[10] a4(2040)
5−− 0.7179 2256 2330 ± 35[11] 2300 ρ5(2350)
6++ 0.7924 2490 2510 ± 30[12] r/f6(2510)
7−− 0.8603 2703

sū 1− 0.2600 893 •891.66± 0.26 900 K∗(892)±

•896.10± 0.28 K∗(892)0

2+ 0.4331 1418 •1425.6± 1.5 1430 K∗2(1430)
±

•1432.4± 1.3 K∗2 (1430)
0

3− 0.5509 1781 •1776± 7 1790 K∗3 (1780)
4+ 0.6465 2077 •2045± 9 2110 K∗4 (2045)
5− 0.7293 2334 2382 ± 14± 19 K∗5 (2380)

ss̄ 1−− 0.2758 1013 •1019.413 ± 0.008 1020 φ(1020)
2++ 0.4469 1516 •1525± 5 1530 f ′2(1525)
3−− 0.5636 1870 •1854± 7 1900 φ3(1850)
4++ 0.6586 2160 2200
5−− 0.7408 2413 2470
6++ 0.8145 2640

cū 1− 0.3031 2008 •2010.0± 0.5 2040 D∗(2010)±

•2006.7± 0.5 D∗(2007)0

2+ 0.4996 2460 •2458.9± 2.0 2500 D∗2(2460)
0

•2459± 4 D∗2(2460)
±

3− 0.6264 2777 2830
4+ 0.7269 3039 3110
5− 0.8127 3269

cs̄ 1− 0.3244 2121 •2112.4± 0.7 2130 D∗±s , ??

2+ 0.5163 2553 •2573.5± 1.7 2590 DsJ (2573)
±, ??

3− 0.6411 2861 2920
4+ 0.7405 3118 3190
5− 0.8255 3344

cc̄ 1−− 0.3309 3097 •3096, 88 ± 0.04 3100 J/ψ(1S)
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2++ 0.6116 3557 •3556.17 ± 0.13 3550 χc2(1P )
3−− 0.7412 3825 3850
4++ 0.8415 4050 4090
5−− 0.9267 4250

bū 1− 0.3629 5327 •5324.9 ± 1.8 5370 B∗

2+ 0.5717 5716 5698 ± 12 5800 B∗J(5732), ?
?

3− 0.7131 5994 6110
4+ 0.8262 6224 6360
5− 0.9228 6426

bs̄ 1− 0.3875 5432 5416.3± 3.3 5450 B∗s
2+ 0.5920 5803 5880
3− 0.7311 6073 6180
4+ 0.8427 6298 6430
5− 0.9383 6497

bc̄ 1− 0.5169 6489 6340
2+ 0.7292 6780 6770
3− 0.8681 7003 7040
4+ 0.9781 7195 7270
5− 1.0717 7368
1−− 0.2274 9463 •9460.37 ± 0.21 9460 Υ(1S)

bb̄ 2++ 0.8850 9912 •9913.2 ± 0.6 9900 χb2(1P )
3−− 1.0544 10106 10160
4++ 1.1791 10267 10360
5−− 1.2829 10411

a = 0.176± 0.002 GeV2,
ms = 224± 7, mc = 1440± 10, mb = 4715 ± 20,

mu = 6.2± 0.2, md = 11.1± 0.4,
a−(dū) = a−(sū) = a−(ss̄) = 0.88± 0.01,

a−(cū) = a−(cs̄) = A(cc̄) = 0.90, B(cc̄) = 1.43,
a−(bū) = a−(bs̄) = a−(bc̄) = A(bb̄) = 0.77, B(bb̄) = 3.14

Table 2C. Pseudoscalar and pseudovector trajectories (wave functions ΨjMj0, C = −P =
(−1)j, jmin = 0 and ΨjMj1, P = C = −(−1)j, jmin = 1, or mixed states Eqs. (100) for
strange mesons).

q jPC y m mEXP mP n
dū 0−+ 0.04311 138 •139.56995 ± 0.00035 150 π±

•134.9764 ± 0.0006 π0

1+− 0.4006 1259 •1229.5 ± 3.2 1220 b1(1235)
•1170 ± 20 h1(1170)

1++ •1230 ± 40 1240 a1(1260)
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•1281.9± 0.6 f1(1285)
2−+ 0.5258 1653 •1670 ± 20 1680 π2(1670)
2−− 1700
3+− 0.6247 1963 2030
3++ 2050
4−+ 0.7093 2229 2330
4−− 2340
5+∓ 0.7847 2466

ss̄ 0−+ 0.09231 548 •547.30± 0.12 520 η
1+− 0.4307 1468 1470
1++ •1426.2± 1.2 1480 f1(1420)

1512 ± 4 f1(1510)
2−+ 0.5532 1838 1890
2−− 1910
3+− 0.6503 2135 2220
3++ 2230
4−+ 0.7338 2391 2510
4−− 2520
5+∓ 0.8082 2621

cc̄ 0−+ 0.2219 2980 •2979.8± 2.1 2970 ηc(1S)
1+− 0.6075 3548 3526.14 ± 0.24 3520 ηc(1P ), ???

1++ •3510.53 ± 0.12 3510 χc1(1P )
2−± 0.7385 3819 3840
3+− 0.8395 4045 4090
3++ 4100
4−± 0.9250 4246
0−+ 0.3361 9501 9400

bb̄ 1+− 0.8655 9892 9880
1++ •9891.9± 0.7 χb1(1P )
2−± 1.0357 10083 10150
3+∓ 1.1633 10245 10350
4−± 1.2690 10390

sū 0− 0.1209 494 •493.677 ± 0.016 470 K±

•497.672 ± 0.031 K0

1+ 0.4390 1436 •1402± 7 1380 K1(1400)
0.3978 1310 •1273± 7 1340 K1(1270)

2− 0.5576 1802 •1816 ± 13 1810 K2(1820)
0.5261 1704 •1773± 8 1780 K2(1770)

3+ 0.6528 2097 2150
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0.6262 2014 2120
4− 0.7351 2352 2440

0.7116 2279 2410
5+ 0.8087 2582

0.7875 2516
cū 0− 0.2366 1869 •1869.3 ± 0.5 1880 D±

•1864.6 ± 0.5 D0

1+ 0.5228 2516 •2422.2 ± 1.8 2490 D1(2420)
0

2− 0.6465 2828
cs̄ 0− 0.2491 1972 •1968.5 ± 0.6 1980 D±s

1+ 0.5350 2598 •2535.35± 0.34± 0.5 2570 Ds1(2536)
±

2− 0.6576 2903
bū 0− 0.3364 5279 •5278.9 ± 1.8 5310 B±

•5279.2 ± 1.8 B0

1+ 0.6153 5800
2− 0.7495 6067

bs̄ 0− 0.3501 5368 •5369.3 ± 2.0 5390 B0s
1+ 0.6290 5873 5853± 15 BsJ (5850), ?

?

2− 0.7624 6135
bc̄ 0− 0.4411 6403 6400 ± 390± 130 6270 Bc

1+ 0.7516 6814
2− 0.8876 7036

a0(dū) = a1(dū) = −0.016, a0(ss̄) = a1(ss̄) = −0.034,
a0(cc̄) = a1(cc̄) = −0.084, a0(bb̄) = a1(bb̄) = −0.091,

a0(sū) = −0.10, a1(sū) = 0, d(sū) = 0.10
a0(cū) = a1(cū) = −0.30, a0(cs̄) = a1(cs̄) = −0.27,
a0(bū) = a1(bū) = −0.55, a0(bs̄) = a1(bs̄) = −0.51,

a0(bc̄) = −0.41 (linear extrapolation between a0(bū) and a0(bb̄)),
d(cū) = d(cs̄) = d(bū) = d(bs̄) = d(bc̄) = 0

Table 3C. Scalar trajectories (wave functions ΨjM,j+1,1, P = C = (−1)j, jmin = 0.)

q jPC y m mEXP mP n
dū 0++ 0.3143 988 •983.4± 0.9 1090 a0(980)

1−− 0.5073 1594 •1700 ± 20 1660 ρ(1700)
•1649 ± 24 ω(1600)

2++ 0.6110 1920 1924± 14[9, 13] 2050 X(1920), ???

3−− 0.6979 2193 2370
4++ 0.7746 2434

sū 0+ (I) 0.4358 (I) 1426 •1429± 6 1240 K∗0 (1430)
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(II) 0.3493 (II)1162
1− (I) 0.5927 (I) 1910 •1717 ± 27 1780 K∗(1680)

(II) 0.5330 (II)1726
2+ (I) 0.6846 (I) 2196 2150

(II) 0.6339 (II) 2038
3− (I) 0.7639 (I) 2442 2460

(II) 0.7189 (II) 2302
4+ (I) 0.8352 (I) 2664

(II) 0.7943 (II) 2537
ss̄ 0++ 0.2726 1004 •980± 10 1360 f0(980)

1−− 0.4922 1653 •1680 ± 20 1880 ϕ(1680)
2++ 0.6018 1986 •2011+60−80 2440 f2(2010)
3−− 0.6918 2262 2540
4++ 0.7701 2505

cc̄ 0++ 0.5357 3414 •3417.3± 2.8 3440 χc0(1P )
1−− 0.7319 3805 •3769.9± 2.5 3820 ψ(3770)
2++ 0.8360 4037 4090
3−− 0.9224 4240
0++ 0.8340 9860 •9859.8± 1.3 9850 χb0(1P )

bb̄ 1−− 1.0663 10121 10140
2++ 1.1905 10282 •10268.5± 0.4 10350 χb2(2P )
3−− 1.2930 10426
a+(dū) = −0.88 , (I)a+(sū) = −1.59 , (II)a+(sū) = −1.0,

a+(ss̄) = −0.52, a+(cc̄) = −1.06, a+(bb̄) = −1.35
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