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Abstract

Pirogov Yu.F., Zenin O.V. Vector-like family extension of the standard model and the light
quark masses and mixings: IHEP Preprint 99–12. – Protvino, 1999. – p. 10, tables 1, refs.: 8.

The standard model extended with pairs of the vector-like families is studied. The model

independent analysis for an arbitrary case and an explicit realization for the case with one pair
of the heavy vector-like families are considered. The mixing matrices of the light quarks for

the left- and right-handed charged currents, as well as those for the flavour changing neutral
currents, both the Z and Higgs mediated, are found.

aNNOTACIQ

pIROGOW ‘.f., zENIN o.w. rAS[IRENIE STANDARTNOJ MODELI WEKTOROPODOBNYMI SEMEJSTWA-
MI I MASSY I SME[IWANIE LEGKIH KWARKOW: pREPRINT ifw— 99–12. – pROTWINO, 1999. – 10 S.,
1 TABL., BIBLIOGR.: 8.

iZUˆENA STANDARTNAQ MODELX, RAS[IRENNAQ PARAMI WEKTOROPODOBNYH SEMEJSTW. pROWEDEN

MODELXNO-NEZAWISIMYJ ANALIZ DLQ PROIZWOLXNOGO SLUˆAQ I RASSMOTRENA KONKRETNAQ REALI-

ZACIQ SLUˆAQ S EDINSTWENNOJ PAROJ TQVELYH WEKTOROPODOBNYH SEMEJSTW. nAJDENY MATRICY

SME[IWANIQ LEGKIH KWARKOW DLQ LEWO- I PRAWOSPIRALXNYH ZARQVENNYH TOKOW, A TAKVE DLQ

NEJTRALXNYH TOKOW S NESOHRANENIEM AROMATA, PERENOSIMYH KAK Z, TAK I HIGGSOWSKIM BOZO-
NOM.
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1. Introduction

Are there any extra families in the standard model (SM) or not ? – this is a question.
A recent two-loop renormalization group analysis [1] of the SM shows that subject to
the precision experiment restriction on the Higgs mass, MH ≤ 215 GeV at 95% C.L. [2],
the forth chiral family, if alone, is excluded.1 In fact, it does not depend on whether this
extra family has the normal chiral structure or the mirror one. But as it is noted in
Ref. [1], a pair of the opposite chirality families with relatively low Yukawa couplings
evades the SM self-consistency restrictions and could still exist. In order to conform with
observations, these extra families, which otherwise can be considered as the vectorial ones,
should get large direct masses and drop out of the light particle spectrum of the SM in
the decoupling limit. Nevertheless, at the moderate masses, say, of order 1 TeV or so,
such families could lead to observable corrections to the SM interactions through mixing
with the light fermions.

Various vector-like fermions are generic in many extensions of the SM like the super-
string and grand unified theories, composite models, etc. Many issues concerning those
fermions, both the electroweak doublets and singlets, the latter ones of the up and down
types, were considered in the literature [4], [5]. On the other hand, there are numerous
studies of the n > 3 chiral family extensions of the SM [6], [7]. Some topics concerning
the SM extensions with the vector-like families are studied in Ref. [8]. But the problem
of SM quark masses and mixings in the presence of extra vector-like families have not
yet found its full model independent consideration, and it is studied in the current pa-
per. We present both the model independent analysis for the general case and an explicit
realization for the case with a pair of the heavy vector-like families.

1More conservative restrictions mH ≤ 262 GeV or MH ≤ 300 GeV at 95% C.L., respectively, from
the first and second papers of Ref. [3] though render this conclusion somewhat less reliable, nevertheless,
do not invalidate it.
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2. Arbitrary number of the vector-like families

The most general content of the SM families consisting of the SU(2)W×U(1)Y doublets
and singlets in the chiral notations is nQL + mQ′R, where QL = (q̂L, û

c
L, d̂

c
L) and QR =

(q̂′R, û
′c
R, d̂

′c
R). The symbols with a hat sign designate quarks in the symmetry/electroweak

basis where, by definition, the SM symmetry structure is well stated. Here n ≥ 3 is
the number of chiral families, similar in their chiral and quantum number structure to
the three ordinary families of the minimal SM. m ≥ 0 means the number of the mirror
conjugate families with the normal quantum numbers, or in other terms, the charge
conjugate families with the normal chiral structure. In the more traditional left-right
notations, one should substitute: QL → (q̂L, ûR, d̂R) and QR → (q̂′R, û

′
L, d̂

′
L).

In general, quarks gain masses from two different physical mechanisms: that of the
SM Yukawa interactions and that of a New Physics resulting in the SM invariant direct
mass terms. Being chirally unprotected, the latter ones should naturally be characterized
by a high mass scale M , M � v, with v being the SM Higgs vacuum expectation value.
In the symmetry basis the kinetic, Yukawa and direct mass Lagrangian has the following
most general form:

L = iq̂LD/ q̂L + iûRD/ ûR + id̂RD/ d̂R

+ iq̂′RD/ q̂
′
R + iû′LD/ û

′
L + id̂′LD/ d̂

′
L

−
(
q̂LY

uûRφ
c + q̂LY

dd̂Rφ+ û′LY
u′q̂′Rφ

c† + d̂′LY
d′q̂′Rφ

† + h.c.
)

−
(
q̂LMq̂′R + û′LM

u′ûR + d̂′LM
d′d̂R + h.c.

)
, (1)

where D/ ≡ γµDµ is the SM covariant derivative, φ is the Higgs doublet and φc is the
charge conjugate one. In Eq. (1), Y and Y ′ are, respectively, the square n×n and m×m
Yukawa matrices; M and M ′ are, respectively, the rectangular n × m and m × n direct
mass matrices.

Table 1. Parameter counting in the symmetry/electroweak basis.
Couplings Moduli Phases

and symmetries

Y u, Y d, Y u′, Y d
′
, 2 (n2 +m2) 2 (n2 +m2)

M,Mu′,Md′ +3 nm +3 nm

G = U(n)3 × U(m)3 −3
2
[n(n− 1) +m(m− 1)] −3

2
[n(n+ 1) +m(m+ 1)]

H = U(1) 0 1

Mphys(n,m) 1
2
(n+m)(n+m− 1) 1

2
(n+m− 2)(n+m− 1)

+2 nm+ 2 (n+m) +2 nm

MSM
phys(3, 0) 6 + 3 = 9 1

Mphys(4, 1) 10 + 18 = 28 14

We generalize the parameter counting for the chiral families of Ref. [7] to the case
with the extra vector-like families (VLF’s). It goes as shown in Table 1. Here G is the
global symmetry of the kinetic part of the Lagrangian (1). It is broken explicitly by the
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mass terms, only the residual symmetry H = U(1) of the baryon number being left in
the general case we consider. Hence, the transformations of G/H can be used to absorb
the spurious parameters in Eq. (1) leaving only the physical setMphys of them. Of the
physical moduli, the 2(n + m) ones are the physical masses, the rest being the mixing
angles. The last two lines in Table 1 present the physical parameters for the minimal
SM and for its extension with a pair of the normal and mirror families. This case will be
considered in detail further on.

Let us now redefine collectively quarks in the symmetry basis as κ̂χ = ûχ, d̂χ and
these in the mass basis, i.e. the quark eigenstates withMphys being diagonal, as κχ = uχ,
dχ (χ = L, R). The bases are related by the unitary (n+m)× (n+m) transformations

κ̂χA = (U
κ
χ )
F
A κχF , (2)

with the ensuing bi-unitary mass diagonalization

UκL
†MkUκR =Mκ

diag = diag (m
κ
f ,M

κ
4, . . . ,M

κ
n+m) . (3)

In equations above, the indices A = AL, AR; AL = 1, . . . , n; AR = n + 1, . . . , n + m are
those in the symmetry basis, and F = f, 4, . . . , n +m; f = 1, 2, 3 are indices in the mass
basis. It is assumed that mκf �M

κ
4, . . . ,M

κ
n+m.

The matrices Uκχ satisfy the unitarity relations

Uκχ U
κ
χ
† = I (4)

and
Uκχ
†ILU

κ
χ + Uκχ

†IRU
κ
χ = I , (5)

where IL, IR are the projectors onto the normal and mirror subspaces in the symmetry
basis:

IL = diag ( 1, . . . , 1︸ ︷︷ ︸
n

; 0, . . . , 0︸ ︷︷ ︸
m

) ,

IR = diag ( 0, . . . , 0︸ ︷︷ ︸
n

; 1, . . . , 1︸ ︷︷ ︸
m

) (6)

with IL + IR = I and I2χ = Iχ. Let us also introduce their transformation to the mass
basis

Xκχ = Uκχ
†IχU

κ
χ . (7)

(κ = u, d and χ = L, R). Clearly, Xκχ are Hermitian and satisfy the projector condition:
Xκχ

2 = Xκχ (but note that X
κ
L +XκR �= I in the notations adopted).

Now, the charged current Lagrangian is

−LW =
g√
2
W+
µ

∑
χ

uχγ
µVχdχ + h.c. (8)
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and the neutral current one is

− LZ =
g

c
Zµ
∑
κ,χ

κχγ
µNκχ κχ , (9)

where c ≡ cos θW , with θW being the Weinberg mixing angle. The corresponding quark
mixing matrices for the charged currents are

Vχ = Uuχ
†IχU

d
χ , (10)

and for the neutral currents with the operator T3 − s2Q

Nκχ = T κ3X
κ
χ − s2Qκχ . (11)

Here T κ3 is the 3rd component of the electroweak isospin for κ = u, d and QκL,R ≡ QκI ,
with Qκ being the corresponding electric charge, s ≡ sin θW .

The charged current mixing matrices VL and VR play the role of the generalized CKM
matrices. But contrary to the minimal SM case, they, as well as the neutral current
mixing matrices Nκχ , are non-unitary. Namely, one gets by the unitarity relations (4)

VχV
†
χ = Xuχ ,

V †χVχ = Xdχ , (12)

where Xκχ (X
κ
χ �= I in general) are given by Eq. (7).

It is seen that the neutral current matrices Nκχ are not independent of the charged
current ones Vχ. In fact, one can get convinced that Vχ and the diagonal mass matrices
Mκ
diag suffice to parametrize all the fermion interactions in a general class of the SM

extensions by means of the arbitrary numbers of the vector-like isodoublets and isosin-
glets [5]. Indeed, in the case at hand using the unitarity relations (5), one gets for the
Yukawa Lagrangian in the unitary gauge

− LY =
H

v

∑
κ

κL
(
XκLMκ

diag − 2XκLMκ
diagX

κ
R +Mκ

diagX
κ
R

)
κR

+
∑
κ

κLMκ
diagκR + h.c. , (13)

H being the physical Higgs boson. It follows from the above expression and Eqs. (9), (11)
that all the flavour changing neutral currents are induced entirely by the lack of unitarity
of the charged current mixing matrices Vχ. In the case with the normal families (X

κ
L = I ,

XκR = 0) only, the usual SM expressions for LW , LZ and LY are recovered, the two latter
ones being flavour conserving.

We propose the following prescription for the model independent parametrization of
the Vχ. The problem is that they are non-unitary and thus are difficult to be parametrized
directly. So, the idea is to express them in terms of a set of the auxiliary unitary matrices.
First of all, note that in the absence of any restrictions on the Lagrangian the unitary
matrices Uκχ in Eq. (2) would be arbitrary. Now, an arbitrary (n+m)× (n+m) unitary
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matrix U can always be uniquely decomposed as U = U |n×n U |m×m U |n×m. Here U |n×n is
a unitary matrix in the n×n subspace. It is built of the n2 generators. Similarly, U |m×m
is the restriction of U onto the m×m subspace, and it is built of the m2 generators. And
finally, U |n×m means a unitary (n + m) × (n + m) matrix built of the 2nm generators
which mix the two subspaces.

Now, by means of the symmetry basis transformations G of Table 1 one can always
put, without loss of generality, the matrices Uκχ to the form

UuL = UuL|n×m ,

UuR = UuR|n×m ,

UdL = UdL|n×n UdL|n×m ,

UdR = UdR|m×m UdR|n×m . (14)

This representation includes six auxiliary unitary matrices. Clearly, they depend on the
[n(n− 1)/2 +m(m− 1)/2 + 4mn] moduli and [n(n+ 1)/2 +m(m+ 1)/2 + 4mn] phases,
and these numbers are redundant. But the nm moduli and the same number of phases
can be eliminated through the n×m matrix constraint

ILU
u
LMu

diagU
u
R
†IR = ILU

d
LMd

diagU
d
R

†
IR . (15)

The latter follows from the equality of the direct mass matrices M in Eq. (1) for the up
and down quarks, and it includes additionally the 2(n + m) independent moduli which
enterMu

diag andMd
diag. By means of Eq. (15) one can express, e.g., one of the U

κ
χ |n×m in

terms of all other matrices. And finally, the 2(n+m)− 1 phases can be removed via the
residual phase redefinition for the quarks in the mass basis. Putting all together, one can
easily verify that the total number of the independent parameters is precisely as expected
from Table 1.

Having parametrized the auxiliary unitary matrices, one gets for the Vχ

VL = UuL
†|n×m IL U

d
L|n×n UdL|n×m ,

VR = UuR
†|n×m IR UdR|m×m UdR|n×m (16)

and for the Xκχ
Xκχ = Uκχ

†|n×m Iχ U
κ
χ |n×m . (17)

When eliminating the 2(n+m)− 1 redundant phases, one can always make such a choice
as to render the diagonal and above-the-diagonal elements of the VL (or VR) to be real
and positive.

This gives a principal solution to the problem. When there are only the normal
families (m = 0), the usual parametrization in terms of just one unitary matrix UdL|n×n
is readily recovered. For the case with a pair of VLF’s (n = 4, m = 1) we got also the
explicit expressions of all the relevant quantities in terms of a minimal common set of the
independent arguments parametrizing the mass matrices (see below).
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3. A pair of the heavy vector-like families

The mass/flavour basis quantities, Mu,d
diag and VL,R, are phenomenological by their

very nature. They reflect an obscure mixture of contributions of quite a different physical
origin. In particular, they shed no light on the mixing magnitudes. On the contrary, the
parameters in the symmetry basis, i.e. the Yukawa couplings and direct mass terms M
and Mu′, Md′ have the straightforward theoretical meaning. So, we express the former
ones in terms of the latter ones. This permits us to expand upon the idea of the relative
magnitude of the various mixing elements in terms of the small quantity v/M .

The asymptotic freedom requirement for the SU(2)W electroweak interactions results
in the restriction that the total number of the electroweak doublets should not exceed 21,
and thus the total number of the families is (n+m) ≤ 5. Hence, the maximum number
of the extra VLF’s allowed by the asymptotic freedom is two, the case we stick to in what
follows.

Using here the global symmetriesG of Table 1, one can bring, without loss of generality,
the quark mass matrices in the symmetry basis to the following canonical form:

Mκ =




mκgf µκ′f 0

µκg mκ4 M

0 Mκ′ mκ5


 , (18)

where M , Mκ′ are the real scalars and µκf , µκ′f , m
κ
4, m

κ
5 are, in general, complex. Here

the lower case characters generically mean the masses of the Yukawa origin (∼ Y v). Let
us remind that M in Eq. (18) is common for bothMu andMd. The three-dimensional
matrices mκ are Hermitian and positive definite, and one of them, e.g. mu, can always
be chosen diagonal. Under such a choice, one can further simplify:

Mκ
0 = Uκ0

†MκUκ0 , (19)

where

Mκ
0 =




mκ1 0 0 µκ′1 0

0 mκ2 0 µκ′2 0

0 0 mκ3 µκ′3 0

µκ1 µκ2 µκ3 mκ4 M

0 0 0 Mκ′ mκ5




(20)

with a redefinition of µκf and µκ′f , and with the diagonal elements m
κ
f being real and

positive. The corresponding unitary Uκ0 are given by

Uu0 = I ,

Ud0 =

(
VC 0
0 I2

)
, (21)

VC being the 3 × 3 CKM matrix and I2 being the 2 × 2 identity matrix. The mass
matrices of Eq. (20) possess the residual symmetry U(1)6 which is reduced to U(1)5 by
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the baryon number conservation. So, one can use phase redefinitions for two of the light d
quarks which leave just one complex phase in VC in accordance with the decoupling limit
requirement.

It is seen from Eqs. (20) and (21) that in this parametrization the total number of
the physical moduli is 10 + 15 + 3 = 28 as it should be according to Table 1. As for the
phases, their number is, in general, 16 + 1 = 17, i.e. three of them are spurious and can
be removed. For example, by means of the residual phase redefinition for the three light
u quarks one can make µuf or µu′f real, or impose some other three relations on their
phases. This exhausts the freedom of the phase redefinitions, leaving only the physical
parameters.

Solving the characteristic equations det (Mκ
0Mκ

0
† −mκ2I) = 0, one gets for the light

quark physical masses in the first order (i.e. up to the relative corrections O(v2/M2) to
the leading order):

m2f = m2f

(
1−

( |µf |2
M2

+
|µ′f |2
M ′2

))
+

mf

MM ′ (m5µ
fµ′f + h.c.) (22)

with the superscripts κ = u, d being suppressed. Here it is supposed that M ∼ M ′ but
M �=M ′ in general. It is seen that corrections to m2f are proportional to mf themselves,
i.e. the light quarks are chirally protected. This property drastically reduces the otherwise
dangerous corrections to the masses of the lightest u and d quarks at the moderate M .
On the other hand, it means that the masses of the lightest quarks cannot entirely be
induced by an admixture of the vector-like families: if mf = 0 then mf = 0, too.

Once the physical masses are known, one can obtain the matrices UκL and UκR of the
bi-unitary transformation (3). With account for Eq. (10), one gets hereof for the light
quark mixing matrix VL

VL
g
f = VC

g
f

(
1− 1

2M2
(nuff + ndgg)

)
− 1

M2

∑
(pufh

∗
VC
g
h + VC

h
fp
dg

h) (23)

and similarly for VR

VR
g
f =

1

Mu′Md′p
u′f
5

∗
pd
′g
5 , (24)

where

pfg =
µf (m2f − |m5|2)(mfµf ∗µ′g −mgµ

g∗µ′f ) + kf (mfµ
′
g −

mg
mf

M ′

M
µg∗m∗5)

(m2g −m2f)(mfµ
′
f − M ′

M
m∗5µ

f ∗)
,

pf5 =
M ′

M
(kf +m2f |µf |2)−mfm5µ

fµ′f

mf(mfµ′f − M ′

M
m∗5µ

f ∗)
,

nff =

∣∣∣∣
M ′

M
(kf +m2f |µf |2) −mfm5µ

fµ′f

mf(mfµ′f − M ′

M
m∗5µ

f ∗)

∣∣∣∣2 (25)

with kf =M2(m2f −m2f). The p
′, n′ are obtained from p, n, respectively, by substituting

µf ↔ µ′f
∗, m4 ↔ m∗4, m5 ↔ m∗5, M ↔ M ′. All these auxiliary parameters are, in general,

of order O(M0).
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The charged current Lagrangian LW is given by Eq. (8). The Z mediated neutral
current Lagrangian LZ is given by Eqs. (9), (11) with

XL
g
f = δgf −

1

M2
pf5
∗
pg5 (26)

and

XR
g
f =

1

M ′2p
′f
5

∗
p′g5 . (27)

The neutral scalar current Lagrangian takes the general form

− LH =
H

v

∑
κ

κL U
κ
L
†(Mκ −Mκ

dir)U
κ
R κR + h.c. (28)

with the direct mass matrices

Mκ
dir =


 O3 0 0

0 0 M

0 Mκ′ 0


 , (29)

where O3 is the 3×3 zero matrix. As a consequence of the substraction of the direct mass
terms, the total mass and Yukawa matrices are not diagonalizable simultaneously in the
same basis. In the mass basis, the Higgs interaction Lagrangian is non-diagonal

−LH =
H

v

∑
κ

κL HκκR + h.c. , (30)

with the light quark mixing matrix (indices κ = u, d being omitted)

Hgf = mfδ
g
f −

1

MM ′

(
pf4
∗
p′
g
5 + pf5

∗
p′
g
4

)
, (31)

where

pf4 = −kf

(
kf + |µf |2(m2f − |m5|2)

)(
M ′

M
m∗5 +

1
kf
mfµ

fµ′f (m
2
f − |m5|2)

)
mf (mfµ′f − M ′

M
m∗5µ

∗
f )

(32)

with p′f4 being obtained from it by the usual substitutions.
One should stress that for the light quarks all the off-diagonal components of the

Lagrangian LW (beyond that of the minimal SM), as well as those of the LZ and LH
are suppressed by the ratio v2/M2, and it does not depend on the details of the mass
matrices.

4. Conclusions

We have shown that the mere addition of a pair of the VLF’s drastically changes all
the characteristic features of the minimal SM. First of all, the generalized CKM matrix
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for the left-handed charged currents ceases to be unitary. Moreover, this non-unitarity
takes place in the whole flavour space, but not only in the light quark sector, which would
occur for adding only the normal families. Further, there appear the right-handed charged
currents, the flavour changing neutral currents, both the vector and scalar ones, all with
the non-unitary mixing matrices and with a number of CP violating phases.

Due to decoupling under the large direct mass terms M , the extended SM definitely
does not contradict experiment in the limit M � v. But at the moderate M > v,
the addition of a pair of the VLF’s would make the model phenomenology, especially
that of the flavour and CP violation, extremely rich. It is to be seen what is the real
experimentally allowed region in the parameter space for the VLF’s and what are the
possibilities to observe their effects in the future experiments. We hope that our paper
will stimulate further study in this direction.
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